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Abstract
When Diffusion Tensor Imaging (DTI) is used in clinical studies, statistical hypothesis testing is the standard approach to
establish significant differences between groups, such as patients and healthy controls. However, diffusion tensors contain six
degrees of freedom, and the most commonly used univariate tests reduce them to a single scalar, such as Fractional Anisotropy.
Multivariate tests that account for the full tensor information have been developed, but have not been widely adopted in practice.
Based on analyzing the limitations of existing univariate and multivariate tests, we argue that it is beneficial to use a more
flexible, steerable test. Therefore, we introduce a test that can be customized to include any subset of tensor attributes that are
relevant to the analysis task at hand. We also present a visual analytics system that supports the exploratory task of customizing
it to a specific scenario. Our system closely integrates quantitative analysis with suitable visualizations. It links spatial and ab-
stract views to reveal clusters of strong differences, to relate them to the affected anatomical structures, and to visually compare
the results of different tests. A use case is presented in which our system leads to the formation of several new hypotheses about
the effects of systemic lupus erythematosus on water diffusion in the brain.

CCS Concepts
• Visualization application domains → Visual analytics; • Life and medical sciences → Health informatics;

1. Introduction

Diffusion Tensor Imaging (DTI) provides a symmetric second-
order tensor field that encodes the direction and strength of wa-
ter molecule diffusion inside biological tissue. It is widely used
for clinical studies of brain disease, because it makes it possible
to measure parameters that relate to tissue microstructure and that
correlate with factors such as the integrity of neural tracts [BP96].

In DTI, statistical hypothesis tests are the standard tool for show-
ing significant differences between specific populations, such as
between patients suffering from some type of disease and healthy
controls [Cer10, OS15]. In current practice, univariate tests which
only account for a single parameter, such as Fractional Anisotropy
(FA) or Mean Diffusivity (MD), are by far the most widely used.

Diffusion tensors, however, contain six degrees of freedom, and
reducing them to just one or two scalars could miss some rele-
vant group differences. In order to account for the full informa-
tion, multivariate statistical methods have been developed based on
a tensor normal distribution [BP03], on interpoint distances [BF04,
WWHT07], or on eigenvalues and eigenvectors [SDT10].

So far, such methods have not been widely adopted in practice.
We believe that an important reason for this is their reduced statis-
tical power. Intuitively, one might hope that, compared to testing

for specific differences in FA or MD, testing for all possible types
of differences would detect more or larger regions of differences.
As we will demonstrate in Section 3, the opposite can happen when
dealing with limited sample sizes, as it is usually the case in clin-
ical studies. This is because including degrees of freedom that do
not contain a strong group difference will make it more difficult to
reach the agreed-upon threshold for statistical significance.

We propose to address this by tailoring the null hypothesis to the
expected group differences: If we know which degrees of freedom
in the diffusion tensor are affected by the specific type of disease
under study, including precisely those should result in a test with
optimal power. This strategy requires a “steerable” hypothesis test
for tensor fields which, to the best of our knowledge, is not available
in the literature. As our first contribution, in Section 4, we introduce
such a test, building on the invariant gradients and rotation tangents
framework by Kindlmann et al. [KEWW07].

A practical challenge in using such a customizable hypothesis
test is having to decide which aspects of the diffusion tensor to
include: If we already knew how exactly a disease affects the diffu-
sion tensors, there would not be a need to do a clinical study in the
first place. Therefore, our second contribution is a visual analytics
system for statistical hypothesis formation, shown in Figure 1, and
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Figure 1: The main window of our visual analytics system includes slice views, a table view (here, used to highlight two specific regions
with significant group differences in red and light green), and controls that allow the user to perform different hypothesis tests, as well as to
explore and compare their results with a range of visualization tools.

described in more detail in Section 5. It allows the analyst to inter-
actively explore a wide range of interpretable null hypotheses that
can span the full spectrum between focusing on individual degrees
of freedom to including all available information.

When using our system, it is crucial to adhere to the distinc-
tion between exploratory and confirmatory data analysis: Statistical
testing is usually done for confirmatory analysis, and our proposed
steerable test can be used for that purpose. On the other hand, hy-
pothesis formation is an exploratory task, and our visual analytics
system is solely a tool for exploratory analysis.

In practice, this means that a hypothesis that has been found with
our system should consequently be tested on independent data: Try-
ing out many hypotheses with our tool and selectively reporting the
most sensitive one, on the same data and without correcting for the
number of tests that have been run, would amount to “p-hacking”,
and would represent a misuse of our system.

