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Abstract
In this paper, we propose an averaging method for expert segmentation proposals of microbial organisms, resulting in a smooth,
naturally looking segmentation ground truth. The approach exploits a geometrical property of the majority of the organisms –
star-shapedness – and is based on contour averaging in polar space. It is robust and computationally efficient, where robustness
is due to the absence of tuneable parameters. Moreover, the algorithm preserves the uncertainty (in terms of the standard
deviation) of the experts’ opinion, which allows to introduce an uncertainty-aware metric for estimation of the segmentation
quality. This metric emphasizes the influence of ground truth regions with low variance. We study the performance of the
proposed averaging method on time-lapse microscopy data of Corynebacterium glutamicum and the uncertainty-aware metric
on synthetic data.

CCS Concepts
• Applied computing → Imaging; • Computing methodologies → Image processing;

1. Introduction

How bacteria maintain their shape and size is one of the big open
questions of life [HT18]. Microfluidic single-cell analysis cou-
pled with live-cell imaging microscopy is a versatile tool to study
the diversity of cell shapes and sizes as well as their adaption
with spatio-temporal resolution [LWK∗19, GPP∗12]. Many bac-
terial species, such as the gut bacterium Escherichia coli or the
soil bacteria Corynebacterium glutamicum and Bacillus subtilis
evolved into rod-shaped morphologies, with shapes ranging from
spheric cocci to stretched, round-ended cylinders [SM15]. To quan-
titatively characterize every cell within each image frame captured
in microfluidic single-cell experiments, multi-object segmentation
is used. Here, Deep Learning (DL)-based segmentation methods,
most prominently of U-Net type [RFB15], achieve state-of-the-art
performance. The prediction accuracy of DL-based methods highly
depends on the training data quality. For accurate predictions, high-
quality (i.e. pixel-accurate) training data has to be labeled by the
domain experts, which is, however, time-intense [LLS∗19]. De-
spite their simplistic shape, in the abundant case of low-resolution
and low-signal-to-noise ratio data, it is difficult to annotate im-
ages (i.e. to draw cell outlines), even for domain experts. In this
case, repeated drawing of the desired segmentation by several raters
(experts) is the only acceptable approach to come to a consensus
ground truth (GT).

The variability in the annotations has two major origins:

• Technical: Different input devices (i.e. graphic tablet or mouse),
which experts use to draw the cell outlines. Indeed, although
leading to more coarse segmentation results, using a mouse as

an input tool for a training data creation is the predominant ap-
proach, arguably due to being the cheaper and more abundant
alternative.
• Methodological: Since there are no commonly established rules

about the localization of cell borders, raters opinions may differ.
In this case, the segmentation of one rater tends to be consistently
wider/longer or narrow/shorter.

Therefore, a technique to derive a consensus or GT data from seg-
mentation proposals of the experts is desired, which respects and
preserves the uncertainty, induced by the inter-rater variation.

1.1. Related work

The averaging of the raters’ proposals can be generalized to the
average shape problem, which may be solved with several tradi-
tional approaches. Simple landmarks methods [Ray92, DTC∗02]
are based on a distance averaging between corresponding land-
marks, important geometrical features, require manual laborious
landmarks’ specification, or an automatic derivation of the land-
marks. Alternatively, methods based on the Fourier approximation
of a closed contour and averaging of the corresponding Fourier co-
efficients for a given number of harmonics [KG82] find their appli-
cation in [SKKN∗19] and provide a smooth average outline of the
average object, but highly depend on the number of the harmonics
one approximates the contour with. As another option, variational-
based averaging methods [BLR10] are dealing with sophisticated
non-aligned objects, and may even provide statistical information
in addition to the average shape [RW10]. However, these meth-
ods are computationally quite expensive and, due to the usually
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non-convex objective functionals involved, require careful initial-
ization to avoid local minima in the optimization. A widely used
algorithm, which is specifically aimed for a GT fusion given by dif-
ferent raters and has a user-friendly implementation [YLJB17], is
the Simultaneous Truth And Performance Level Estimation (STA-
PLE) [WZW04]. STAPLE, however, does not produce uncertainty
estimates.

1.2. This work

To alleviate the aforementioned limitations of existing approaches,
we propose a new conceptually simple and fast averaging method.
Our proposed method is based on the observation that most of the
microbial cells are star-shaped. Therefore, we explore the use of the
polar transform to find the average object outline to create ground
truth for training and validation purposes of segmentation methods.
The created ground truth retains information about the variation
in segmentation proposals in terms of the standard deviation and
thus allows to create an uncertainty-based metric for segmentation
quality.

