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Figure 1: A surface parameter (wall shear stress) is colormapped to a carotid artery. In a 3D projection (left) interaction is necessary to
examine the whole surface. We propose an automatic method to cut and flatten vessel trees, which shows the full surface while retaining its
proportions and layout (right). A: common carotid. B: internal carotid. C: external carotid.

Abstract
We propose a novel method to cut and flatten vascular geometry that results in an intuitive mapping between the 3D and 2D
domains. Our approach is fully automatic, and the sole input is the vessel geometry. We aim to simplify parameter analysis on
vessel walls for research on vascular disease and computational hemodynamics. We present a use case for the flattening to aid
efforts in investigating the pathophysiology of carotid stenoses (vessel constrictions that are a root cause of stroke). To achieve
an intuitive mapping, we introduce the notion of natural vessel cuts. They remain on one side of vessel branches, meaning
they adhere to the longitudinal direction and thus result in a comprehensible unfolding of the geometry. Vessel branches and
endpoints are automatically detected, and a 2D layout configuration is found that retains the original branch layout. We employ
a quasi-isometric surface parameterization to map the geometry to the 2D domain as a single patch. The flattened depiction
resolves the need for tedious 3D interaction as the whole surface is visible at once. We found this overview particularly beneficial
for exploring temporally resolved parameters.

CCS Concepts
• Human-centered computing → Scientific visualization; • Applied computing → Life and medical sciences; • Computing
methodologies → Mesh geometry models;
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1. Introduction

Cardiovascular disease is the leading cause of mortality and mor-
bidity worldwide [GBD16]. The majority of cases are attributed
to ischemic heart disease and stroke [JLM*17]. These are typically
caused by stenosis, a localized constriction of the arteries supplying
the heart or brain. A common issue is stenosis in the carotid arter-
ies due to atherosclerotic plaque buildup. The two internal carotids
provide the majority of blood supply to the cranium. They split off
the common carotid artery at the carotid bifurcation. Plaque can
often be found at or after the bifurcation.

Recent advances in simulated hemodynamics allow for model-
ing of blood flow properties based on computational fluid dynamics
(CFD) [CL13; SH18]. These simulations are performed on patient-
specific arterial wall geometry. Typically, one flow inlet is defined,
for instance, at a cross-section of the common carotid artery. Here,
inflow is simulated following the pattern of a standardized human
heart cycle. The flow exits the domain at one or more predefined
outlets, which lie downstream from the inlet. Together with the
wall, the inlet and outlets constitute boundary conditions that allow
solving the internal flow field. This yields various parameters at
arbitrarily high resolutions, some of which cannot be measured in-
vivo. These simulation results can help understand the progression
of cardiovascular disease and may even provide additional markers
for medical treatment decisions in the future. A principal interest is
the analysis of wall-related parameters, such as normal wall stress
or wall shear stress (WSS), as they show how the vessel wall is
affected by the flow field.

The analysis of CFD data is a cumbersome process. Often,
a large spatiotemporal data space needs to be examined, where
comparisons need to be made regarding values over time and
different parameterizations of the simulation. To provide better
insights into this complex data, a variety of visualization tech-
niques and frameworks have been proposed for medical flow vi-
sualization [OMN*19]. Following this line of research, we gener-
ate overview depictions for at-a-glance assessments of wall-related
CFD results. Existing model-based techniques for the flattening of
vessel surfaces either create patches and do not show a continuous
domain [AS04; BGP*11; GSK*12], or do not preserve the surface
area [MK15]. Our flattening approach is a global surface param-
eterization that creates a single patch. The parameterization pre-
serves the vertex and connectivity information (except for the cut),
making it simple to map any data fields defined on vertices or faces
of the mesh. For a realistic assessment of parameter distributions,
we minimize area distortion while keeping the layout close to the
original structure. Our approach is also fully automatic and requires
no manual cuts or predefined landmarks. In contrast to other meth-
ods, the single input for our techniques is the 3D mesh of the vessel
tree, we do not require a centerline. Further, our flattening results in
intuitive 2D views of the unrolled inner vessel wall. We achieve this
by introducing natural vessel cuts, which remain on one side of the
cylindrical vessel shape. Our method supports vessel trees of vari-
ous sizes with an arbitrary number of outlets, contrary to existing
approaches to map the walls of the human carotid that only consider
a limited region of the vessel with a specific geometry [CCR20;
CES*08].

Furthermore, we investigate a use case for the flattening. We in-

tegrated the method into a CFD pipeline that simulates blood flow
in the carotids of real patients. We provide a GUI to generate flat-
tened depictions of the extracted wall geometries, on which scalar
fields can be mapped. The tool supports navigation of the 3D and
2D spaces as well as the temporal dimension through interpolated
animation of timesteps. The demonstration focuses on the carotid
as an example of a highly relevant application area. However, we
also show how our method can be generalized to any vessel tree.