The intended, legitimate, and statistically valid use of our system
is to perform a secondary analysis of already published data, in or-
der to come up with novel hypotheses for future studies. We report
such a use case in Section 6, based on data from a study of systemic
lupus erythematosus [SWCW∗14]. Due to the immense effort of
such clinical studies, the corresponding confirmatory analysis has
to be left for future work.

2. Related Work

Since our visual analytics system addresses the comparison of
groups of tensor fields, the most closely related works are the Ten-

der glyphs, which explicitly encode differences between two sym-
metric positive definite tensors [ZSL∗16], and followup works that
have extended this encoding and combined it with complemen-
tary visualizations to enable visualization of tensor field ensem-
bles [ZCH∗17], as well as a visual comparison of groups of tensor
fields at multiple levels of detail [ZHC∗17]. Unlike this existing ap-
proach, which focuses on a visual assessment, our goal is to closely
integrate visual with quantitative statistical analysis. In this sense,
our work is similar to a previous one on visualizing tensor nor-
mal distributions [AWHS16] which, however, did not include any
mechanisms for group comparison.

The body of literature on hypothesis testing in DTI and neu-
roimaging in general is far too large to exhaustively survey here,
and has been summarized elsewhere [Paj11, OS15]. We will pro-
vide details on the most relevant related works on DTI analysis
as needed throughout the paper. In particular, our proposed tool
makes use of state-of-the-art techniques for spatial normalization
[ZAY∗07, ZYRG07] and enhancement of statistical maps [SN09].
We also make use of an interpretable reparametrization of diffu-
sion tensor differences [KEWW07] that has been used for tensor
field processing and visualization previously [SBW06, AWHS16].
To our knowledge, we are the first to use it for hypothesis testing.

3. Motivation

In this section, we provide a more detailed motivation of our ap-
proach by illustrating and analyzing the limitations of existing uni-
variate and multivariate tests.

Intuitively, statistical hypothesis tests decide on the significance
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Figure 2: A group difference at a particular location is considered statistically significant (marked red in the left subfigure) if the magnitude
of the group difference (color coded in the center), is large relative to the local variance (color coded on the right). Blue arrows highlight
some regions in which a strong difference fails to be significant due to a large variance.

Synthetic Tensor Field A Synthetic Tensor Field B

Figure 3: The two tensor fields A and B have been designed to differ
with respect to one of their attributes in each of the six regions. A
commonly used statistical hypothesis test based on FA alone would
only detect the difference in region 2.

of specific group differences by comparing their magnitude to the
amount of variance in the data. This is illustrated in Figure 2: The
red regions in the left part, in which statistically significant differ-
ences aligned with FA have been detected, have a clear correlation
with regions of strong group difference, which is color coded in
the central part. However, there are regions with a strong group dif-
ference, some of them highlighted with blue arrows, that are not
significant in a statistical sense. This happens where the variance,
color coded in the right part of the figure, is so large that even large
group differences might have arisen due to chance.

Most clinical studies perform hypothesis testing on only one
or two scalar values derived from the tensor field, such as Frac-
tional Anisotropy (FA) or Mean Diffusivity (MD). To illustrate the
need for multivariate hypothesis tests, Figure 3 presents two syn-
thetic tensor fields. It is obvious from their visualization using su-
perquadric glyphs [Kin04] that the two fields differ at all locations,
with respect to all six degrees of freedom in 3× 3 symmetric ten-
sors: Reduced overall magnitude, as measured by reduced Frobe-
nius norm (1); reduced degree of directional dependence, as mea-
sured by reduced FA (2); change from a more linear towards a more
planar type of anisotropy as measured by reduced tensor mode,
while keeping FA constant (3), as well as rotations around three
orthogonal axes (4–6).

In this example, the widely used univariate hypothesis test based
on FA would be blind to all differences except those in region 2. In

Figure 4: Compared to a univariate test of tensor changes associ-
ated with FA (left), a multivariate test for arbitrary changes in the
tensor (right) produces fewer, rather than more, significant results.

contrast to this, a multivariate test that accounts for all available in-
formation in the tensor should be able to detect all different types of
variation. Accordingly, multivariate testing is often applied in the
hope that it will be able to detect more and larger regions of sig-
nificant differences. For example, as a key result of their proposed
multivariate Cramér test, Whitcher et al. report that they observed
a 169% increase “in the volume of a significant cluster compared
to the univariate FA test” [WWHT07].