2. Methods

The gram-positive soil bacterium C. glutamicum is one of the major
platform hosts for the biotechnological production of various amino
acids, biochemicals, biofuels and proteins [EB05,BKD∗18]. In the
literature, it is described as a slightly bent rod (Fig. 1). One impor-
tant geometrical aspect of C. glutamicum is that it is star-shaped: A
set S in the Euclidean space Rn is called star-shaped if there exists
x0 ∈ S such that for all x ∈ S the line segment from x0 to x is in
S [HHMM20]. A point x0 is called center of S.

1 µm

Figure 1: Cutout from a phase-contrast microscopy image. Dark
objects are C. glutamicum cells. Annotations from seven experts
are shown for the central cell.

Besides C. glutamicum, there are other important star-shaped or-
ganisms, i.e. E. coli and S. cerevisiae [Fel10] (mother cell and buds
are considered separately), and also recent image processing meth-
ods explicitly exploit the star-shapedness [WSH∗20, SWBM18].
Motivated by this, we consider star-shaped objects in this paper and
use C. glutamicum to illustrate our proposed method. The method
is not limited to this organism though, but applicable to the wide
range of rod- and spherical-shaped bacteria.

2.1. Experimental setup

The test dataset consists of six images of C. glutamicum, where
each image shows up to six cells (Table 1) and parts of neighbor-
ing cells (exemplified in Figure 1, which shows the image corre-
sponding to Row 3 of Table 1). Nine experts were asked to anno-
tate (manually segment) fully present cells with a mouse or stylus
pen, where each cell is supposed to be segmented separately. The
annotation was performed using Hasty.ai, a powerful, yet easy
to use online annotation platform. To get a rough estimate of the
inter-rater variability, we computed basic statistics of the segmen-
tation proposals for some morphological features of the objects.
Specifically, the resulting average length and width were calculated
according to [FKCH19]. The length is measured along the longest
middle line of the bounding (rotated) rectangle with minimum area
and is 2.3037 ± 0.1057 µm. The width is derived as the average of
eleven equidistant width segments, parallel to the short middle line
of the rectangle and is 0.8966 ± 0.0505 µm. Finally, the area was
computed as a sum of labeled pixels for each cell and determined
to be 19.6530 ± 2.6454 µm2.

2.2. The polar average of star-shaped sets

An important property of star-shaped objects is that their boundary
or contour can be expressed as a graph in polar coordinates. Let
R ⊂ R2 be star-shaped with center (x0,y0) ∈ R and boundary C =
∂R. The corresponding transformation to polar coordinates is

r : R2→ [0,∞), (x,y) 7→ r(x,y) =
√

(x− x0)2 +(y− y0)2,

θ : R2→ (−π,π], (x,y) 7→ θ(x,y) = arctan2(x− x0,y− y0).
(1)

Since R is star-shaped, the polar transformed boundary

P = {(θ(x,y),r(x,y)) : (x,y) ∈C} (2)

is a graph over (−π,π], i.e. there is a function f : (−π,π]→ [0,∞)
such that P = {(θ, f (θ)) : θ ∈ (−π,π]}. This polar representation
of star-shaped objects is the key ingredient for our contour averag-
ing approach.

Let R1, . . . ,RN ⊂ R2 be N star-shaped sets, each representing a
rater proposal for the segmentation of a given object, and all with a
common center (x0,y0). Assuming that there is no consistent bias
of the rater proposals, a suitable average of the proposals should
be a good estimate of the GT segmentation. For i = 1, . . . ,N, let fi
be the graph function from the polar representation of ∂Ri. Then,
the average of these fi, i.e. f := 1

N ∑N
i=1 fi, is the graph function

of the polar representation P of the contour of the averaged rater
proposals. Using the inverse transform of (1), i.e.

[0,∞)× (−π,π], (r,θ) 7→ (r cos(θ)+ x0,r sin(θ)+ y0), (3)

on P , we get the contour of the rater proposal average and thus our
GT estimate.