2. Related Work

Flattening spatial data is a common technique in medical visual-
ization to reduce the perceived complexity of structures, as is re-
viewed in the survey by Kreiser et al. [KMM*18]. Methods have
been proposed in a variety of scenarios where anatomical structures
need to be visually analyzed, for example, the colon [MZGK11],
bones [MPG*17], or heart valves [EEL*19; LER*20]. Usually, the
objective is to create a 2D domain, which provides an overview that
requires less interaction than a direct rendering of its 3D counter-
part. These 2D visualizations often serve as a map to find points
of interest and navigate the spatial and sometimes temporal data
space. Flattened illustrations of arterial vessel trees were found
superior to 3D surface renderings w.r.t. accuracy and efficiency
when assessing a scalar field such as shear stress on the vessel
wall [BGP*11].

A large group of vessel flattening approaches are point-based ref-
ormation techniques. Kanitsar et al. [KFW*02] introduced curved
planar reformation, which operates directly on medical volume im-
ages and provides continuous views of vessels after the user de-
fined a centerline. The technique was adapted and modified mul-
tiple times, resulting, for instance, in the centerline reformation
method [MVB*12]. Mistelbauer et al. [MMV*13] also demonstrate
how viewing directions can be aggregated into a single depiction.
Diepenbrock et al. [DHS*13] use reformation to display PET ac-
tivity in the carotids of mice.

If vessel walls were segmented, for example, to perform a CFD
simulation of blood flow, the geometric model can be flattened di-
rectly. This flattened depiction can be used to visualize parameter
distributions that occur on the surface, either measured or result-
ing from simulation. Neugebauer et al. [NGB*09] propose view-
aligned 2D projections of scalar surface fields for aneurysm analy-
sis. Their method, however, can only show small subsections of a
vessel and is based on projection. It cannot flatten the whole ves-
sel and does not preserve geometric properties like area or shape.
Tao et al. [THQ*16] construct a full vessel map that provides a 2D
overview of the internal flow field in a vessel. They use a voxeliza-
tion of the 3D domain and transfer the voxels into a 2D graph. Since
the voxelization does not provide a direct mapping of the wall it is
not suited for analysis processes in medical research or clinical de-
cision making where wall-related parameters are the main interest.
Similarly, Pandey et al. [PSY*19] create a network visualization of
cerebral artery trees and Eulzer et al. [EMKL21] proposed a map
of the carotids with a standardized layout for the main and side
branches. Both methods flatten the centerline, not the vessel wall
surface.

For overviews of the mesh surface, model-based techniques are
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(a) Generic disk-cut. (b) Minimizing geodesic distance. (c) Natural vessel cuts (ours).

Figure 2: Different cutting approaches that all result in a mesh homeomorphic to a disk.

best suited, which employ a surface parameterization that maps ev-
ery 3D vertex to a 2D coordinate in the parameter domain. Ide-
ally, such a mapping is bijective, i.e., every point on the 3D surface
can be mapped to exactly one point in the parameter domain and
vice versa. Surface parameterizations have been proposed for ves-
sel trees or tubular surfaces, as the resulting 2D coordinates are use-
ful for illustrative techniques like hatching, contouring, or integrat-
ing depth cues. Kälberer et al. [KNP11] proposed a method to gen-
erate 2D coordinates for stripe patterns on tree-like structures. The
technique is, however, not suited for flattening as these mappings
do not aim for bijectivity. Hence, a 2D rendering would suffer from
extensive overlaps of branches. Lichtenberg and Lawonn [LL20]
presented a similar approach. They compute the 2D coordinate of
the first dimension on the 3D geometry and the second coordinate
in screenspace. The resulting 2D coordinates suffice for illustra-
tive purposes, but the technique cannot create a flattened depiction
of the object. Surface parameterizations for flattening have been
proposed for aneurysms explicitly [GSK*12; MVB*16], which re-
quires a cut along the aneurysm base (ostium). These methods are
not global w.r.t. the vessel, as they only map selected patches.