Disappointingly, in our own experiments on clinical data, we of-
ten observed a decrease, rather than an increase of the overall num-
ber of significant voxels when replacing the widely used univariate
t-tests with its multivariate counterpart, Hotelling’s T 2 test. An ex-
ample is shown in Figure 4. The tests will be explained in more
detail in Section 4.1. For now, we observe on the left that clear
and extended clusters (red) have been detected when looking for
changes along one specific axis in tensor space, namely changes
in Fractional Anisotropy (FA). One might hope that a test that ac-
counts for the full tensor information would highlight the same re-
gions, plus others. Unfortunately, it is clear from the result on the
right that this is not the case. We note that even the 169% increase in
volume reported in [WWHT07] pertains to a single selected clus-
ter; the authors do not report whether, and by how much, the overall
volume of all clusters in their data increased.

To better understand why, depending on the data characteristics,
a multivariate test may or may not be more powerful than a simple
univariate test, Figure 5 presents two toy examples. In the first one,
the blue squares are sampled from a multivariate Gaussian distribu-
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(a) (b)

Figure 5: In (a), a multivariate Hotelling test that accounts for
both axes is more powerful for detecting the difference between red
circles and blue squares than univariate t tests along either axis.
In (b), a univariate test along the horizontal axis is more powerful
than a multivariate test. Axes are not labeled, since the effect is
unaffected by shifting and uniform scaling.

tion whose center is at the top right compared to the center of the
distribution from which the red circles are taken. Variance along
both axes is so high that, with a univariate t test, neither horizon-
tal nor vertical distance alone is sufficient to detect a significant
difference (p > 0.11 and p > 0.43, respectively). In contrast, by
accounting for the differences in both dimensions simultaneously,
a Hotelling test achieves a clearly significant result (p < 0.004).

In the second example, the center of the blue squares is to the
right compared to the red circles, but at the same height. Here,
a t test along the horizontal axis shows a significant difference
(p< 0.03), but the Hotelling test fails to produce a significant result
(p > 0.06). The reason is that including the second dimension adds
pure noise, which reduces the power. Consequently, a larger num-
ber of samples would be needed for statistical significance. In this
illustrative 2D case, the difference in p values is relatively small,
and only affects the final outcome because it happens close to the
threshold for significance. However, including a larger number of
noisy dimensions will amplify this effect and lead to highly relevant
changes in practice, such as those that were observed in Figure 4.

Since clinical studies often face difficulties in finding a large
number of patients that can be included, and due to the high cost of
brain imaging, it is beneficial to pick the null hypothesis such that
sensitivity of the resulting test is optimized. Therefore, we intro-
duce a novel hypothesis test for DTI data that can be customized in
the sense of deciding which tensor attributes should be part of its
null hypothesis. We acknowledge that hypothesis testing as such
has some widely known limitations [WL16] and that alternatives
such as Bayesian analysis have legitimate use cases [WJP∗09]. We
believe that our manuscript is not the right place to survey this long-
standing and controversial discussion. Our current focus on hypo-
thesis testing is motivated by the fact that, de facto, it represents the
predominant paradigm in clinical studies.

4. Steerable Statistical Hypothesis Testing

Our first contribution is to derive a steerable statistical hypothe-
sis test for diffusion tensor imaging. This is achieved by suitably
combining the multivariate Hotelling test [Sri02] with a specific
reparametrization of tensor differences [KEWW07].

4.1. Multivariate Testing with Meaningful Projections

The most common way to identify group differences in imaging
studies is mass univariate testing. This amounts to running a large
number of statistical tests, each accounting only for a single value
at a single location of the brain. Spatially mapping locations where
the null hypothesis was rejected highlights regions in which the
groups differ in a statistically significant manner [OS15].

