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Abstract

Deep learning is increasingly used in the field of glaucoma research. Although deep learning models can achieve high accuracy,
issues with trust, interpretability, and practical utility form barriers to adoption in clinical practice. In this study, we explore
whether and how visualizations of deep learning-based measurements can be used for glaucoma management in the clinic.
Through iterative design sessions with ophthalmologists, vision researchers, and manufacturers of optical coherence tomog-
raphy (OCT) instruments, we distilled four main tasks, and designed a visualization tool that incorporates a visual field (VF)
prediction model to provide clinical decision support in managing glaucoma progression. The tasks are: (1) assess reliability
of a prediction, (2) understand why the model made a prediction, (3) alert to features that are relevant, and (4) guide future
scheduling of VFs. Our approach is novel in that it considers utility of the system in a clinical context where time is limited.
With use cases and a pilot user study, we demonstrate that our approach can aid clinicians in clinical management decisions
and obtain appropriate trust in the system. Taken together, our work shows how visual explanations of automated methods can
augment clinicians’ knowledge and calibrate their trust in DL-based measurements during clinical decision making.

1. Introduction

Glaucoma is one of the leading causes of irreversible blindness
worldwide and its prevalence will likely continue to rise due to
global aging populations [TLW* 14, WAM14]. Glaucoma is a pro-
gressive eye disease that is characterized by loss of nerve fibers,
resulting in visual field defects [AGS10]. Treatment can slow or
even stop progression of the disease, which makes early detection
crucial [SYC14]. However, timely detection of disease progression
is challenging because glaucoma often remains asymptomatic until
there is considerable visual field loss [WAM14].

The current standard-of-care for monitoring glaucoma involves
both structural and functional measurements. Structural changes in
the eye can be assessed by optical coherence tomography (OCT)
and clinical examinations of the optic disc. Visual function is an-
alyzed using a visual field (VF) test, which includes global sum-
mary statistics such as mean deviation (MD) and visual field index
(VFI) [ZDF*17]. The VF test is essential to detecting and moni-
toring the disease, because it provides measurement of peripheral
and central visual function of the patient. However, there are limi-
tations associated with VF testing; VFs are subjective and variable
[WDZ*13], and some people experience difficulties with taking the
test. In contrast to VF, structural measurements performed by OCT
are objective and have good reproducibility [PGI*12]. Moreover,
glaucomatous structural damage found on OCT measurements of-
ten precedes VF defects [KZZ*15]. This, and the fact that they are
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less variable makes structural measurements powerful for detecting
and monitoring glaucoma progression [ZDF*17].

Because the causes of glaucoma are multi-factorial and there ex-
ist various measurements (fundus photographs, visual fields, OCT
of optic nerve and macula), deep learning (DL) methods have been
introduced to analyze the disease [CBB*18, CBB*20, LHK*18].
Although many DL approaches show excellent performance for
a variety of tasks, understanding these models and implementing
them into clinical practice remains a challenge. Deep learning mod-
els are often regarded as black boxes because it is hard to grasp
the rationale behind the nonlinear operations used for predictions.
This is a problem for deployment in real-world applications, es-
pecially in the clinical domain where trust and interpretability are
crucial MWW ™ 17]. Insufficient interpretability and trust are main
barriers to adoption of DL models in clinical practice. Moreover,
many experts warn that DL. models may not be able to incorporate
“outside” or “contextual” factors that are important for decision-
making. Further, algorithmically determined features may not al-
ways be clinically familiar. In cases where there is strong discon-
nection between the two, clinicians may lose trust in the system,
especially when no explanations are given [CRH*19].

Issues with trust and interpretability also affect other application
domains, which has made explainable artificial intelligence (XAI)
an important area of research. In XAl, visualization techniques are
developed to enhance the collaboration between human and Al
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State-of-the-art work in DL visualization focuses mainly on model
development in research settings [PHVG* 17, SCD*17, KAKC17,
GCWGVW19]. However, for deep learning to be successfully in-
tegrated in clinical practices, we should also consider busy clin-
ical settings where visualizations could improve the efficiency of
healthcare providers. This is particularly relevant for ophthalmol-
ogy, a high-volume specialty with complex clinical workflows that
demand efficient clinical decision-making [BGC™*20].

This paper explores how visualization of DL-based measure-
ments can be used to facilitate disease management in the clinic.
We hypothesize that clinicians can provide a recommendation us-
ing predicted VF MD (H1) and that visual explanations are helpful
in clinical decision making (H2). Furthermore, we hypothesize that
visual explanations can help to assess the reliability of predictions
(H3) and can influence patient-specific treatment decisions (H4).

Through iterative design sessions with ophthalmologists, vision
researchers, and manufacturers of OCT instruments, we designed a
clinically-oriented visual analytics tool that incorporates a VF pre-
diction model [CBB*19b] to provide clinical decision support in
assessing and predicting disease progression. This model predicts
function from structure using spectral domain (SD) OCT to help
unravel the relationship between structural and functional damage.
In summary, our work contributes the following:

e Development of a visual analytics approach to implement auto-
mated systems for glaucoma management in the clinic. While
the approach is tailored to ophthalmology clinics, the described
methods may also be generalizable to other clinical situations
where experts rely on image analysis for decision making.

e Identification of key tasks that a visualization tool should sup-
port to provide assistance in clinical decision making with deep
learning models.

e Demonstration of usability and effectiveness of the approach by
evaluation with use cases and a pilot user study.

2. Background and Related Work

We consider this work at the intersection of Clinical Decision Sup-
port Systems, Deep Learning, Interpretability and Visual Analytics.
As this section introduces several medical acronyms, we refer the
reader to Table 3 in the supplementary material for a glossary.

2.1. Medical Background

Glaucoma is a progressive eye disease characterized by damage to
the optic nerve, i.e., thinning of the retinal nerve fiber layer (RNFL)
and retinal ganglion cell-inner plexiform layer (GCIPL), and ac-
companying disease-related patterns of VF defects. Traditionally,
clinicians based their diagnosis on clinical examination of the op-
tic nerve head and VF tests. VF examinations can detect dysfunc-
tion in peripheral and central vision by measuring light sensitivity.
Recently, SD-OCT has become increasingly important for diagno-
sis and monitoring of glaucomatous damage. The current practice
typically involves fundus examination, VF testing, intraocular pres-
sure (IOP) measurements and an optic disc centered OCT scan (see
Fig. 1) [HDM18].

There are several drawbacks and challenges with the current

Figure 1: Examples of images that are obtained during a clinical
visit. From left to right: a printout of a patient’s visual field mea-
sured in a 24-2 Humphrey Visual Field Analyzer (HFA) test, an
optical coherence tomography (OCT) circle scan of the retina, an
optic nerve head centered fundus image.

practice patterns. First, visual fields are inherently variable, which
poses challenges to progression monitoring because disease-related
change can be masked by or erroneously attributed to variability of
measurements. For 24-2 VF tests, Wall et al. [WDZ*13] reported
average standard deviations of MD of 1.01 dB in glaucoma eyes.
In another study, standard deviations of 24-2 VF MD of 1.0 to 1.5
dB were reported in early to moderate glaucoma eyes [YLDC16].
However, a recent study showed that long-term variability of VF
MD is much higher than short term variability [UMJ*19] and that
variability increases with the severity of disease. Further, early
damage in the macula is hard to detect with a 24-2 VF which fo-
cuses on peripheral vision [Hoo17]. A 10-2 test that focuses on cen-
tral vision can detect these defects, but because of time and finan-
cial constraints, 24-2 testing is often favored. Another drawback of
VF testing is that it is taxing for some patients in terms of time and
concentration. Furthermore, learning effects can limit the estima-
tion of progression [ZDF*17]. In addition to these challenges, there
are some shortcomings associated with OCT use. For instance, clin-
icians do not make optimal use of OCT technology [Hool7] be-
cause in many clinics, only OCT scans of the optic disc are obtained
routinely, even though it is now known that early damage can occur
in the macula. Moreover, many clinicians fail to examine the RNFL
circle scans to identify local damage because the software does not
facilitate it or they were not trained to do so [Hool7]. Above all,
clinicians have limited time with patients, making employing all
available features of OCT and VF impractical.