To flatten arbitrary vessel trees Borkin et al. [BGP*11] proposed
2D projections of cylindrical vessel segments. They map coronary
artery trees to a diagram representation for overview assessment of
simulated WSS. The geometry is not preserved as they use a projec-
tion and vessel bifurcations cannot be shown. Marino et al. [MK15]
introduced a mapping for arbitrary branch configurations, which
shows the whole vessel and achieves bijectivity. Based on the cen-
terline, a planar configuration is found that mimics the 3D layout
of the current view direction. The boundary is fixed around this
configuration showing the vessel diameter. The mesh is cut from
root to leaves over branch nodes. Then, the surface is fitted into
the fixed boundary shape with an adapted harmonic mapping. For
our purposes, however, the method is not suited as the area is not
preserved. The fixed boundary encodes the vessel diameter and is,
therefore, necessarily smaller than a path that would follow the cir-
cumference. The layout is also strictly dependent on the viewing
angle. Furthermore, the cuts optimize geodesic distance, which re-
sults in unintuitive cutting paths, as we show in Section 4.

Area-preserving maps of vessel trees have also been proposed.
Zhu et al. [ZHT05] first showed a technique for geometric cuts and

unrolling of Y-shaped tubular regions, including an optional step to
minimize area distortion. Several of such regions can be stitched to
represent a vessel tree. They use conformal maps that may result in
unexpected cuts. The method was adapted by Chiu et al. [CES*08],
who reconstruct the inner and outer walls of the carotids from ultra-
sound images. The 3D surfaces are subjected to an area-preserving
flattening that is used to visualize vessel thickness, which is an
indicator for atherosclerosis. Antiga et al. [AS04] created a stan-
dardized 2D map of the carotid bifurcation, where three topologi-
cal cylinders are found, cut, and unrolled in three individual planar
maps. As these maps suffer from discontinuities where the tubu-
lar segments would join, an L-shaped map of the carotid bifurca-
tion was proposed, which then helped to develop biomarkers for
plaque progression/regression in clinical trials [CLC13; CCC16;
CUS*17]. Recently, Choi et al. [CCR20] minimized the area dis-
tortion within the L-shape. The fundamental problem of these ap-
proaches is that they are specific to a limited segment of the carotid,
whose geometry is well-defined by three connected cylinders: the
common, internal, and external carotid. The section is about 20-
25 mm in length, which allows to assume the branches as straight
and cut them with predefined planes along known landmarks. On
average, the carotid covers more than 200 mm in adults [CGRH16].
In the L-shaped map stenoses that occur anywhere but directly at
the carotid bifurcation will be hidden. Furthermore, for accurate
CFD simulations, larger segments with potentially more than two
outlets are of interest.

3. Objectives

Our goal is to create a flattening through surface parameterization.
We assume the vessel tree is a triangulated surface with vertices V
and faces F , where (i, j,k) ∈ F with i, j,k ∈ V means that the ver-
tices i, j,k form a triangle. The 3D position of a vertex i is denoted
by vi ∈ R3. We want to find a configuration of (u,v) parameter
coordinates where each vertex vi = (xi,yi,zi) corresponds with ex-
actly one point (ui,vi). For an unambiguous representation of scalar
field data on the flattened surface, we aim for a bijective mapping
between the 3D and parameter space. No overlaps or triangle flips
should occur.

We intend to facilitate use cases in CFD and medical research,
where surface attributes on the vessel need to be analyzed. This
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Figure 3: The minimal principal curvature is aligned with the ves-
sel direction, serving as the basis to orient the natural vessel cuts.

analysis involves localization of certain attribute distributions to
understand, e.g., where irregularities occur. Naturally, not only the
location but also the size of these feature distributions needs to be
accurately portrayed for visual analysis. Therefore, the parameter-
ization needs to preserve surface area if possible. Simultaneously,
the surface layout should be intuitive, i.e., it should be easy to rec-
ognize anatomical features and mentally project them into the 3D
space. All parts of the input surface should be visible, even if in
specific cases some side-branches might be less medically rele-
vant. Mapping the total surface per default makes the technique
more generally applicable. Also, for CFD research it is important
to examine and compare the behavior of parameters on the whole
surface that defines the simulation domain.

We expect the input mesh to be triangulated and assume open
boundaries at inlets and outlets, which is the typical morphology of
vessel walls in CFD blood flow simulations. The rest of the mesh
should be watertight and not contain self-intersections. The ver-
tex indices of each triangle must be ordered consistently with nor-
mals pointing outwards. As we focus on vasculature, we assume a
tree-like surface structure where sub-branches on average get thin-
ner as compared to their root branch. Result data can be given as
scalar/vector fields discretized on V or F . It should be kept in mind
that vessels do not consist of perfect cylinders and small deforma-
tions are the norm. Also, stenoses are possible that can disturb the
cylindrical shape.

4. Cutting

To find a valid surface parameterization that can be rendered in a
flat layout, the input mesh must be cut such that it becomes home-
omorphic to a disk. We want to find natural vessel cuts that are
necessary for an intuitive flattened layout. We define natural as fol-
lows:

1. The first cut starts at the inlet boundary of the vessel tree.
2. At each branch of the vessel tree, the cut splits in two child cuts,

one for each branch.
3. At each outlet boundary exactly one cut terminates.
4. Cuts may only intersect at the point where they connect.
5. Wherever possible, cuts travel in the longitudinal direction of

cylindrical vessel segments.

