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Abstract
4D Flow MRI is a recent promising technology that is able to capture blood flow information within the heart chambers over
a cardiac cycle. To accurately study the flow inside the chambers, there is a need for a high quality anatomical reference
which can be provided by another scan known as 3D cine MRI (short-axis 3D (multiple 2D slices) cine SSFP). To take
advantage of both scans, data fusion can be done using an intensity-based registration. To reduce the impact of noise
on the registration result and the chance of misalignment between the organs, defining a region of interest (localization)
should be done prior to the registration. Localizing a dataset – especially a time-varying dataset – can be a daunting
task since the localization should be provided for all time frames. We design and evaluate different strategies for extending
single time frame localization to time varying data in order to register the 4D Flow MRI and 3D cine MRI over the cardiac cycle.

CCS Concepts
• Applied computing → Life and medical sciences;

1. Introduction

Heart disease is one of the main causes of death worldwide. Mag-
netic resonance imaging (MRI) is improving rapidly to assist car-
diologists in gaining some prior knowledge about the structure and
function of the heart, which is helpful in treatment and early di-
agnosis of heart disease. Cardiac MRI (3D cine MRI) can capture
high quality anatomical information, which has helped a lot in treat-
ment and diagnosis of heart disease that depends on the anatomy of
the heart. However, cardiac disorders that require studying the flow
behaviour cannot be identified by studying the anatomy alone. 4D
Flow MRI is a recent powerful technology that is able to capture the
flow within the heart chambers. Taking advantage of both of these
MRI technologies together can ease the process of identification
and treatment of cardiac disorders for clinicians.

3D cine MRI and 4D Flow MRI datasets may be captured in
different orientations and some misalignment will exist due to pa-
tient movement during the scans. Therefore, to fuse these two time-
varying datasets we need to transform them to the same coordinate
system and align the corresponding regions over the cardiac cycle.
The process of aligning two datasets is called registration. Registra-
tion of cardiac images is a challenging task due to the complexity
of cardiac anatomy and its dynamic nature.

Since the heart has a complex anatomical structure, registration
of cardiac images is a challenging task. Moreover, there are some
structures surrounding the heart which are visible in the images
and affect the result of the registration. The noise and the unwanted

parts will significantly influence the registration result. Therefore,
trying to register the data without excluding the unwanted parts
may result in a wrong registration. Because of this, localization of
the images (i.e. defining a region of interest that we want to register)
is a vital step prior to registration.

In this paper, to register both time-varying datasets (i.e. 3D Cine
MRI and 4D Flow MRI), we extend the single time frame localiza-
tion (which can be provided by any segmentation technique, crop-
ping box or even sketch-based masks introduced in [SAES19]) to
each time frame to obtain a multi time frame localization. To do
this, we introduce, analyze and evaluate different registration sce-
narios for fusing the 3D cine MRI and 4D Flow MRI datasets. Each
scenario includes choosing a localization scheme and registration
of a single corresponding time frame, then choosing a time varying
extension strategy to provide the registration for the complete car-
diac cycle. We analyse five different time-varying strategies: copy-
paste, repeat, hybrid, non-rigid registration and non-rigid hybrid
and we compare them using execution time, interaction time and
accuracy. The non-rigid strategy is heavy in execution time and
the repeat strategy is heavy in interaction time. However, they both
have better accuracy compared to the copy-paste, hybrid and non-
rigid hybrid strategies, which might not work in cases where the
patient moves during the scans.

Section 2 covers background information about 4D Flow MRI,
registration, and localization. In Section 3 we describe the method-
ology by explaining our five strategies. Section 4 covers the eval-
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uation of our scenarios and some comparison between the results,
and Section 5 is presents a conclusion and future work.

2. Background and Related Work

4D Flow MRI is primarily used to capture flow dynamics, although
magnitude images which provide the anatomical structure of the
heart are also constructed. However, due to the narrow intensity
range of these magnitude images, even expert clinicians have diffi-
culty delineating the heart structure visually [DBB∗15]. There is al-
ways a need to study the flow within the chambers of the heart with
respect to the anatomical information, but high quality anatomi-
cal information cannot be provided by the 4D Flow MRI data it-
self [vdGG16]. One solution to this problem can be fusing the flow
information with another dataset that can provide the anatomical
information.

Data fusion, known as image registration, has been widely
used to register images from different modalities for different or-
gans (e.g., there are many works about registering functional and
anatomical images of brain MRIs [MA13]). Despite this, there are
some challenges that make cardiac image registration more com-
plex than brain image registration. This complexity stems from
the beating and deformation over time, complicated thorax struc-
ture, fewer accurate anatomical landmarks and lower resolution
images compared to brain images [MCS∗02]. There are several
different works that used image registration to fuse brain and car-
diac datasets from different modalities such as computed tomog-
raphy (CT), magnetic resonance (MR), X-ray and functional MR
(fMR) [MA13, PCS∗89, vHV∗04, MCS∗02, SWWFD05].