These drawbacks in the current clinical practice call for ap-
proaches to improve the usefulness of OCT-based assessments and
to facilitate more efficient VF testing. For example, Hood [Hoo17]
proposes a one-page OCT report that encourages visual evaluation
of circle scans as well as macular scans and probability plots. Based
on this report, the clinician can decide if, when, and how (periph-
eral versus central testing) a VF test should be performed. Inspired
by this work, we combine deep learning and visualization to aid
clinicians in a similar fashion.

2.2. Clinical Decision Support Systems

Clinical Decision Support (CDS) systems provide clinicians with
person- and situation-specific information to improve healthcare
decisions and outcomes [OTM*07]. Broadly speaking, CDS comes
in three varieties: (1) systems that provide extra information rel-
evant to the current clinical situation, (2) alerts, reminders and
recommendations for direct action and (3) systems that organize
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and present information in a way that enhances decision mak-
ing [MMG14]. We focus on the latter. Despite successes of CDS
at reducing errors and improving outcomes, issues with user ac-
ceptance and trust have prevented their adoption in healthcare
[KMCAS18, CRH*19]. For glaucoma, some CDS systems for
screening and early detection of glaucoma have been developed
[ADD*11, ANE*15]. In this paper, we propose a system that pro-
vides CDS for disease progression monitoring and demonstrate that
some of the issues related to acceptance and trust can be overcome.

2.3. Deep Learning in Glaucoma Research

In the past years, DL methods have been used in different appli-
cation domains, including healthcare. DL models, especially con-
volutional neural networks (CNN), have permeated tasks in medi-
cal image analysis such as image classification, segmentation, and
object recognition. Specifically, in ophthalmology and dermatol-
ogy, CNNs have made significant impacts [LKB™ 17]. For example,
the first autonomous DL application approved by the United States
Food and Drug Administration (FDA) is a CNN that reviews fundus
images to detect referable diabetic retinopathy [Rat18]. Compared
to other retinal diseases, DL applications for glaucoma have been
limited. Prior work has primarily focused predicting and identify-
ing disease using fundus photos [CBB* 18, LHK*18]. More recent
studies report models using OCT for detection, segmentation, and
diagnosis [DFLRP* 18, CBB*20].

In this work, we make use of two DL strategies in our visu-
alization approach. One DL model predicts peripheral 24-2 vi-
sual function using RNFL circle scans (i.e., scans that measure
RNFL thickness surrounding the optic nerve head (ONH)), the
most common method to assess structural damage in glaucoma
[CBB*19b,CPB*20]. The other estimates central 10-2 visual func-
tion using SD-OCT imaging of the macula, which has recently been
shown to be effected early in glaucoma [CBB*19a].

2.4. Trust and Interpretability

In recent years black box decision systems have appeared in var-
ious application domains. These systems typically use DL mod-
els [GMR™*19], but the complicated nature of these models limits
how much we can understand or interpret them, creating a lack of
trust [RSG16]. This poses a problem for healthcare, because safety
and reliability must be guaranteed. In this work, we focus on inter-
pretability of explanations and trust in predictions.

Trust. Whether a system will be used is greatly dependent on the
user’s trust. Ribeiro et al. [RSG16] define trust in two ways: (1)
a user can trust individual predictions to take some action based
on them or (2) a user can trust the complete model to behave rea-
sonably when deployed. Further, these authors explain that trusting
predictions is especially important when a system is used for de-
cision making. Because our study is focused on a decision support
system, we will continue with the first definition of trust.

Interpretability. Interpretability of a model enables users to un-
derstand the system. It is, therefore, an important prerequisite for
trust [RSG16]. In the context of Al, interpretability is defined as the
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ability to explain or to provide meaning in human-understandable
terms. Interpretability may be further specified according to differ-
ent user needs (e.g., trust or causality) and properties of models
that make them interpretable (e.g., transparency or post-hoc inter-
pretability). Because we focus on trusting predictions, we consider
post-hoc interpretability, which is the ability to explain predictions
without elucidating precisely how a model works [Lip16].

2.5. Visual Analytics for Deep Learning

Over the past years, visualization approaches have been devel-
oped for understanding DL models, especially for CNNs. These ap-
proaches serve different purposes of interpretation. A popular class
of tools that provide post-hoc interpretations are saliency meth-
ods [ZF14,ZKL*16,ZCAW17], which highlight aspects in the in-
put that were relevant to a given prediction. These methods produce
heat maps (saliency maps or activation maps) that can be used for
determining qualitatively what a model has learned. In addition to
saliency methods, there are approaches that visualize learned fea-
tures in each neuron to support more low-level algorithmic inter-
pretation of the workings of a model [ZF14, YCN*15].

Most DL visualization tools in the literature assist expert users
who have a background in machine learning and help them develop
better performing models [HKPC18]. Some examples are Ac-
tiVis [KAKC17], DeepEyes [PHVG* 17] and LSTMVis [SGPR17].
Some recent approaches explicitly address the needs of end users
of Al-powered systems [CRH*19, GCWGvW19]. However, both
of these tools are purposed for asynchronous medical examinations
or analysis tasks where immediate diagnosis or decision-making
requiring real-time communication with patients are not required.

Our work focuses on real-life scenarios where clinical decision-
making should be performed immediately. Clinicians (glaucoma
specialists, general ophthalmologists and optometrists) should be
able to assess whether a prediction from an imperfect DL model can
be trusted and thus used for monitoring progression in the clinic.

3. Problem Definition

Similar to prior work [KAKC17, GCWGvW19], we define the
problem of diagnosing disease progression using automated sys-
tems by illustrating tasks that our visualization approach should
support. First, we describe the models and data used for develop-
ment of our approach. Next, we define four tasks (labeled T1 - T4)
identified by clinicians and industry experts that serve as design
goals for our system.

3.1. Data and Model Descriptions

We use three existing DL models (see Fig. 2) that predict quanti-
tative VF measurements (here: VF MD) using Spectralis (Heidel-
berg Engineering, Heidelberg) OCT scans [CBB*19a, CBB*19b,
CPB*20]. Although these models use different inputs, they all can
be obtained using two OCT scanning protocols.

The first model is a regression model that uses unsegmented
B-scans from RNFL circle scans at 3.4-mm-diameter location to
predict the MD measured on a 24-2 VE. B-scans are 2-D images
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Figure 2: Overview of the three models used in our approach,
showing the input images (b-scan, RNFL and GCIPL thickness

maps) and their targets (24-2 and 10-2 MD). Here the 24-2 and
10-2 VF scan patterns are added as reference.

created by many 1-D scans (A-scans) performed at several loca-
tions. For analyzing thickness of the RNFL in clinical practice, B-
scans from 3.4-mm-diameter circles centered on the optic nerve are
most commonly used. We call this model the 24-2 RNFL model,
although it should be noted that the B-scan did not include seg-
mentation of the RNFL explicitly.

The second and third model predict 10-2 VF MD from RNFL
and GCIPL thickness maps that were extracted from macula-
centered SD-OCT scans. The values of these thickness maps de-
note the distance between inner limiting membrane (ILM) and the
RNFL for RNFL thickness maps, and between the RNFL and inner
nuclear layer (INL) for GCIPL thickness maps. The order of these
layers is depicted in Fig. 3. We call these models the 10-2 RNFL
model and 10-2 GCIPL model, respectively.