2.3. Preprocessing and contour averaging

For real data, rater proposal are given as binary pixel images
B1, . . .BN , i.e. matrices whose entries only take the values zero or
one. From each such mask Bi, we extract the contour of the cor-
responding proposal as a list of (x,y) coordinates by applying the
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discrete Laplace operator to the binary image and then extracting
the positions of the zero crossings.
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Figure 2: Averaging GT pipeline. Segmentation proposals (a)-(g),
their contours (h)-(n). Contours of the segmentation proposals in
polar space and their average (black) (o). The resulting average of
segmentation proposals (p).

The center of mass of the sum of the masks is used as estimate of
the common center, (x0,y0), and each list of contour coordinates is
transformed to polar coordinates using (1) (note that, in a brief sen-
sitivity analysis, we found that the influence of changing (x0,y0)
was insignificant for our experiments). Thus, for each Bi, we get a
list of polar contour coordinates (θi,1,ri,1), . . . ,(θi,Ki ,ri,Ki), sorted
by θ in ascending order. Here, the number of entries Ki ∈ N de-
pends on the mask and the spacing of the θi, j is non-uniform. Using
linear interpolation, as a trade-off between simplicity and computa-
tional complexity, of the polar contour coordinate vector, we get a
continuous function Ri : (−π,π]→ [0,∞) such that Ri(θi, j) = ri, j
for j = 1, . . . ,Ki. The average of these Ri gives us the polar repre-
sentation of the average contour, which is then sampled at angles
θi, . . . ,θK ∈ (−π,π], i.e.

Ra,i =
1
N

N−1

∑
n=0

Rn(θi) (4)

We select θ as a vector of uniformly distributed points in (−π,π],
which should not be shorter than the longest vector of proposed

object boundaries, i.e. K ≥maxi=1,...,N Ki. For the sake of simplic-
ity, we used K = 1000 for all experiments, to exceed the length of
the longest proposed contour in our test dataset. Finally, the polar
space coordinate vector is transformed back to real space using (3),
rounding the results to the nearest pixel position. To obtain the aver-
age mask Ia, the resulting outline is filled. To fill the outline, we use
the fillPoly function from [Bra00], which fills an area bounded
by a polygonal (composed by the outline coordinates) contour.

2.4. Uncertainty-aware segmentation quality metric

One byproduct of the polar average (4) is that each Rai is associated
with a standard deviation

σa,i =

√√√√ 1
N

N−1

∑
n=0

(Rn(θi)−Ra,i)
2 (5)

encoding the inter-rater variability. Usually, inter-rater deviation in
segmentation is inevitable. Moreover, unevenly distributed devia-
tion may indicate varying difficulty to locate the boundary of an
object in different regions (e.g. it is easier to segment cells in non-
crowded colonies with no other cells around than in regions with
densely packed cells). Most of the available metrics for the seg-
mentation quality estimation are based on spatial overlap (e.g. Dice
or Jacquard scores), and do not take this kind of uncertainty into
account. However, to avoid bias, the estimation of the segmenta-
tion quality of a given algorithm using a “fuzzy” GT segmenta-
tion, should take into account this uncertainty. In other words, an
uncertainty-aware metric is desired.

We propose to use a weighted root-mean-square error
(WRMSE), where the weights are inversely proportional to the
standard deviation of the object boundary to emphasize the influ-
ence of the contour points with no (or low) variation. The suggested
metric takes into account every boundary pixel, while respecting
the uncertainty.

The root-mean-square error (RMSE) is a common distance-
based metric to evaluate the performance of an algorithm [JdC18]
and illustrates the average distance between each of the n predicted
contour points in polar space and the corresponding GT (average)
contour points. In our case, the RMSE is:

RMSE =

√√√√1
n

n−1

∑
i=0

(Rpred(θi)−Ra(θi))2 (6)

where Rpred is the predicted contour in polar space and Ra is the
GT contour. Based on this, we define the WRMSE as follows:

WRMSE =

√√√√ 1
∑n

i=1 wi

n−1

∑
i=0

wi(Rpred(θi)−Ra(θi))2 (7)

where w is a vector of positive weights. To avoid division by zero
and the extreme influence of low deviation regions, we use an ex-
ponential weighting of the form w = e−σ, i.e.

wi = e−σa,i (8)
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3. Results

3.1. Ground truth averaging results

The results of the averaging method are examined in terms of the
similarity to the segmentation proposals, using Dice score, and vi-
sual contour smoothness and compared with the STAPLE algo-
rithm for different thresholds and the median of the segmentation
proposals. The Dice score is defined as:

Dice(Ia,(Ii)
N
i=1) =

1
N

N

∑
i=1

2|Ia∩ Ii|
|Ia|+ |Ii|

(9)

where Ii is the i-th segmentation proposal for the given image and
Ia is the average mask.