Figure 4: Natural vessel cuts on different geometries. (a)-(b) Hu-
man carotid arteries. (c) Cerebral artery with aneurysm. (d) Aorta
with aneurysm. (e) Large segment of a carotid.

This results in a minimal number of connected cuts that slice open
each vessel segment, creating a single surface patch. The defini-
tion is similar to the boundary creation as described by Marino et
al. [MK15]. However, we additionally impose the last point as a
crucial condition. Cuts should remain on one side of the cylinders
and not wrap around them. By taking this requirement into account,
we are able to generate cuts that enable intuitive mental mapping
between 3D and 2D, as the surface will “unfold” in a consistent
orientation. The advantage of these cuts becomes apparent when
compared to the traditional approaches of either using a generic
cutting algorithm [GGH02] or minimizing geodesic distance (see
Figure 2). We create natural vessel cuts by following the minimal
principal curvature, which, on a cylindrical object, defines a tangent
field along its length.

4.1. Sorting boundaries

To create the cuts we first find the set of existing boundary ver-
tices VB ⊂ V . We select an arbitrary vertex in VB and recursively
search for one neighboring vertex that is also in VB until we found
a loop. Then, the process is repeated with an unvisited boundary
vertex until all boundary vertices are visited. This gives us one or-
dered boundary loop for the inlet and one for each outlet. To prepare
for the flattening where these loops are effectively “unrolled”, we
check that the loop orientation is consistent with the winding order
of the mesh faces. This means, a vertex candidate is only appended
to a loop if it and the previous vertex would occur in the same or-
der as they do in the face they share. They can only share one face
as they are both on the boundary. This condition only needs to be
tested for the second vertex of a new loop, as two neighbors to the
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first vertex are possible candidates. Ultimately, we sort the list of
loops by the arc length of the loops. We expect the root of the ves-
sel tree to lie at the thickest branch. Hence, the longest boundary
loop is considered to be the inlet (cf. Figure 1A), all others are con-
sidered to be outlets.

4.2. Aligning curvature

We compute the principal curvature directions at each vertex and
extract the minimum principal curvature Cmin ⊂ R3, which is a
good geometric estimator of the longitudinal direction along a
cylinder. The idea was also employed by Lichtenberg and La-
wonn [LL20] to compute a continuously increasing scalar field
across a vessel tree. We use the method by Panozzo et al. [PPR10]
to compute the principal curvature cross-field. The principal cur-
vature is analytically solved on a best-fit quadric over the neigh-
borhood of each vertex. This method is fast and robust. It allows
to define a scale for the quadric based on the average edge length
of the mesh edges e. As in the original proposal, we set the scale
to a default of 5e. Then, the quadric fitting will take into account
a large portion of neighboring vertices, which effectively smoothes
noise and parts of the surface that deviate from the ideal cylinder.
As such, the curvature field will be aligned with the overall shape
of the vessel tree. It is robust against irregularities in the vessel
structure, small aneurysms, and deformations from stenoses.

A problem when using principal curvature is that the sign of in-
dividual elements ci ∈ Cmin is ambiguous. At each vertex ci or −ci
can be computed. We need all directions in Cmin to be aligned to-
wards the root of the tree geometry. We resolve this ambiguity as
proposed by Lichtenberg and Lawonn [LL20]. First, the geodesic
distance G ⊂ R is computed as a scalar field over V , where each
vertex is assigned the distance to the inlet boundary. We use the
geodesics in heat method [CWW13] as it is fast and sufficient for
the purpose. As G increases strictly monotonously over the vessel
tree, we can use its gradient at vertex positions gi ∈ ∇G to obtain
the aligned curvature Z:

zi =

{
ci, if 〈ci,gi〉< 0
−ci, otherwise.

(1)

The resulting field of aligned minimal curvature is shown in Fig-
ure 3.

4.3. Finding optimal paths

The mesh is now sliced open with natural vessel cuts that when
traced from outlets to the inlet minimize deviation from the direc-
tions given in Z . We will use cuts that run along existing mesh
edges, i.e., no new topology will be introduced in the process. This
makes it simple to map any data fields between the 3D and 2D rep-
resentations, as a complete set of (u,v) coordinates will be defined.