All 3 DL models were able to explain a large proportion of the
variance (0.5 to 0.8) in predicting VF MD from OCT. The 3 models
had mean absolute errors (MAE) ranging from 1.6 decibels (dB) to
2.1 dB for the 24-2 RNFL model and from 1.29 dB to 2.23 dB
for the other two models. On an individual eye level, predictions
were more accurate. For example, in the 24-2 RNFL model, 43%
percent of eyes in the test set had a MAE less than 1.5 dB, which
is comparable to the moderate variability of MD values reported in
prior studies where standard deviation of MD from 24-2 VFs varies
between 1.0 dB and 1.5 dB in eyes with disease severity similar to
those included in the current study [YLDC16]. This is where our
tool will play an important role in helping clinicians determine the
model accuracy for the individual patient.

The data used to develop these models included 1081 OCT im-

Table 1: Characteristics of the participants with glaucomatous
visual field damage (GVFD+) and without (GVFD-).

Parameter GVFD- GVFD+ P-value
Number of participants 665 529 -
Number of eyes 1,081 828 -
Number SDOCT-VF Pairs 4,261 5,504 -

VF Mean Deviation (dB) —0.04+1.6 —-52+65 <0.001
Age (years) 54.84+20.6 58.0£26.1 0.02

Figure 3: A b-scan showing a cross sectional image of the retinal
layers: a segmentation of the retinal nerve fiber layer (RNFL) is
indicated in red, orange segmentations indicate the thickness of the
ganglion cell layer (GCL) and inner plexiform layer (IPL), which
together form the ganglion cell-inner plexiform layer (GCIPL).

ages from 665 healthy participants and 828 images from 529 glau-
coma participants. Glaucoma was defined based on VF measure-
ments. The data were adopted from two longitudinal studies de-
signed to evaluate function and structure in glaucoma: The African
Descent and Glaucoma Evaluation Study (ADAGES clinicaltri-
als.govidentifier: NCT00221923) and the University of California,
San Diego (UCSD) based Diagnostic Innovations in Glaucoma
Study (DIGS, clinicaltrials.govidentifier:NCT00221897). Table 1
summarizes some characteristics of these datasets.

Besides these data, saliency maps were extracted from the mod-
els to highlight discriminative regions in the input scans that
were important for prediction. These maps were computed using
a gradient-based approach to produce class activation maps or at-
tention maps (Grad-CAM) [SCD*17]. In the original implementa-
tion, a rectified linear unit (ReLU) activation is applied to retain
only features that have a positive influence on a class of interest.
Because we are working with regression models, we used a vari-
ation of Grad-CAM that computes absolute values of the gradi-
ents. This variation highlights pixels that drive the prediction to
“more glaucoma-like” and pixels that drive the prediction to “less
glaucoma-like”.

3.2. Tasks

Through semi-structured interviews, shadowing sessions in the
clinic and participatory design sessions with three ophthalmologists
and two industry experts, we identified needs, challenges and sug-
gestions that are relevant for the analysis of glaucoma progression
using DL models. We summarize them into four tasks (T1 - T4). In
Section 4, we show how our tool supports these tasks.

T1 Assess reliability of a prediction. Before incorporating infor-
mation from automated predictions into clinical decisions, the clin-
ician wants to know how reliable this prediction is. Comparisons
with previous measurements of the same eye, which are available
in ophthalmology clinics, might provide some insight into reliabil-
ity. Clinicians should be supported in exploring these predictions to
get an appropriate level of trust in the model in a way that can be
easily integrated into their busy clinical routine.

T2 Understand why the model made a prediction. Without un-
derstanding the reasons for a prediction, clinicians cannot use it for
diagnosis. The system should explain to its users why the model
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Figure 4: Two earlier prototypes of GLANCE: (a) the first prototype that had options for multiple layers (red arrow) and showed predictions
(pink arrows), (b) the second prototype that showed predicted versus actual values (green arrow) and ONH-Cube scans (blue arrow).

made a prediction and show which parts of the input contributed
to a certain prediction outcome, without going into detail about the
model methods or mathematical operations. This can aid clinicians
to further assess reliability but also to gain insight in the relation
between structural measurements and functional loss.

T3 Alert the clinician to features that are relevant. Once a pre-
diction is determined to be sufficiently reliable, explanations might
be provided to discover new features for progression tracking. This
would be helpful in cases where changes are hard to notice with tra-
ditional measurements, for example in tracking early progression.

T4 Guide future scheduling of VF testing. In current clinical
practice, a 24-2 VF test is most commonly used, regardless of the
severity of disease. However, in cases of severe damage or para-
central loss, a 10-2 VF test may be more appropriate. The 24-2 VF
testing pattern assesses only 4 of 54 points in the macular region,
thus loss in this area might be missed due to sparse sampling. How-
ever, tracking loss in this area is important because it accounts for
30% of the total retinal ganglion cells and represents over 60% of
the visual cortex [SWTO7]. Due to billing and time reasons, clin-
icians often cannot request both testing modalities. Moreover, the
frequency of VF testing is often standardized and may not be opti-
mal for some patients. Another benefit of a DL-based CDS system
would be to assist clinicians in determining the testing protocol and
frequency of VF testing (e.g., is current testing imperative or can it
wait) to achieve a personalized approach for each patient.

4. GLANCE

Here we describe the design process and key components of
GLANCE, a visualization tool to help clinicians make DL-based
glaucoma progression management decisions efficiently (i.e. at a
"glance").
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4.1. User-Centered Design Process

The current design of GLANCE resulted from 6 months of itera-
tions involving domain and industry experts. Our domain situation
is clinicians analyzing glaucoma progression using DL models for
decision support. To understand their needs, both regarding tradi-
tional and DL-enabled workflows, one-hour semi-structured inter-
views with 3 clinicians and two-hour shadowing sessions (direct
observations) with 2 clinicians were completed. Supplemental Ta-
ble 1 provides an overview of the interview questions. From these
interviews and shadowing sessions, we obtained important insights
and initial design requirements: (1) the design should be simple and
intuitive due to clinicians’ time constraints, and (2) clinicians pre-
ferred progression information to be on the same page as the scan.

These insights were used to formulate abstract tasks (see Sec-
tion 3). After some iterations, we decided to keep the data close
to its original form to reduce cognitive load and ensure real-world
generalizability (Fig. 4b blue arrow). For example, early proto-
types had options for viewing activation and thickness maps of
segmented layers besides RNFL and GCIPL (Fig. 4a, red arrow).
Further, multiple predictions were shown on the same page, which
was deemed confusing (Fig. 4a, pink arrows). Clinicians’ feedback
informed our decision to revise the tool to be narrower in scope.
Later in the process, however, we added another encoding for pre-
senting true versus predicted values (Fig. 4b, green arrow) based on
clinicians’ feedback.

4.2. Final Design

We now introduce the key components of GLANCE (see Fig. 5
for an overview). Similar to existing CDS systems for OCT-based
assessment in glaucoma, GLANCE enables clinicians to select pa-
tients, inspect demographics, and view OCT scans and derived data
(e.g., thickness maps). What is new is the MD prediction that in-
forms the clinician about the anticipated VF loss and correspond-
ing visual explanations for this prediction. These visual explana-



90 van den Brandt et al. / GLANCE

ID: SD1473 ©24-2 VF ©oD

10-2 VF os

Predicted MD:

-7.56 dB

Date Of Birth: Exam Date:

Actual and Predicted 24-2 MD

MD [dB]

=25

01/01/16 07/01/16 01/01‘/01/17 01/01/18

Date

—e— 0D actual MD [dB]
—e— 0D predicted MD [dB]

(actual VF)

o e“

-20

Important Regions for Prediction

©contours Heatmap G
. ”

Now
£ S
3 3

=

T T T T J
0 45 90 135 180 225 270 315 360
T™MP TS NS NAS NI T T™P

Position [7]

RNFL Thickness (3.5 mm) [um]

Figure 5: The user interface of GLANCE. Here the 24-2 view is shown, which reports the predicted MD for a 24-2 VF based on circle scans.
Capital letters depict explanation types and supporting encodings of our approach: line plot (A), hover (B), and important regions (C).

tions are the core components of our approach and are applied to
all views.