There are several studies that acquired manual segmentation as
a localization mask prior to registration [EvdGC∗17, KWvdP∗18,
GCS∗18]. Providing a manual segmentation for all time frames
is very expensive and time-consuming. In another recent work
[GBF∗18] on registering 4D Flow MRI to breath hold cine MRI,
a box was used as a localization mask around the heart. Sketch-
based techniques [CSSM06, CSSJ05] can be used for localization.
In [SAES19] they introduced sketch-based techniques which re-
duced the manual interaction for providing the localization and re-
sulted in more accurate registration results than the cropping box
used in [Här16]. However, they provide only one localization and
used it for all time frames.

3. Methodology

To extend localization which is done for a single time frame on
3D Cine MRI to the rest of the time frames, we came up with five
strategies categorized below:

• Copy-paste: Copy the single time frame localization mask for
the rest of the time frames without changing it.
• Repeat: Redo the localization independently for each time frame.
• Hybrid: Do the localization for critical time frames and copy it

for in-between time frames.
• Non-rigid registration: Deform the single time frame localization

mask to estimate the localization mask for other time frames us-
ing non-rigid registration.
• Non-rigid hybrid: Deform the single time frame localization

mask to estimate the localization mask at critical time frames
and copy it for in-between time frames.

The advantages and disadvantages of each of these strategies is dis-
cussed below.

3.1. Copy-paste

In order to register all time frames of a cardiac cycle (i.e. approxi-
mately 30 time frames), localization masks for all time frames must
be determined. In this strategy, we use the localization provided for
one time frame for the rest of the time frames. The localization
mask can be provided on the diastolic time frame (the time frame
that the heart reaches its maximum size), as this ensures the best
chance of containing the region of interest (ROI) in the remaining
time frames. Providing localization for the rest of the time frames
with this strategy is easy. However, if the patient moves during the
scan, the ROI might not be contained within this localization mask,
which can affect the result of the registration.

3.2. Repeat

In this strategy, the single time localization technique is repeated
for all of time frames. If we use manual segmentation as our lo-
calization mask for the first time frame (15 contours for a single
time frame), we would simply repeat the manual segmentation for
the remaining time frames. This requires manually segmenting 30
time frames (i.e., providing 450 contours). This strategy provides
us with more precise localizations, which will result in more accu-
rate registration and less registration time, but with a very high user
interaction time. Alternatively, if we create the mask using a single
sketch or three sketches for localization [SAES19], we can reduce
the user interaction to some extent. However, it still requires some
level of interaction for every time frame.

3.3. Hybrid

Instead of repeating the localization for every time frame, which
can be tedious and time consuming, one can repeat the localiza-
tion only for some critical time frames. By critical time frames, we
mean the time frames in which the heart has a lot of deformation
(See Fig. 1).

This strategy is inspired by key frame animation in computer
graphics where a character or model is only manually animated in
key poses, which show the overall motion of the character, and the
in-between frames are generated automatically by some type of in-
terpolation [DAC∗03]. In the hybrid technique (using the left ven-
tricle as the ROI) we choose two critical time frames and provide
the localization for those, and then copy and paste the localization
for the time frames in between. Observing the segmentations of the
data shows that the left ventricle is large at the first time frame t1
and the size reduces from time frame t7 to t15 where there is a lot
of change in the size of the left ventricle. Time frame sixteen could
also be a critical time frame, but in practice we found that simply
reusing the first time frame gave sufficient results, due to the left
ventricle being large in both of these frames. Therefore, as a spe-
cific case of the hybrid strategy, we use t1 and t7 as the critical time
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Figure 1: Critical time frames where there is a big change in the size of the left ventricle and dividing the data to two groups characterized
by the size of the left ventricle. Using the hybrid strategy, one time frame from each is localized and used for the others in the group.

frames to repeat the localizations, reducing the number of critical
time frames to two (See Group1 and Group2 in Fig. 1).

We have one localization for the bigger-sized left ventricles
(Group 1) and one for the smaller-sized left ventricles (Group 2)).
We choose t1 for group1 and t7 for group2 as they have the biggest
left ventricle size among their groups. Therefore, the possibility of
containing the ROI within these localization masks is higher.

As an example, we employed manual segmentation as our lo-
calization mask for our two critical time frames, which required
contouring fifteen slices for each time frame (30 contours in total).
Using this technique reduces user interaction, but has lower accu-
racy compared to the repeat strategy.

3.4. Non-rigid Registration

Another alternative for providing efficient localization, instead of
using substantial manual effort to provide the localizations, is to
use one localization and deform it to fit the rest of the data. This
deformation can be carried out using a non-rigid registration us-
ing technique using Normalized Mutual Information (NMI) as a
similarity metric [LVSOMR02]. The single time frame localization
must be provided on the 3D cine MRI data rather than the 4D Flow
MRI, as a dataset with clearly visible heart features and edges is
needed for the non-rigid registration.