Picking any two vertices on the mesh, an optimal path can be
found between them by interpreting the mesh as a directed graph.
In this graph, a unique node exists for each element in V and each
mesh edge is represented by two directed graph edges, one in each
direction. By associating each directed edge with a travel cost, we
can find the path between two selected nodes that minimizes the
total cost. For simplicity, we use Dijkstra’s algorithm [Dij59] to

find the path. Due to its logarithmic complexity it also scales with
large meshes. The cost function can be used to control the path.
From a mesh vertex vi edges exist to any direct neighbor v j. When
setting the cost to the Euclidean distance from vi to v j, the path
with minimal geodesic length is found:

Eg(vi,v j) = ||v j−vi||. (2)

In this case, the graph could be undirected. To minimize the devi-
ation of the path from the aligned curvature zi at vi, however, we
need directed edges with costs:

Ec(vi,v j) = 1−
〈 v j−vi

||v j−vi||
,

zi

||zi||
〉

(3)

Due to the normalization the edge length is ignored. If edge lengths
deviate strongly from their mean, it is possible to factor in higher
costs for longer edges by interpolating the geodesic and curvature
cost:

Ecg(vi,v j) = a ·Ec(vi,v j)+(1−a) ·Eg(vi,v j) (4)

This is usually not a problem for meshes used in CFD, which typ-
ically have a semiregular triangulation. Therefore, we found the
most intuitive cuts ensue from using Ec alone (equivalent to a = 1)
but reserve the option to use Ecg if required.

After creating the graph representation with edge costs, we com-
pute one cut for each outlet. We resolve the ambiguity of where to
split the path at branch locations by creating the cuts in reverse, i.e.,
we start one cut at each outlet. The first cutting path runs from the
largest outlet to the inlet. This initial cut follows the vessel branches
with the largest diameter and, therefore, the highest flow volume.
On this principal branch the cut will lie as straight on the vessel ge-
ometry as the triangulation allows (cf. Figure 4). Every vertex that
lies on a cut is appended to a set VC ⊂ V . For the following cut-
ting paths we iterate the remaining outlet boundaries from largest
to smallest. In every iteration we find the vertex in VC that is closest
to the starting outlet. Choosing this vertex as the target ensures that
we always hit an existing cut in vicinity of a branch location and
that cuts do not cross.

We provide two options to decide which point on an inlet/outlet
boundary will be chosen to start or end the cut. One, the points on a
boundary loop can be connected to a common imaginary node with
zero edge costs. The imaginary node is not present on the mesh and
only used in the graph search. It has only outgoing edges at an out-
let and only incoming edges at the inlet. When computing a cut, the
imaginary nodes ensure that the most cost-efficient path is found.
This requires no further input and is fully automatic. If, however,
a cut should face the observer (which makes it easier to mentally
reconstruct the unfolding process), a single 3D point can be given
as a parameter, for example, the current viewpoint or a fixed loca-
tion in front of the vessel. Then, we choose the point with minimal
Euclidean distance to this location from each boundary loop. Fig-
ure 4 shows the robustness of this approach with different vessel
geometries. Finally, the cut is applied to the mesh by duplicating
the vertices in VC and solving the topology in F accordingly. If
data fields are present on the affected vertices they are copied as
well.
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Figure 5: Possible layout initialization that fixes the (u,v) coordi-
nates of inlet and outlet boundaries to resemble a tree. The angle
is set to α = 45◦ but can be arbitrarily chosen. All other values are
read from the cuts.

5. Flattening

The flattening should balance area preservation and recognizability
of the anatomy. We use a boundary-free approach, which benefits
both requirements. However, we fix the inlet boundary loop to an
iso-u line centered on (u,v) = (0,0), which serves as a reference
in parameter space above which the remaining coordinates can de-
velop. Fixing the inlet this way increases the comparability of dif-
ferent flattenings. We use the as-rigid-as-possible (ARAP) method
for mesh deformation introduced by Sorkine and Alexa [SA07],
which was extended for single-patch surface parameterization by
Liu et al. [LZX*08]. The ARAP method attempts to retain dis-
tances in triangles, preserving their shape up to a rigid transforma-
tion, which yields quasi-isometric results when applied to surface
parameterization. A trade-off is achieved between area preservation
and conformality. The drawback of this method is that it requires
an initialization of (u,v) coordinates in parameter space. Typically,
this initialization can be done by mapping the surface to a convex
shape, such as a square or circle, for which fast and robust methods
exist, e.g., harmonic parameterization. We found, however, that the
tree-like structure of the mesh is not suited for this approach and ex-
tensive overlaps occur within the parameter domain. A better way
is to provide a flat initialization that already resembles the expected
target layout and then use ARAP deformation to restore the propor-
tions as observed on the 3D surface.