Explanation type 1. This explanation consists of a line plot where
all previous measured (true) and predicted MD values are displayed
chronologically (see Fig. 5.A, for example). Colors encoding pre-
dicted versus true values were chosen in consultation with the clini-
cians. A dashed line indicates the transition to the current predicted
value. In addition, by hovering over the traces, the clinician can in-
spect previous VF results to evaluate progression (Fig. 5.B). The
goal is to help clinicians assess the reliability of the most recent
predicted value (T1). Further, this information may lead to a dif-
ferent testing frequency (T4). When the predictions approximate
true values, the clinician might decide that the current predicted
value can be trusted and used for diagnosing progression. Alterna-
tively, when the model has been unstable in the past, or when it
systemically seems to be incorrect, the clinician might not trust the
predicted MD and request the patient do an actual VF test.

Explanation type 2. The second explanation consists of a bound-
ing box overlaid on the actual scan to highlight spatial features
salient for the current predicted MD (see Fig. 5.C, for example).
Activation maps were binarized with a threshold of 20% of the
maximum intensity (empirically determined), resulting in contours
of pixels around which a bounding box is drawn. Bounding boxes
were chosen instead of contours to overcome fragmentation in
small activation regions (causing clutter and confusion). The un-
derlying OCT scan data is displayed in a familiar manner to the
clinician. For example, the red-green color scheme indicates devi-
ation (Fig. 5.C, bottom) and the rainbow color map depicts thick-
ness (Fig. 6.C), similar to existing reports. Radio buttons above the
scan may be used to display the original activation map (viridis

heat map), instead of the bounding box (contours). The viridis color
scheme is used for activation maps in order to avoid confusion with
thickness maps. For 24-2 VF data, a deviation map is added under
the scan that denotes areas of abnormal RNFL thinning compared
to age-matched controls (indicated by red and yellow, Fig. 5.C).
The combined figure helps explain why the current prediction was
made (T2). Highlighted areas either correspond to known clinical
features or indicate new landmarks that make the prediction more
or less glaucoma-like (T3). Further, if the highlighted parts are lo-
cated in areas with noise or artifacts (e.g., missing local image in-
formation) visible in the underlying scan or where no abnormalities
are expected, the clinician might decide that the prediction is not re-
liable (T1) and may subsequently adjust the testing frequency (T4).
Lastly, when both the highlighted areas on the OCT scan and the
past VFs show central loss, and only a 24-2 test was obtained, the
clinician may order a 10-2 VF test (T4).

Based on the clinicians’ feedback, two separate views were de-
signed for 10-2 VF MD and 24-2 VF MD prediction. The expla-
nations are the same for both views, but the type of visual field
(10-2 vs 24-2) and scan data (circle scan or thickness map) differ.
In practice, a clinician often only has results from one test (usually
the 24-2 test). Having both 24-2 and 10-2 predictions on one page
would create confusion and visual clutter. Similarly, left eye (OS)
and right eye (OD) are separated within these views.

24-2 view. Here the clinician can inspect a patient’s VF progres-
sion by MD measured on a 24-2 spaced grid (Fig. 5). To clarify: a
more negative MD dB value corresponds to more glaucomatous
damage. The model’s behavior is shown for previous 24-2 MD
predictions (i.e., the first explanation type; Fig. 5.A). An ONH-
centered circle scan at 3.4 mm is displayed for inspecting RNFL
thinning. Further, salient features are visualized over this RNFL
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Figure 6: The 10-2 view of GLANCE. This view shows predicted MD of a 10-2 spaced visual field based on GCIPL and RNFL thickness
maps of the macula. Capital letters depict explanation types and supporting encodings: line plot (A), hover (B) and important regions (C).

circle scan (second explanation type; Fig. 5.C). Below it, a devi-
ation plot aligned with the scan enables the clinician to compare
the location of the salient features with areas of abnormal thinning
for this eye. Furthermore, the salient areas can be compared to the
previous 24-2 loss patterns that are visible when hovering over the
past MD trace in the line plot (Fig. 5.B). When the salient regions
in the circle scan align with the abnormal area’s deviation plot and
also with patterns in the previous VFs, a clinician may feel more
confident about the prediction, especially if these areas are known
to be related to glaucoma progression. For example in Fig. 5, the
RNFL circle scan on the right (Fig. 5.C) indicates an area of thin-
ning that is in the temporal superior (TS) region (blue box), the de-
viation map below displays abnormal thinning in this region (i.e.,
the black line crosses the red area), and one of the last real VFs also
shows a defect (bottom left dark area) in the topographically corre-
sponding nasal inferior region (Fig. 5.B). This information together
may help the clinician assess the reliability of the prediction.

10-2 view. The clinician may decide to perform a 10-2 visual field
test in cases of paracentral loss. The 10-2 view provides a pre-
diction for the 10-2 VF MD and corresponding explanations, in
a manner similar to the 24-2 view (Fig. 6). In this view, bounding
boxes highlight salient features in the RNFL and GCIPL thickness
maps (Fig. 6.C). For example, the important regions of the GCIPL
mainly indicate an area that is in the superior region of the visual
field (Fig. 6.C, the large white bounding box in the bottom thick-
ness map). Comparing this area to the previous (actual) tests, we

(© 2020 The Author(s)
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see inferior defects on the VF pattern (Fig. 6.B, bottom left dark
area). Because the inferior region in the VF is topographically re-
lated to the superior region in the macula, and this region is high-
lighted (large white bounding box), the current prediction may be
considered reliable.

4.3. Implementation Details

GLANCE consists of a web-based system which is implemented
using Python, Plotly Dash and Bootstrap. Image data is manipu-
lated using and Matplotlib, OpenCV and PIL. Plotly is used as main
graphing library. All computations are performed with Python.

5. Use Cases

We now demonstrate our approach by two clinical use cases. Three
clinicians were recruited, and asked to think out loud while inter-
acting with GLANCE. The subjects considered in the case studies
were not used for training the DL model. Mild, moderate, and ad-
vanced glaucoma patients were explored. We ended the sessions
with some questions about future use and usage scenarios. Al-
though we gathered input from three clinicians on an array of clin-
ical scenarios, for illustrative purposes, we highlight the thought
process and feedback of an individual clinician for two cases.

Patient 1. For the first exploration, we selected a patient with mild
glaucoma that has not been progressing (based on VF) for a cou-
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Figure 7: The right eye (OD) of patient 1: (a) indicates that pre-
dictions aligned with actual measurements; (b) illustrates that im-
portant regions were not located on the RNFL but on the choroid.

ple of years. The clinician started with the right eye. Looking at
the graph with past and predicted MD (Fig. 7a), she noted that the
model’s predictions were fairly accurate (T1). Next, she checked
the important regions for the prediction. She switched to the heat
map to see more detail. She explained that this plot was confusing
her, because the highlighted regions were not located on the RNFL
layer, but more on the choroid (T2). This is strange from a clini-
cal perspective because this area is generally not considered impor-
tant (Fig. 7b). However, she also noted that these might be potential
new landmarks (T3). Based on this information only, she would not
trust the prediction. The predicted MD for this patient is -2.88 dB,
which is slightly worse than the previous -2.43 dB. Because there
is a progression trend both in the real measurements and the model
predictions, she would want to see this patient again in 6 months
instead of 1 year (T4). She justified her choice mainly by the pro-
gressive and irreversible character of glaucoma; it is important to
track progression accurately to reduce further loss.