Tensors are intrinsically multivariate, reflecting not just a sin-
gle property (such as amount of anisotropy), but also the overall
amount of diffusion, type of anisotropy, and preferred diffusion di-
rections. Our framework accounts for this by testing more complex
null hypotheses, stating that the mean tensors in the two groups
are the same with respect to multiple or even all attributes. The
Hotelling test provides the corresponding extension of the widely
used t test [Sri02]. Its test statistic is

T 2 =
n1n2

n1 +n2
(d̄1− d̄2)

T S−1
p (d̄1− d̄2) , (1)

where d̄1, d̄2 are group mean vectors and Sp is a pooled estimate of
the covariance matrix, Sp =

(n1−1)S1+(n2−1)S2
n1+n2−2 , where ni and Si are

the number of subjects and sample covariance for group i, respec-
tively. To apply this test to symmetric 3× 3 diffusion tensors with
coefficients Di j, we embed them isometrically into R6 by setting

d :=
[
D11,D22,D33,

√
2D12,

√
2D13,

√
2D23

]T
. (2)

As we demonstrated in Section 3, blindly applying a multivari-
ate test to all available degrees of freedom can lead to a loss of
sensitivity due to a swamping with noise. To avoid this, we in-
troduce a steerable test, which allows the analyst to interactively
formulate null hypotheses that relate to a meaningful subset of the
information contained in the tensor fields, and that deliberately ex-
clude other aspects. Unfortunately, the components in Eq. (2) are
not suitable for this task, since they depend on the chosen frame of
reference, and lack an intuitive interpretation.

We address this by expressing deviations from the local mean
tensor in the so-called IGRT (“invariant gradient and rotation tan-
gent”) basis, an orthonormal basis that can be constructed from
the gradients of tensor invariants such a tensor norm and Frac-
tional Anisotropy, and from the tangent vectors corresponding to
infinitesimal rotations [KEWW07]. The IGRT basis is specific to
each voxel, since its construction depends on the grand mean ten-
sor d̄ =

(
n1d̄1 +n2d̄2

)
/(n1 + n2) at that voxel. After expressing

differences d− d̄ between individual tensor values d and d̄ in the
IGRT basis, we can interpret them as being related to

1. Changes in Frobenius norm (R1 = ‖D‖F )
2. Changes in the amount of anisotropy, as measured by R2 = FA
3. Changes in the type of anisotropy, as measured by R3 = mode

4–6. Rotations around the three eigenvectors

We allow the analyst to build interpretable null hypotheses by in-
teractively selecting arbitrary combinations of these six degrees of
freedom, which are illustrated in Figure 3. More specifically, the six
values correspond to the magnitude of diffusion tensor differences
that are associated with changes in norm, FA, etc. As such, they all
have the physical units of diffusivity. A seemingly more straight-
forward alternative to reparametrizing tensor differences would be
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to reparametrize the tensor itself (e.g., similar to [ZSL∗16]) and
to subsequently measure differences between the resulting param-
eters. In the latter case, one would have to be very careful about
singularities: For example, for isotropic tensors, one would have to
be careful to disregard changes in tensor mode or rotations. When
starting with differences in the tensor itself, this happens automati-
cally: Since rotating an isotropic tensor does not change it, project-
ing that zero difference on a rotation tangent correctly indicates no
tensor difference associated with rotation.

When including all six degrees of freedom in our test, it will pro-
duce the same result as a Hotelling test without the reparametriza-
tion. This is due to two facts: First, the Hotelling test is invariant
under non-singular linear transformations. Second, despite singu-
larities in the involved quantities, the IGRT basis can always be
kept orthonormal [SBW06], and its use therefore corresponds to a
non-singular linear transformation. However, testing tensor differ-
ences associated with FA changes within our framework can pro-
duce slightly different results than the more widely used practice
of testing changes in pre-computed FA, because the two are non-
linearly related.

Kindlmann et al. [KEWW07] describe two variants of the IGRT
basis: One is derived from a cylindrical coordinate system, whose
invariants are written as Ki and include tensor trace, which is pro-
portional to the widely used Mean Diffusivity (MD). In this work,
we use the second one, which is derived from a spherical coordi-
nate system, written as Ri, and includes the widely used Fractional
Anisotropy (FA). Unfortunately, the gradients of MD and FA are
non orthogonal, making it impossible to combine both into a com-
mon orthonormal IGRT frame. We have chosen the one that in-
cludes FA rather than MD to facilitate a better comparison with a
previous work that has tested FA on the same data [SWCW∗14].

4.2. Cluster Enhancement

When designing a statistical hypothesis test, we have to control its
type I error rate α. In our context, a type I error amounts to report-
ing a group difference in a region where there appears to be one
in the sample – e.g., due to noise or due to the specific choice of
subjects – even though there is none in the underlying populations.
In neuroimaging, it is widely accepted to use α = 0.05.