Different ideas have been proposed for the layout of vessel
maps, depending on the use case. Recently, Eulzer et al. [EMKL21]
showed a map of carotid centerlines where the most important
segments, the common and internal carotid, are straightened to a
line. Side branches are laid out at a fixed angle. We build on this
idea, which simplifies the sometimes convoluted 3D vessel shape.
We fix the inlet and outlets to predetermined (u,v) coordinates
and move them to their desired locations, as shown in Figure 5.
Each inlet/outlet loop contains an ordered set of boundary vertices
p1, ...,pn ∈ R3. We re-order the loops such that they start at the
cut and the last vertex pn is the copy created of p1 during the cut-
ting. The loops are unrolled as straight lines, where each boundary
point pi ∈R3 is associated with a point in parameter space qi ∈R2.

Given the arc length of one such loop:

s =
n

∑
i=2
||pi−pi−1||, (5)

we create an intermediate initialization of the mapping that pre-
serves the arc length:

q̃i =



(
−0.5s
hleaf

)
if i = 1

q̃i−1 +

(
||pi−pi−1||

0

)
otherwise.

(6)

The resulting line is centered around the v-axis in parameter space.
The height hleaf approximates the length of the vessel segment that
is capped by the boundary loop (cf. Figure 5). The intermediate
mapping is then recursively displaced by the transforms Φ1, ...,Φd ,
where d is the branch depth of an outlet:

qi = Φ1 ◦ ...◦Φd(q̃i), Φ(q̃i) = Rq̃i +

(
0

hstem

)
. (7)

This is effectively a classical transformation hierarchy, where the
displacement of a segment is passed on to all child segments. The
2× 2 matrix R describes a rotation around an angle α. The an-
gle can be constant or vary depending on the geometry or desired
layout. We automatically determine the sign of α by testing if the
branch lies to the left or right of the stem it is attached to. A good
approximation for the heights hstem and hleaf can be read from the
scalar field G by subtracting the value at the start from the value
at the end of the corresponding vessel cut. Note that slight varia-
tions of the heights do not affect the result, as the (u,v) coordinates
will be displaced in the ARAP stage anyway. The final parameter
coordinates of this step only serve as an initialization.

After the boundary loops are fixed to the (u,v) plane, the re-
maining surface coordinates need to be mapped to the parameter
domain. It is not important which algorithm is used for this pur-
pose, as long as it creates a bijective mapping that is adequate for
use with the ARAP method. As originally proposed [LZX*08], we
use least squares conformal maps (LSCM) [LPRM02] for this step.
LSCM requires at least two fixed (u,v) coordinates but does not
need a fixed boundary. We solve the LSCM with fixed inlet/outlets,
which results in a flattening that already approximates the desired
layout (see Figure 6). Finally, the (u,v) coordinates are optimized
with the ARAP method, which displaces the 2D mesh such that it
retains the proportions of its 3D counterpart wherever possible (a
quasi-isometric parameterization). In this last step, only the inlet
boundary remains fixed. Results of the flattening on different ge-
ometries are shown in Figure 7.

6. Application

A possible application for the flattening is result analysis in CFD
workflows. We, therefore, integrated our method into a segmenta-
tion and simulation pipeline that investigates blood flow in carotid
arteries. The overarching goal of this line of research is to better
understand the pathophysiology of vascular diseases, e.g., how the
arterial wall is affected by blood flow in the vicinity of stenoses.
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Figure 6: Stages of the flattening. The cut mesh is first flattened to a predetermined layout using LSCM. Then, ARAP is applied to retain the
original proportions.

These insights could reveal why stenoses often first develop in re-
gions like the carotid bifurcation or siphon and lead to additional
markers for clinical decision-making.

The input of the simulation is a model of the carotid inner
and outer wall. The data is acquired by solving a fluid-structure-
interaction problem. The underlying simulation consists of the in-
compressible Navier-Stokes equations for a Newtonian fluid and
its interaction with a linear elastic vessel wall modeled as a 3D
geometry with thickness. The fluid equations are equipped with a
velocity function at the inlet boundary and a “do-nothing” bound-
ary condition for the normal stress at the outlets. The vessel wall is
considered to behave as a linear elastic material with its outer wall
moving freely. The continuity of fluid and solid velocities and the
continuity of forces are maintained at the fluid-structure-interface.