The model also showed consistent and accurate predictions (T1)
for all measurements of the left eye (Fig. 8a). It can be seen that ac-
cording to the model, there was no progression since the last visit.
The important regions for this prediction were also located beneath
the RNFL, but the RNFL deviation plot (Fig. 8b) showed that they
were in line with defects on the RNFL (T2). The clinician con-
cluded that a follow up in 6 months would not be necessary for the
left eye (T4). This use case demonstrates that GLANCE enables a
clinician to determine reliability of a prediction, and based on that,
decide when the next visit and/or VF test should be planned.

Patient 2. For the second exploration, we looked at a patient with
mild to moderate glaucoma. The clinician started with the right
eye (Fig. 5). Looking at the graph with past and predicted MDs
(Fig. 5.A), the clinician noticed that the model was always under-
estimating the magnitude of the actual MD, and that the current pre-
diction even indicated an improvement or at least stability. Based
on this information alone, the clinician would not trust the predic-
tion (T1). To obtain more information, the clinician inspected the

—e— OS actual MD [dB]
—e— OS predicted MD [dB]

High

duepodw|

Low

(b) Heat map of important regions

Figure 8: The left eye (OS) of patient 1: (a) predictions are con-
sistent, but the current prediction failed to follow progression in
the actual and previous predicted progression, (b) regions between
the pink dotted lines show that important regions align with defects
observed in the deviation plot.

important regions on the right side of this view (Fig. 5.C). The im-
portant region (bounded by the blue rectangle) aligned clearly with
the loss in the RNFL deviation plot beneath it (area in red). By hov-
ering over the past points in the graph, the clinician confirmed that
previous patterns also showed a clear loss (Fig. 5.B, black area)
in the corresponding region (i.e., the temporal-inferior (TI) region
in the VF related to the defects in the nasal-superior (NS) region
in the scan and deviation plot; addressing T2). The important re-
gions looked fine, thus the clinician decided to explore further in
the 10-2 view of this patient (Fig. 6). Because the clinician used the
important regions information while reasoning about the defects,
we conclude that the visualization is interpretable.

The model predictions for 10-2 VF MD looked reasonably con-
sistent but overestimated the magnitude of MD (Fig. 6.A). Further,
the clinician noted that the improvements in the actual MD may re-
flect a learning effect. There was progression visible in the last two
actual values, but the predicted values were stable. The clinician
explained that there are two possible trajectories for the predicted
MD: either the current prediction is correct because it did follow the
progression in the actual MD, or it is overestimating the actual MD
as in the previous predictions (T1). Also, the important regions in
the GCIPL (Fig. 6.C, large white square) corresponded to the loss
in the past VF patterns (Fig. 6.B, black area), performing T2 and
T3. Based on all 10-2 VF information, the clinician expected the
real MD to be on or above the predicted value. The predictions in
the 24-2 view did not show progression, but actual values showed
the opposite. The clinician decided that a real VF test would be
needed to confirm whether or not there is progression and to be
able to make a management decision (T4). For this patient, the left
eye was not examined. From this use case, we can conclude that

(© 2020 The Author(s)
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information on the actual versus predicted values seems to be the
main driver for determining reliability, even if the important regions
indicate correct areas. Moreover, it shows that the MD prediction
is not used for management decisions if it seems unreliable.

6. Pilot User Study

Building on the use cases, we conducted a pilot study with three
independent clinicians regarding how GLANCE might inform clin-
ical decision-making.

6.1. Study Setup

The clinicians (two males, one female) were recruited from the
UCSD Shiley Eye Institute and were all familiar with the process
of managing glaucoma progression using OCT technology. Their
working experiences ranged from 2 to >10 years. We embedded
three variants of GLANCE in an online survey. Variant 1 provided
only the current prediction and standard OCT information, serv-
ing as a baseline without any explanations. In variant 2a, a line
graph was added showing actual vs predicted points while variant
2b showed an activation map over the OCT scan. Variant 3 showed
both the graph and activation map (see supplemental Fig. 1). Ev-
ery participant was asked to provide a clinical recommendation
for 12 patients using variants 1, 2a or 2b (randomly assigned per
case), and 3, in that order, for each patient. For 6 additional patients
they only viewed variant 3 to provide insights into learning effects
that can occur while reviewing the initial 12 patients. Thus, in to-
tal each clinician reviewed 42 cases from 18 patients. Immediately
after every case, they were asked to answer questions about trust
in the prediction (supplemental Table 2). The trust measures were
adapted from Jian et al. [JBDOO]. We concluded the survey with
demographic questions and open-ended items for general remarks.

6.2. Methods of Assessing Usability

User-centered design (UCD) is a widely adopted method to incor-
porate human factors, information science, and computer science
into product and data interface design and is increasingly used in
healthcare [LQG™15]. UCD processes are highly iterative and start
with qualitative analyses involving a small number of participants
in the early stages to explore themes and design needs prior to quan-
titative evaluations with a larger group. Given the novel nature of
GLANCE, our initial usability assessments focused on qualitative
analyses of clinicians’ experiences with the tool.

First, to analyze whether a clinical decision could be based on
predicted MD instead of actual VF MD (H1), we recorded the num-
ber of cases where clinicians provided a decision based on pre-
dicted MD. We further determined whether and how visual expla-
nations provided added value (H2, H3) by assessing whether a rec-
ommendation changed when moving from variant 1 to 2a/2b to 3.
Furthermore, we assessed clinician-reported trust ratings and con-
fidence levels. We also recorded whether clinicians changed their
treatment decisions after viewing the visualizations (H4). Finally,
we performed a thematic analysis of clinicians’ open-ended re-
sponses. Representative comments were identified for illustration.

(© 2020 The Author(s)
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6.3. Results

In the majority of cases, (68 of 126 cases (54%)), clinicians made
a management decision based on the predicted MD. In the other
cases, it was not possible to provide a recommendation without ad-
ditional information, such as an IOP measurement or the true VE.
Further, we found that in cases with advanced glaucoma, it is rela-
tively difficult to provide recommendations based on predicted MD
only because the VF is inherently more variable, whereas for mild
cases the opposite seems to hold (Table 2).

Specifically, in 16 cases (22%), the initial recommendation was
changed after reviewing variants 1 and 2 (see Table 3). For variants
2a and 2b, we see that 5 (14%) recommendations were changed
compared to reviewing variant 1. For variant 3, 11 (31%) recom-
mendations were changed compared to reviewing variants 2a and
2b (Table 3). Further, in 8 of the influenced cases (50%) clinicians
decided not to obtain a VF, while in 30% of these cases they chose
to obtain one. In the remaining 3 cases, they for example changed
from “continue present management” to “increase treatment” or
vice versa. In summary, the visualizations provided a way to de-
termine the reliability of the prediction and in some cases helped
clinicians to be more certain about their initial recommendation
based on predicted MD (H3). Moreover, the level of confidence and
trust in the predictions also slightly increased with variants 2 and
3 which provided the historical accuracy of the model predictions.
More importantly, we found that clinicians changed their treatment
plan and trust ratings after viewing variant 3, indicating that the
visual explanations provided them with new insights (H3) for indi-
vidualizing treatment based on MD predictions (H4). Furthermore,
no learning effect was found, as the assessments for the 6 cases
where only variant 3 was used were similar to the 12 cases which
were reviewed with increasing level of visual explanation (i.e., go-
ing through the pipeline 1-2a/2b-3). Below, we discuss these find-
ings in more detail.

Determining reliability. Visual explanations helped to determine
reliability of the prediction (H3). All clinicians emphasized that
whenever the previous predictions lined up with the actual, this ren-
dered the prediction more reliable. For example, “I do not trust the
predicted MD because while there is good correlation with actual
MD in the beginning, it is unable to predict slow decline in actual
MD?” (clinician #2). The same was observed regarding explanation
type 2, i.e. when the saliency regions corresponded to known clin-
ical regions, the prediction was considered more reliable: “I trust
the predicted MD because it corresponds with actual MDs and ap-
pears to be focusing on important regions on RNFL” (clinician
#2). In another case, clinician #3 related level of trust in the pre-
diction: “Somehow not. The MD is predicted based on regions [...]