The median of the segmentation proposals is defined as pixel-
wise median across the proposals and thus equivalent to the shape
average with respect to the L2-norm. To obtain a binary mask with
an even number of raters and an equal amount of votes, the value 1
is chosen (instead of 0.5). The Dice score in Table 1 was calculated
as the average of the Dice score for every cell (not image). Thus,
for the pictures 4-6, every cell was processed separately.

I n. Mean Median S 0.85 S 0.95 PA

1

2

3

4

5

6

Dice Score 0.9357 0.9348 0.9342 0.9331

Table 1: The result of different averaging methods: Median, STA-
PLE with different thresholds (S 0.85 and S 0.95), and the proposed
method based on the contour averaging in polar space (PA).

The result in the Table 1 shows that, while all methods are almost
indistinguishable in terms of the Dice score, the proposed method
provides smooth, naturally looking average results (Figure 3) that
do not inherit the coarse edges proposed by experts and which stem
from the labeling with a mouse. This is an important property, for
instance for training data generation, since ML-based algorithms
could learn the artifacts of the provided training data.

3.2. Uncertainty-aware metric

Since the deviation of the expert proposals used to create the ground
truth above is distributed equally over the cell boundary, the metric

a) b)

Figure 3: Comparison of the results obtained by STAPLE(85) (S 85
of Table 1) (a) and the proposed method (b), which shows the more
natural smoothness of the proposed method compared to STAPLE.

will be examined with synthetic segmentation proposals. Five bi-
nary rod-shaped masks (segmentation proposals) were generated,
where the width of the rod is well-defined, and the length deviates
over the proposals (Figure 4 (a)-(e)).
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Figure 4: Synthetic segmentation proposals (a)-(e). Contours to ex-
amine (red and blue) plotted over a sum of the segmentation pro-
posals (f). Average cell shape contour (black) with a standard de-
viation, and the contours of interest (g).

Considering two contours (blue and red), where one is matching
the length of the GT and another is matching the width, as the result
of the segmentation algorithm, the WRMSE and the Dice score are
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Table 2: Dice score and RMSE for 2 contours

Blue Red
Dice 0.9044 0.9172
WRMSE 1.0482 3.4881

calculated, cf. Table 2. Despite the fact that the red contour shows
a better Dice score (bigger overlap with the average mask), it does
not match the regions with the highest confidence (low variation),
which is reflected in the WRMSE. On the other hand, the blue con-
tour perfectly matches low variation regions, explaining the lower
(better) WRMSE in this case.

4. Conclusions

We here introduce an averaging method for segmentation proposals
of star-shaped objects provided by experts. The proposed method is
based on averaging in polar space, it is simple, computationally ef-
ficient, provides smooth, naturally looking outlines, and preserves
the uncertainty derived from the variation of the segmentation pro-
posals in terms of the standard deviation. The obtained uncertainty
information is used to construct a weighted root-mean-square er-
ror, which is useful as a metric for segmentation quality when the
segmentation GT has uncertainty that noticeably varies along the
boundary.
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Starshaped sets. Aequationes mathematicae 94, 6 (May 2020), 1001–
1092. doi:10.1007/s00010-020-00720-7. 2

[HT18] HARRIS L. K., THERIOT J. A.: Surface area to volume ratio: A
natural variable for bacterial morphogenesis. Trends in Microbiology 26,
10 (Oct. 2018), 815–832. doi:10.1016/j.tim.2018.04.008. 1

[JdC18] JOHNSTON B., DE CHAZAL P.: A review of image-based au-
tomatic facial landmark identification techniques. EURASIP Journal on
Image and Video Processing 2018, 1 (Sept. 2018). doi:10.1186/
s13640-018-0324-4. 3

[KG82] KUHL F. P., GIARDINA C. R.: Elliptic fourier features of a
closed contour. Computer Graphics and Image Processing 18, 3 (Mar.
1982), 236–258. doi:10.1016/0146-664x(82)90034-x. 1

[LLS∗19] LEYGEBER M., LINDEMANN D., SACHS C. C.,
KAGANOVITCH E., WIECHERT W., NÖH K., KOHLHEYER
D.: Analyzing microbial population heterogeneity—expanding
the toolbox of microfluidic single-cell cultivations. Jour-
nal of Molecular Biology 431, 23 (Nov. 2019), 4569–4588.
doi:10.1016/j.jmb.2019.04.025. 1