Artificial truncation of the vessel results in surfaces perpendic-
ular to the blood flow which are kept stationary throughout the
simulation. A density of ρblood = 103 kg/m3 and constant blood
viscosity of µ = 0.00345 Pa·s are chosen. The vessel wall has a
Young’s modulus between E = 0.25 - 0.75 MPa, a Poisson’s ratio
of ν = 0.17 and a density of ρvessel = 1.1 ·103 kg/m3. The cyclic in-
flow profile of one heart cycle (0.9 s) has peak systolic and diastolic
velocities of 0.59 m/s at 0.2 s and 0.29 m/s at 0.55 s respectively.
For insights into pathophysiological risk parameters we evaluate
the wall shear stress:

WSS :=

√√√√ 2

∑
j=1

(
(T ·n) · τ( j)

)2

and the normal wall stress on the fluid-structure interface:

NWS := (T ·n) ·n

with the fluid Cauchy stress tensor T, the unit outward normal n,
and the unit tangential vectors τ

( j). Parameters that are defined on
the whole wall domain, such as displacement, stresses and strains,
can either be evaluated on the fluid-structure interface or on the
outer vessel wall, since they stay approximately constant in radial

directions. The CFD simulation was solved with the FEM based
PDE-toolbox Comsol Multiphysics. With around 60k elements and
an average element to volume ratio of 10−4 the simulation over
two cardiac cycles takes approximately 43 hours on two Intel(R)
Xeon(R) Gold 5115 CPUs at 2.40 GHz and 256 GB DDR4 RAM.

The simulation results in temporally resolved scalar fields and a
displacement vector defined on each vertex. For the output analysis,
we use a discretization increment of 0.02 s over the span of 1.8 s.
These are effectively 90 time steps that contain two heart cycles.
Exploring this spatio-temporal domain is a non-trivial task, which
is why we developed a specialized tool for the visual analysis of
the result data. As in Figure 1, we show the 3D wall geometry on
which any computed scalar field can be color-mapped. The tem-
poral dimension can be explored through animation or selection of
time points, where we smoothly interpolate the data between time
steps. If wall displacement was computed it can be animated in the
3D view. We provide a GUI to apply the cutting and flattening to
the observed model. The method can be seamlessly integrated into
the analysis workflow. Cuts automatically face the viewer and the
mesh is flattened on demand. The animated colormap is synchro-
nized automatically between the 3D and 2D domains. We found
the 2D view especially useful during temporal exploration (see Fig-
ure 8), as the whole domain is constantly visible. No interaction is
necessary as compared to the 3D rendering, where only ever one
side of the model can be shown and self-occlusions of geometry
may occur.

6.1. Implementation

The cutting and flattening are implemented in Python, where
performance-critical tasks are executed on C++ libraries. The mesh
processing largely relies on the implementations in libigl [JP*19].
We use a heap queue for Dijkstra’s algorithm to achieve logarith-
mic complexity. The user can interface with the cutting and flatten-
ing through a GUI that also allows exploration of surface fields. All
common mesh formats supported by libigl can be loaded. CFD data
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(a) (b) (c)

(d) (e) (f)

Figure 7: Our flattening applied to different geometries. Overall, the area is visibly preserved. We keep the general layout of the vessel trees
but complex shapes are straightened, yielding a better overview. (a) Phantom data set of a bifurcation. (b)-(e) Human carotid arteries. (f)
Cerebral artery with aneurysm.

is optional and supplied through a table. The application integrates
a PyQt GUI with OpenGL 3D rendering. If CFD data is available,
we use a texture to pass the surface deformation (three components)
and the selected scalar field (one component) to the GPU. The tex-
ture contains one entry for each vertex and time step, allowing us
to interpolate the temporal dimension at interactive speed.

7. Results and Discussion

We tested our system with carotid vessel trees segmented from five
patients. The models we used vary in length, morphology, degree of
stenosis, and mesh resolution to cover a broad range of scenarios.
Overall, we found the surface area to be well preserved in the 2D
mappings (see Figure 7), which is to be expected due to the ARAP
optimization. This makes it possible to accurately assess the distri-
bution of scalar fields on the surface. Additionally, the area preser-

vation along with the natural vessel cuts lead to an undistorted vi-
sualization of the vessel circumference. This shows where narrow
parts of the vessel are located. For instance, in Figure 7c the two
stenoses close to the carotid bifurcation are visible in the flattened
mesh. We also maintain the general shape of the vessel tree and
the orientation of branch locations. This helps mentally mapping
the flattened surface to the original 3D structure. Complex bends
and twists are straightened by the layout constraints we impose (cf.
Figure 5). This filters out unimportant geometrical information and
provides a simpler view of the data.

Performance. All tests of the cutting and flattening were exe-
cuted on an AMD Ryzen 7 5800X processor with 32 GB of RAM.
See Table 1 for the impact of different steps and model sizes on the
overall performance. For typical use cases of meshes with 10k to
50k triangles the cutting and surface parameterization executes in 1
to 12 s. Therefore, we found the flattening can be easily integrated
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Figure 8: The flattened geometry can be used to map parameters, like normal wall stress (top) or wall shear stress (bottom). This is
particularly beneficial for analysis of the temporal evolution as the whole surface can be assessed at once.