Table 2: Medical recommendations per disease level.

Recommendation ~ Unclear/request
based on predic- actual VF
tion
All disease levels 68 (54%) 58 (46%)
Early and mild disease 38 (90%) 4 (10%)
Moderate disease 25 (45%) 31 (55%)
Advanced disease 5 (18%) 23 (82%)
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which are not the main regions that are affected by glaucoma and
have influence on RNFL and VF.”. This indicates that visualization
of both past predictions and important regions help to determine
reliability.

Progression and variability in results. In many cases, the clin-
icians reported that the combination of true versus predicted pro-
gression and variability was important. One combination is when
the past predictions corresponded with the actual MDs: “I trust
the predicted MD because it appears to be within range of the ac-
tual MDs and the trend from previous predictions follows the ac-
tual trend” (Clinician #2). Another combination occurs when pre-
viously predicted MDs follow the trend of the actual, but the mag-
nitude is different: “Although I cannot trust the predicted MD, now
at least I know that the model is consistently underestimating the
magnitude of the MD for the last several visits [...] I can deduce
that it is underestimating again on this visit, and that this patient
most likely has progression of his/her VF that merits escalation in
treatment” (Clinician #1). Lastly there is the situation when past
predictions are not following any trend, making the current pre-
dicted value hard to interpret: “There has been some discrepancy
between the predicted and the observed in the past, so it’s hard
to know whether the predicted MD will reflect the true value on
this visit” (Clinician #2). This clinician recommended obtaining a
VF test for this visit. From these examples we conclude that vi-
sualization can still support management decisions, even when the
prediction seems unreliable.

Disease level matters. In advanced disease, all clinicians indi-
cated that predicted MD was likely to be inaccurate and therefore
risky. They explained that from a clinical perspective, the RNFL
had likely “hit the floor” (i.e., is extremely thin where further thin-
ning likely would not be detectable), making predictions doubtful
[BZW™*17]. In advanced cases, clinicians take more “subjective”
factors into account: “It is difficult to give advice/recommendation
for this patient, who has advanced glaucoma, based on this infor-
mation alone. The OCT shows that the RNFL is essentially at the
floor. I don’t think any predicted MD based on OCT data will be
useful [...], and no visualization will really have added value in
this context either. Like one of the other earlier patients, I would
need to depend on the patient’s subjective symptoms, 10P, overall
life expectancy, and co-morbid conditions” (Clinician #1). How-
ever, for early disease, the MD measurement is a good indicator:
“I would trust the predicted MD given early disease, reasonable
correspondence with the general MD trend, and measured RNFL
thickness” (Clinician #2). For another mild case, clinician #1 ex-
plained: “I think the predicted value looks reasonable and follows
the prior trend. Also, overall MD changes are very mild for this
patient, so there is more room for error regarding the prediction.”.
These findings suggested that the tool is mainly applicable to cases
with mild to moderate glaucoma.

Table 3: Influence of variant on medical recommendation.

No influence ~ Some influence
Variant 2a or 2b (compared to 1) 31 (86%) 5 (14%)
Variant 3 (compared to 2a or 2b) 25 (69%) 11 (31%)

Individualize treatment. All clinicians found that visual explana-
tions increase trust and confidence about management decisions.
Thus, if they became less trustful because of the visualizations,
and therefore decided to obtain a VF, this was a positive result as
the visualizations helped clinicians determine when to trust the DL
model. For example, for one patient, clinician #1 stated “Obtain
a visual field for this visit” for all three variations, rated trust in
the prediction lower after the last, and explained: “Now that I can
see the prior predictions, it is clear that the predicted MD is con-
sistently underestimating the magnitude of the true MD.”. For an-
other case, after viewing more visualizations, clinician #2 changed
the decision to continue the treatment plan to obtaining an actual
VF to make his management decision, rated his trust in the predic-
tion lower and explained: “I do not trust the predicted MD because
while there is good correlation with actual MD in the beginning,
it is unable to predict slow decline in actual MD.”. Checking the
ground truth MD, the prediction turned out to be very inaccurate.
From these examples, it can be concluded that visualizations help
to individualize treatment (i.e., to determine when a VF is needed
soon or when it can be delayed).

7. Discussion and Limitations

We have presented GLANCE, a visual analytics approach for mon-
itoring glaucoma progression in the clinic. This type of analysis is
novel in the field of glaucoma. While the use cases and pilot user
study show promising results, there are also some limitations.

Validation based on use cases indicates that our approach can
guide the frequency of future VF tests. In some cases (e.g., very sta-
ble patients) the clinician might decide to skip the VF test. In other
cases more frequent VF tests might be needed to ensure timely de-
tection of progression and adjustment of the treatment. These re-
sults do not suggest that GLANCE can replace VF testing in itself;
rather, it can help individualize the frequency to each patient.

The pilot user study provides initial insights on how clinicians
change their judgement of glaucoma progression using GLANCE
and whether different visual explanations affect their understanding
and trust. Based on the pilot results, we can confirm that GLANCE
can assist clinicians to assess reliability of MD predictions and de-
cide whether a prediction can be used for disease management deci-
sions. Moreover, we found that clinicians calibrated their trust and
made decisions with slightly more confidence after viewing more
informative visualizations. For the pilot, cases with all disease lev-
els were considered. However, the results showed that GLANCE
may primarily be useful for mild and moderate cases. Clinicians
were excited about the possibilities, especially when the cases
showed stability and VF testing could be postponed, thus saving
the patient and health care system time and money. Because many
of the patients in the clinic are stable [SRK* 14], this indicates that
GLANCE holds potential for efficient disease management by cre-
ating the opportunity to individualize treatment based on appropri-
ate trust and confidence. This pilot study based on feedback from
a small number of users provides interesting insights to support fu-
ture investigations involving a larger number of users. Future work
should preferably execute the user test in the clinic.

GLANCE was evaluated by human- and application-grounded
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methods. DL models may be too complex to explain globally, but
methods such as saliency maps can give insight in local behavior.
Our approach used these methods, and they were tested for ro-
bustness and explanation adequacy using randomly permuted la-
bels [AGM*18]. The results of this “sanity check”” show that our
saliency maps are sensitive to the permuted labels, meaning that
they are able to express the relationship between the original input
instances and their labels. In future work, additional investigation
of faithfulness should be performed by comparing the outputs to
brute-force methods such as occlusion testing.

The DL models in our approach all have fairly good accuracy
in predicting the severity of functional loss, but we should keep in
mind that the predicted MD values are inherently noisy [PKY*17],
and that there is no ground truth for measuring or predicting visual
function. The models can average out some artifacts and visual ex-
planations can indicate incorrect-looking model predictions, but the
knowledge and expertise of ophthalmologists are essential for in-
terpreting the results in a safe manner.

GLANCE was designed to be simple and intuitive for in-clinic
use. Some interactivity is built in, such as hovering or zoom-
ing, but the overall visualization is primarily static. The ratio-
nale to begin with a static visualization was based on multiple
studies demonstrating cognitive load and burden of information
processing imposed by health information technologies on clini-
cians [AL12,ZKS15]. Additionally, static visualizations are more
amenable to being exported as PDFs for picture archiving and
communication systems (PACS). However, at this stage of devel-
opment we did not formally evaluate whether this design facili-
tated efficiency for clinical decision-making. Future analyses may
help evaluate whether GLANCE can help ophthalmologists achieve
time savings in clinical settings, whether in individual patient inter-
actions or in overall clinic flows with reduced VF testing. These
analyses can be accomplished via time-motion observations and/or
analyses of electronic health record audit log data [BGM™*20].