[LWK∗19] LINDEMANN D., WESTERWALBESLOH C., KOHLHEYER
D., GRÜNBERGER A., VON LIERES E.: Microbial single-cell growth
response at defined carbon limiting conditions. RSC Advances 9, 25
(2019), 14040–14050. doi:10.1039/c9ra02454a. 1

[Ray92] RAY T. S.: Landmark eigenshape analysis: Homologous con-
tours: Leaf shape in syngonium (araceae). American Journal of Botany
79, 1 (Jan. 1992), 69. doi:10.2307/2445199. 1

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-net: Convolu-
tional networks for biomedical image segmentation. In Lecture Notes
in Computer Science. Springer International Publishing, 2015, pp. 234–
241. doi:10.1007/978-3-319-24574-4_28. 1

[RW10] RUMPF M., WIRTH B.: An elasticity-based covariance analysis
of shapes. International Journal of Computer Vision 92, 3 (June 2010),
281–295. doi:10.1007/s11263-010-0358-2. 1

[SKKN∗19] SAKAMOTO L., KAJIYA-KANEGAE H., NOSHITA K.,
TAKANASHI H., KOBAYASHI M., KUDO T., YANO K., TOKUNAGA
T., TSUTSUMI N., IWATA H.: Comparison of shape quantification
methods for genomic prediction, and genome-wide association study of
sorghum seed morphology. PLOS ONE 14, 11 (Nov. 2019), e0224695.
doi:10.1371/journal.pone.0224695. 1

[SM15] SATTLEY W., MADIGAN M.: Microbiology. Encyclopedia of
Life Sciences (eLS) (Aug. 2015). doi:10.1002/9780470015902.
a0000459.pub2. 1

[SWBM18] SCHMIDT U., WEIGERT M., BROADDUS C., MYERS
G.: Cell detection with star-convex polygons. In Medical Im-
age Computing and Computer Assisted Intervention – MICCAI 2018.
Springer International Publishing, 2018, pp. 265–273. doi:10.1007/
978-3-030-00934-2_30. 2

[WSH∗20] WEIGERT M., SCHMIDT U., HAASE R., SUGAWARA K.,
MYERS G.: Star-convex polyhedra for 3d object detection and seg-
mentation in microscopy. In 2020 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV) (Mar. 2020), IEEE. doi:10.1109/
wacv45572.2020.9093435. 2

[WZW04] WARFIELD S., ZOU K., WELLS W.: Simultaneous truth and
performance level estimation (STAPLE): An algorithm for the validation
of image segmentation. IEEE Transactions on Medical Imaging 23, 7
(July 2004), 903–921. doi:10.1109/tmi.2004.828354. 2

[YLJB17] YANIV Z., LOWEKAMP B. C., JOHNSON H. J., BEARE R.:
SimpleITK image-analysis notebooks: a collaborative environment for
education and reproducible research. Journal of Digital Imaging 31, 3
(Nov. 2017), 290–303. doi:10.1007/s10278-017-0037-8. 2

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

17

https://doi.org/10.1007/s00253-018-8896-6
https://doi.org/10.1007/s10851-010-0194-6
https://doi.org/10.1109/tmi.2002.1009388
https://doi.org/10.1016/j.bpj.2019.09.031
https://doi.org/10.1039/c2lc40156h
https://doi.org/10.1007/s00010-020-00720-7
https://doi.org/10.1016/j.tim.2018.04.008
https://doi.org/10.1186/s13640-018-0324-4
https://doi.org/10.1186/s13640-018-0324-4
https://doi.org/10.1016/0146-664x(82)90034-x
https://doi.org/10.1016/j.jmb.2019.04.025
https://doi.org/10.1039/c9ra02454a
https://doi.org/10.2307/2445199
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/s11263-010-0358-2
https://doi.org/10.1371/journal.pone.0224695
https://doi.org/10.1002/9780470015902.a0000459.pub2
https://doi.org/10.1002/9780470015902.a0000459.pub2
https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/10.1109/wacv45572.2020.9093435
https://doi.org/10.1109/wacv45572.2020.9093435
https://doi.org/10.1109/tmi.2004.828354
https://doi.org/10.1007/s10278-017-0037-8