For example, if we have the left ventricle manual segmentation,
by using non-rigid registration we can deform it to fit the left ventri-
cle in different time frames of the 3D cine MRI (Fig. 2). The input
masks deforms iteratively to fit the ground truth. After providing
the deformed localization mask for all of the 3D cine time frames,
we can use them as localization masks for rigidly registering (using
only rotation and translation) the corresponding 3D cine MRI time
frames to the 4D Flow MRI time frames.

This strategy reduces the user interaction time and results in high
quality registration, but it has high execution time (42 minutes and
25 seconds) compared to the repeat strategy (12 minutes and 8 sec-
onds).

3.5. Non-rigid Hybrid

To address the high execution time of the non-rigid registration
strategy and also to reduce the user interaction required in the hy-
brid strategy, we developed another strategy which we call the non-
rigid hybrid strategy. As in the hybrid strategy, we provide local-
ization masks for critical time frames and use those same localiza-

Figure 2: The iterative process of deforming the input localization
in order to get the deformed mask, which matches the ground truth.

tions for in-between time frames; however, to obtain the localiza-
tion masks for the critical time frames we use non-rigid registration.
By using non-rigid registration to deform the localization for only
a few critical time frames instead of all of the time frames.

As an example, if we use a manual segmentation as our local-
ization mask, we first provide the localization for the first time
frame. We need to also provide another localization for time frame
t7 (which is a critical time frame), but instead of repeating the lo-
calization scheme for this time frame, we obtain the localization by
deforming the first localization mask using non-rigid registration.

4. Results and Evaluation

To evaluate our strategies, we compared the results of registration
using four different masks. The masks used for the registrations
were (1) manually delineated segmentation (ground truth) of the
left ventricle, (2) three-sketch localization, (3) single-sketch mask
around the whole heart [SAES19], and (4) a bounding box around
the heart. The two datasets used comprise 30 pairs of volumes,
which were registered using each localization mask. Run time was
based on the elastix toolbox implementation [KS15]. Although this
is not necessarily the most efficient implementation, we used it as a
comparative metric. The accuracy is quantified using two different
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metrics: Dice coefficient (DICE) and Hausdorff Distance (HD), as
discussed in [TH17,SAES19]. We compare the execution time, ac-
curacy and user interaction time for time varying registration using
different localization schemes. Fig. 3 shows that the total time for
the registration of all time frames using different strategies is al-
most the same, except for the non-rigid registration strategy, which
has a high execution time compared to the others. The execution
time (registration time) using the repeat strategy is slightly less than
the copy-paste, hybrid and non-rigid hybrid strategies.

Fig. 4 and Fig. 5 depict the comparison of the DICE and Haus-
dorff Distance (HD), which indicate the accuracy of the registra-
tion. These two metrics are calculated between the two ground truth
segmentations: one from the 4D Flow MRI and the other from the
3D cine MRI after registration. Comparing the results, the repeat
strategy has higher DICE and lower HD (which means higher ac-
curacy) for manual segmentation and three sketch localization than
the copy-paste, hybrid and non-rigid hybrid strategies. The hybrid,
non-rigid hybrid and copy-paste strategies are almost the same.
Non-rigid registration works as well as the repeat strategy for the
manual segmentation and three sketch localization. However, non-
rigid registration and non-rigid hybrid strategies generate large in-
accuracies in the case of single sketch localization. The reason for
this could be the existence of parts other than the left ventricle visi-
ble in the mask; these affect the result of the non-rigid registration,
which means that we did not get correct localizations after our non-
rigid registration using the single sketch localization.

Fig. 6 depicts the comparison between different strategies for
relative interaction time needed to provide the time-varying local-
izations. The repeat strategy has a high interaction time as the local-
ization is done for every single time frame. The lowest interaction
time is for copy-paste, non-rigid registration and non-rigid hybrid
strategies. Copy-paste, non-rigid registration and non-rigid hybrid
strategies have the same interaction time because only the first lo-
calization needs to be done by the user. The hybrid strategy needs
more interaction time than the copy-paste, non-rigid registration
and non-rigid hybrid as it requires providing more than one local-
ization manually. However, it is still much faster than the repeat
strategy.

5. Conclusion and Future Work

The main goal of this work is to register the 4D Flow MRI and
3D cine MRI via multi time frame localization. To do this we used
five different strategie. We did the registration with existing local-
izations such as manual segmentation, bounding box and sketch-
based localizations. We also compared them based on execution
time, interaction time and accuracy. Each strategy has its pros and
cons and a strategy can be chosen based on the user’s need. How-
ever, non-rigid registration is able to provide high accuracy and low
interaction time which are the two most important features for the
medical community. The execution time is highly dependant on the
algorithm used for the registration and this can be improved by us-
ing higher computation power and GPU implementations.

As future work, for doing the non-rigid registration we used cu-
bic B-spline basis functions; however, other basis functions such as
partition of unity parametrics (PUPs) [RS11] and other deformation

Figure 3: Comparison of execution time.

Figure 4: Comparison of DICE.

techniques, such as cage deformation [NS13], can be used instead
to see how they perform for cardiac image registration. Moreover,
our method could be extended to other medical datasets beyond
cardiac images to reduce the impact of noise on the registration
result.
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