Acknowledgements

We thank Ali Tafreshi and Patricia Manalastas (MD) for
their valuable feedback, comments and time. Grant support:
United States National Eye Institute EY11008, EY19869,
EY 14267, EY027510, EY026574, EY029058, P30EY022589,
T15LMO11271, 5K12EY024225, T32EY026590 Unrestricted
grant from Research to Prevent Blindness, NY. Research fellow-
ship grant of the German Research Foundation (DFG), Grant-Nr:
RE 4155/1-1 and German Ophthalmological Society (DOG) grant.

References

[ADD*11] AcCHARYA U. R., DuA S., Du X., CHUA C. K., ET AL.:
Automated diagnosis of glaucoma using texture and higher order spectra
features. IEEE Transactions on Information Technology in Biomedicine
15,3 (2011), 449-455. 3

[AGM*18] ADEBAYO J., GILMER J., MUELLY M., GOODFELLOW 1.,
HARDT M., KiM B.: Sanity checks for saliency maps. In Advances in
Neural Information Processing Systems (2018), pp. 9505-9515. 11

[AGS10] ABRAMOFF M. D., GARVIN M. K., SONKA M.: Retinal imag-
ing and image analysis. IEEE Reviews in Biomedical Engineering 3
(2010), 169-208. 1

(© 2020 The Author(s)
Eurographics Proceedings (© 2020 The Eurographics Association.

[AL12] AVANSINO J., LEU M. G.: Effects of CPOE on provider cog-
nitive workload: a randomized crossover trial. Pediatrics 130, 3 (2012),
e547-e552. 11

[ANE*15] ACHARYA U. R., NG E., EUGENE L. W. J., NORONHA
K. P.,, MIN L. C., NAYAK K. P., BHANDARY S. V.: Decision sup-
port system for the glaucoma using gabor transformation. Biomedical
Signal Processing and Control 15 (2015), 18-26. 3

[BGC*20] BAXTER S. L., GALI H. E., CHIANG M. F., HRIBAR M. R.,
OHNO-MACHADO L., EL-KAREH R., ET AL.: Promoting quality face-
to-face communication during ophthalmology encounters in the elec-
tronic health record era. Applied Clinical Informatics 11, 01 (2020),
130-141. 2

[BGM*20] BAXTER S. L., GALI H. E., MEHTA M. C., RUDKIN S. E.,
BARTLETT J., BRANDT J. D., SUN C. Q., MILLEN M., LONGHURST
C. A.: Multi-center analysis of electronic health record use among oph-
thalmologists. Ophthalmology (2020). 11

[BZW*17] BowbD C., ZANGWILL L. M., WEINREB R. N., MEDEIROS
F. A., BELGHITH A.: Estimating optical coherence tomography struc-
tural measurement floors to improve detection of progression in ad-
vanced glaucoma. American Journal of Ophthalmology 175 (2017), 37—
44. 10

[CBB*18] CHRISTOPHER M., BELGHITH A., BOowD C., PROUDFOOT
J. A., GOLDBAUM M. H., WEINREB R. N., GIRKIN C. A., LIEBMANN
J. M., ZANGWILL L. M.: Performance of deep learning architectures
and transfer learning for detecting glaucomatous optic neuropathy in fun-
dus photographs. Scientific Reports 8, 1 (2018), 16685. 1, 3

[CBB*19a] CHRISTOPHER M., BELGHITH A., BowD C., FAzio
M. A., GOLDBAUM M. H., WEINREB R. N., GIRKIN C. A., LIEB-
MANN J. M., ZANGWILL L. M.: Deep learning models predict visual
function from macula thickness map. Investigative Ophthalmology &
Visual Science 60, 9 (2019), 5600-5600. 3

[CBB*19b] CHRISTOPHER M., BOowD C., BELGHITH A., GOLDBAUM
M., WEINREB R., FAZIO M., GIRKIN C., LIEBMANN J., ZANGWILL
L.: Deep learning approaches predict glaucomatous visual field damage
from oct optic nerve head en face images and retinal nerve fiber layer
thickness maps. Ophthalmology (2019). 2, 3

[CBB*20] CHRISTOPHER M., BOwWD C., BELGHITH A., GOLDBAUM
M. H., WEINREB R. N., FAZIO M. A., GIRKIN C. A., LIEBMANN
J. M., ZANGWILL L. M.: Deep learning approaches predict glaucoma-
tous visual field damage from oct optic nerve head en face images and
retinal nerve fiber layer thickness maps. Ophthalmology 127, 3 (2020),
346-356. 1,3

[CPB*20] CHRISTOPHER M., PROUDFOOT J. A., BowD C., BEL-
GHITH A., GOLDBAUM M. H., REZAPOUR J., MOGHIMI, ET AL.:
Deep learning models based on unsegmented oct rnfl circle scans pro-
vide accurate detection of glaucoma and high resolution prediction of
visual field damage. Investigative Ophthalmology & Visual Science 61,
7 (2020), 1439-1439. 3

[CRH*19] CA1C.]J., REIF E., HEGDE N., HIpp J., KIiM B., SMILKOV
D., WATTENBERG M., VIEGAS F., CORRADO G. S., STUMPE M. C.,
ET AL.: Human-centered tools for coping with imperfect algorithms dur-
ing medical decision-making. In Proceedings of the 2019 CHI Confer-
ence on Human Factors in Computing Systems (2019), ACM, p. 4. 1,
3

[DFLRP*18] DE FAUWw J., LEDSAM J. R., ROMERA-PAREDES B.,
NIKOLOV S., TOMASEV N., BLACKWELL S., ASKHAM H., GLO-
ROT X., O’DONOGHUE B., VISENTIN D., ET AL.: Clinically appli-
cable deep learning for diagnosis and referral in retinal disease. Nature
Medicine 24,9 (2018), 1342. 3

[GCWGVW19] GARCIA CABALLERO H. S., WESTENBERG M. A.,
GEBRE B., VAN WK J. J.: V-awake: A visual analytics approach for
correcting sleep predictions from deep learning models. In Computer
Graphics Forum (2019), vol. 38, Wiley Online Library, pp. 1-12. 2, 3

[GMR*19] GUIDOTTI R., MONREALE A., RUGGIERI S., TURINI F.,
GIANNOTTI F., PEDRESCHI D.: A survey of methods for explaining
black box models. ACM Computing Surveys (CSUR) 51, 5 (2019), 93. 3



96 van den Brandt et al. / GLANCE

[HDM18] HoobD D. C., DE MORAES C. G.: Challenges to the common
clinical paradigm for diagnosis of glaucomatous damage with oct and
visual fields. Investigative Ophthalmology & Visual Science 59,2 (2018),
788-791. 2

[HKPC18] HOHMAN F. M., KAHNG M., PIENTA R., CHAU D. H.:
Visual analytics in deep learning: An interrogative survey for the next
frontiers. IEEE Transactions on Visualization and Computer Graphics
(2018). 3

[Hool7] Hoob D. C.: Improving our understanding, and detection, of
glaucomatous damage: an approach based upon optical coherence to-
mography (oct). Progress in Retinal and Eye Research 57 (2017), 46-75.
2

[JBD00] JIANJ.-Y., BISANTZ A. M., DRURY C. G.: Foundations for an
empirically determined scale of trust in automated systems. International
Journal of Cognitive Ergonomics 4, 1 (2000), 53-71. 9

[KAKC17] KAHNG M., ANDREWS P. Y., KALRO A., CHAU D. H. P.:
A cti v is: Visual exploration of industry-scale deep neural network mod-
els. IEEE Transactions on Visualization and Computer Graphics 24, 1
(2017), 88-97. 2,3