Table 1: Timings in seconds of each cutting/flattening step for
meshes of different size. |F|: Number of triangles. Z: Computing
and aligning curvature. GC: Graph conversion. VC: Finding cut-
ting paths with Dijkstra’s algorithm. AC: Applying the cuts to the
mesh topology. L: Layout initialization. F: Flattening stages LSCM
and ARAP.

|F| Z GC VC AC L F Total

4k 0.1 0.1 0.1 0.1 <0.1 <0.1 0.5
13k 0.3 0.4 0.3 0.7 <0.1 0.1 1.9
13k 0.3 0.4 0.4 0.4 <0.1 0.1 1.7
19k 0.5 0.6 0.5 1.1 <0.1 0.1 2.8
20k 0.4 0.7 0.6 1.7 0.1 0.2 3.6
24k 0.8 0.8 1.1 2.4 0.1 0.2 5.3
28k 0.6 0.9 1.2 2.9 0.1 0.3 5.9
44k 1.2 1.4 2.3 5.6 0.4 0.3 11.2
300k 16.2 9.1 38.1 109.0 1.0 2.3 175.8

into an analysis workflow. The user only needs to set the frontal di-
rection before initiating the cutting, which determines the starting
location of the cut on the mesh. The parameter is set automatically
by positioning the camera, making this interaction efficient and in-
tuitive. Currently, the slowest step is the application of found cuts
to the mesh topology. This bottleneck is due to the indexed face-set
data structure we use. Performance could be improved by a inte-
grating a mesh data structure that enables more efficient cutting.

Generalizability. Our application demonstration shows the po-
tential of the flattening for the analysis of carotid wall parameters.
Our algorithm is not specific to certain geometries but can be used
for a variety of domains, as well as large and small sections of the

Figure 9: The flattening does not resolve self-intersections of the
layout. This can be problematic for trees with many branches.

carotids (see Figure 7). The inlet and outlets are automatically de-
tected. Also, the branch layout does not affect the result, i.e., our
method is robust against bends or twists of the vessel. The flat-
tening with attribute mapping would also be equivalently applica-
ble for measured instead of simulated wall properties, for instance,
plaque occurrence or wall thickness. Furthermore, we demonstrate
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Figure 10: The cutting performs well even on complex structures
like this arterial tree segmented from a liver.

that the method can be applied to other vessel trees, not just the
carotids. We show examples of cerebral and aortic vessel trees with
aneurysms (cf. Figures 4, 7), which pose similar problems in CFD
and medical research. Last but not least, the cutting is indepen-
dent of the flattening stage. As a result, natural vessel cuts could
be used in other scenarios or with a completely different flattening
approach.

Limitations. LSCM and ARAP ensure that no triangle flips oc-
cur and the surface is parameterized as a single patch. However,
self-intersections may still appear in the parameter domain. In some
models, we could observe this happening close to branch locations.
These overlaps could only be solved by introducing area deforma-
tion. Also, they only affect small portions of the parameter domain.
Larger overlaps can ensue from more complex vessel trees with
numerous branches and sub-branches. In Figure 9 the flattening
produces noticeable artifacts as the ARAP optimization relaxes the
mesh such that it intersects itself. Our layout initialization (see Fig-
ure 5) does not account for possible overlaps of segments. There-
fore, we would advise against using the flattening method for overly
complex vessel trees. The cutting, however, is not affected by the
number of branches and can be applied to any tree (see Figure 10).

8. Conclusion

We presented a fully automatic technique for cutting and flatten-
ing vessel tree geometries. We introduced natural vessel cuts that
remain on one side of cylindrical vessel segments and face the ob-
server when possible. Furthermore, we demonstrated a use case
for the analysis of fluid-wall interaction simulations in the human
carotids. The application is not limited to the carotids but can be
generalized to similar tree-like structures. In contrast to other ap-
proaches, we require only the surface mesh as an input and create a
boundary-free parameterization that is quasi-isometric and retains
the original vessel shape. The cutting is robust and will always re-
turn a valid disk-cut given a tree-like geometry, where the cut con-
nections will be at branch locations. The flattening always results
in a single connected patch. We presented an automatic way to de-
termine a layout for the flattened geometry that can be used for the
carotids or vessel trees with similar complexity.

In the future, the layout initialization could be improved with ad-
ditional constraints that prevent overlaps of segments. Further ideas
include leveraging the flattened geometry for more advanced visual
exploration and interaction techniques. Camera control, as well as
brushing and linking of interesting regions, could be facilitated by
the flattened geometry. Due to its visual simplicity, the 2D depic-
tion could also be used to create comparative views of data set col-
lections. Such overviews would be advantageous when comparing
patient cohorts or CFD parameter sets.
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