[KMCAS18] KHAIRAT S., MARC D., CROSBY W., AL SANOUSI A.:
Reasons for physicians not adopting clinical decision support systems:
critical analysis. JMIR Medical Informatics 6, 2 (2018), e24. 3

[KZZ*15] KUANG T. M., ZHANG C., ZANGWILL L. M., WEINREB
R. N., MEDEIROS F. A.: Estimating lead time gained by optical co-
herence tomography in detecting glaucoma before development of visual
field defects. Ophthalmology 122, 10 (2015), 2002-2009. 1

[LHK*18] LI Z., HE Y., KEEL S., MENG W., CHANG R. T., HE M.:
Efficacy of a deep learning system for detecting glaucomatous optic
neuropathy based on color fundus photographs. Ophthalmology 125,
8(2018), 1199-1206. 1, 3

[Lipl6] LIPTON Z. C.: The mythos of model interpretability. arXiv
preprint arXiv:1606.03490 (2016). 3

[LKB*17] LITJENS G., Kool T., BEINORDI B. E., SETIO A. A. A.,
CiompI F., GHAFOORIAN M., VAN DER LAAK J. A., VAN GINNEKEN
B., SANCHEZ C. I.: A survey on deep learning in medical image analy-
sis. Medical Image Analysis 42 (2017), 60-88. 3

[LQG*15] LUNA D., QUISPE M., GONZALEZ Z., ALEMRARES A.,
RISK M., GARCIA A. M., OTERO C.: User-centered design to develop
clinical applications. literature review. Studies in Health Technology and
Informatics 216 (2015), 967. 9

[MMGI14] MUSEN M. A., MIDDLETON B., GREENES R. A.: Clinical
decision-support systems. In Biomedical Informatics. Springer, 2014,
pp. 643-674. 3

[MWW*17] MIOTTO R., WANG F., WANG S., JIANG X., DUDLEY
J. T.: Deep learning for healthcare: review, opportunities and challenges.
Briefings in Bioinformatics 19, 6 (2017), 1236-1246. 1

[OTM*07] OSHEROFF J. A., TEICH J. M., MIDDLETON B., STEEN
E. B., WRIGHT A., DETMER D. E.: A roadmap for national action on
clinical decision support. Journal of the American Medical Informatics
Association 14, 2 (2007), 141-145. 2

[PGI*12] PIERRO L., GAGLIARDI M., TULIANO L., AMBROSI A.,
BANDELLO F.: Retinal nerve fiber layer thickness reproducibility using
seven different oct instruments. Investigative Ophthalmology & Visual
Science 53,9 (2012), 5912-5920. 1

[PHVG*17] PEZzOTTI N., HOLLT T., VAN GEMERT J., LELIEVELDT
B. P, EISEMANN E., VILANOVA A.: Deepeyes: Progressive visual an-
alytics for designing deep neural networks. /EEE Transactions on Visu-
alization and Computer Graphics 24, 1 (2017), 98-108. 2, 3

[PKY*17] PHU J., KHUU S. K., YAPP M., ASSAAD N., HENNESSY
M. P., KALLONIATIS M.: The value of visual field testing in the era
of advanced imaging: clinical and psychophysical perspectives. Clinical
and Experimental Optometry 100, 4 (2017), 313-332. 11

[Rat18] RATNER M.: FDA backs clinician-free Al imaging diagnostic
tools, 2018. 3

[RSG16] RIBEIRO M. T., SINGH S., GUESTRIN C.: Why should I trust
you?: Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2016), ACM, pp. 1135-1144. 3

[SCD*17] SELVARAJUR.R., COGSWELL M., DAS A., VEDANTAMR.,
PARIKH D., BATRA D.: Grad-CAM: Visual explanations from deep
networks via gradient-based localization. In Proceedings of the IEEE
International Conference on Computer Vision (2017), pp. 618-626. 2, 4

[SGPR17] STROBELT H., GEHRMANN S., PFISTER H., RUSH A. M.:
LSTMVis: A tool for visual analysis of hidden state dynamics in recur-
rent neural networks. /IEEE Transactions on Visualization and Computer
Graphics 24, 1 (2017), 667-676. 3

[SRK*14] SAUNDERS L. J., RUSSELL R. A., KIRWAN J. F., Mc-
NAUGHT A. I., CRABB D. P.: Examining visual field loss in patients in
glaucoma clinics during their predicted remaining lifetime. Investigative
Ophthalmology & Visual Science 55, 1 (2014), 102-109. 10

[SWT07] ScHIRA M. M., WADE A. R., TYLER C. W.:  Two-
dimensional mapping of the central and parafoveal visual field to human
visual cortex. Journal of Neurophysiology 97, 6 (2007), 4284-4295. 5

[SYC14] SHAIKH Y., YU F., COLEMAN A. L.: Burden of undetected
and untreated glaucoma in the united states. American Journal of Oph-
thalmology 158, 6 (2014), 1121-1129. 1

[TLW*14] THAM Y.-C., L1 X., WONG T. Y., QUIGLEY H. A., AUNG
T., CHENG C.-Y.: Global prevalence of glaucoma and projections of
glaucoma burden through 2040: a systematic review and meta-analysis.
Ophthalmology 121, 11 (2014), 2081-2090. 1

[UMJ*19] URATA C. N., MARIOTTONI E. B., JAMMAL A. A., OGATA
N. G., THOMPSON A. C., BERCHUCK S. I., ESTRELA T., MEDEIROS
F. A.: Comparison of short-and long-term variability on standard
perimetry and spectral domain optical coherence tomography in glau-
coma. American Journal of Ophthalmology (2019). 2

[WAM14] WEINREB R. N., AUNG T., MEDEIROS F. A.: The patho-
physiology and treatment of glaucoma: a review. Jama 311, 18 (2014),
1901-1911. 1

[WDZ*13] WALL M., DOYLE C. K., ZAMBA K., ARTES P., JOHNSON
C. A.: The repeatability of mean defect with size III and size V standard
automated perimetry. Investigative Ophthalmology & Visual Science 54,
2 (2013), 1345-1351. 1,2

[YCN*15] YOSINSKI J., CLUNE J., NGUYEN A., FucHs T., LIPSON
H.: Understanding neural networks through deep visualization. arXiv
preprint arXiv:1506.06579 (2015). 3

[YLDC16] YuS.,LEEG.C., DURBIN M. K., CALLAN T.: Repeatabil-
ity of SITA standard and SITA fast visual fields. Investigative Ophthal-
mology & Visual Science 57, 12 (2016), 3926-3926. 2, 4

[ZCAW17] ZINTGRAF L. M., COHEN T. S., ADEL T., WELLING M.:
Visualizing deep neural network decisions: Prediction difference analy-
sis. arXiv preprint arXiv:1702.04595 (2017). 3

[ZDF*17] ZHANG X., DASTIRIDOU A., FRANCIS B. A., TAN O.,
VARMA R., GREENFIELD D. S., SCHUMAN J. S., HUANG D.: Com-
parison of glaucoma progression detection by optical coherence tomog-
raphy and visual field. American Journal of Ophthalmology 184 (2017),
63-74. 1,2

[ZF14] ZEILER M. D., FERGUS R.: Visualizing and understanding
convolutional networks. In European Conference on Computer Vision
(2014), Springer, pp. 818-833. 3

[ZKL*16] ZHOU B., KHOSLA A., LAPEDRIZA A., OLIVA A., TOR-
RALBA A.: Learning deep features for discriminative localization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2016), pp. 2921-2929. 3

[ZKS15] ZAHABI M., KABER D. B., SWANGNETR M.: Usability and
safety in electronic medical records interface design: a review of recent
literature and guideline formulation. Human Factors 57, 5 (2015), 805—
834. 11

(© 2020 The Author(s)
Eurographics Proceedings (© 2020 The Eurographics Association.