Performing a statistical test in a huge number of voxels greatly
increases the family-wise error, i.e., the probability that the null hy-
pothesis will be falsely rejected in at least one voxel. This could
be addressed by reducing the α of each individual test, a strat-
egy known as Bonferroni correction. However, this approach is
overly conservative, since nearby voxels are usually highly corre-
lated. Therefore, it leads to an unnecessarily drastic reduction of α

that no longer allows us to detect any of the true group differences.

A common way to correct for family-wise errors while preserv-
ing a useful amount of sensitivity is to rely on the size of contiguous
regions in which an effect is observed, since large regions are less
likely to occur due to chance [NH03]. Our work uses threshold-
free cluster enhancement (TFCE) [SN09], a state-of-the-art variant
of this idea. TFCE automatically tries out a wide range of possible
thresholds to form contiguous regions. For each voxel, it then takes
a weighted sum of the cluster volumes that the voxel belongs to at

different thresholds. This way, voxels that belong to larger neigh-
borhoods receive greater values without the need to select any spe-
cific cluster forming treshold.

For confirmatory analysis, TFCE is used within a permutation
based statistical test [NH02], which involves computing the test
statistic and its TFCE transformation for a large number of ran-
domly permuted group labels. Based on this procedure, one can
determine a value at which the TFCE map should be thresholded
to yield a statistical test with a given family-wise error rate. Un-
fortunately, even when approximating the permutation test with a
random subsample of permutations, it can take many hours on a
standard workstation, and is thus much too time-consuming for use
in an interactive visual analytics framework.

An exploratory analysis provides a more complete picture if we
do not just use a single fixed setting of α, but explore different
“levels of significance”. Therefore, we simply decide not to report
p values associated with TFCE analysis in our tool, which serves as
an additional reminder that our tool is solely meant for exploratory
analysis, not for “p-hacking”. For confirmatory analysis, p values
can easily be obtained in an off-line process. During data explo-
ration, TFCE maps can be thresholded at arbitrary values, guided
by a cumulative histogram that visualizes how the number of super-
threshold voxels depends on the threshold value.

5. Visual Analytics for Statistical Hypothesis Formation

This section describes the requirements analysis, design, and im-
plementation of our visual analytics system. It is written in C++
with Qt for the user interface, Teem (teem.sf.net) for standard
tensor visualization including fiber tracking, and OpenGL for 3D
graphics. Data preprocessing, such as transforming all tensors into
the IGRT basis (Section 4.1), or computation of means and covari-
ances of each subgroup, was performed using Python scripts.

5.1. Requirements Analysis

In discussions with our clinical co-authors, we identified four re-
quirements that a visual analytics system for hypothesis formation
in diffusion tensor imaging should meet:

R1 The system should make it easy to specify different hypothe-
ses, and to start exploring the results after a minimal delay.

R2 The system should offer the two-dimensional slice views that
clinical researchers are used to and that are frequently found
in clinical publications.

R3 The system should also provide three-dimensional views to
help assess anatomical structures, e.g., via fiber tracking.
Compared to 2D views, tractography makes it easier and
faster to identify the white matter tract in which a difference
occurred.

R4 The system should support the direct comparison of the re-
sults from different null hypotheses, to judge the extent to
which the corresponding regions might spatially overlap.
When dealing with newly discovered differences, it is rele-
vant to see whether or not they affect the same regions as
previously known differences.
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5.2. Hypothesis Specification and Testing

The steerable test that was introduced in Section 4.1 can be used
to specify 63 different null hypotheses, i.e., all 26 possible combi-
nations of the six degrees of freedom, minus the configuration in
which none of them is included, which does not result in a mean-
ingful test. Six checkboxes in the top right part of our user interface
(cf. Figure 1) can be used to specify which tensor attributes should
be included, and to run the corresponding test.

In our case study, the selected hypothesis tests could be com-
puted within a few seconds on a standard workstation. The most
time-consuming part is the threshold-free cluster enhancement
(Section 4.2). Therefore, to help meet requirement R1, we allow
the user to modify its level of discretization, i.e., the number of
thresholds over which cluster volumes are averaged. A low setting
can be used to quickly screen a larger number of possible hypothe-
ses, while a high setting can be used for a high-quality investigation
of a specific promising one.

A prerequisite of comparing all tensor fields on a per-voxel basis
is to bring them into spatial correspondence by nonlinear registra-
tion to a common template. As part of this process, tensors have to
be rotated according to the incurred changes of their frame of ref-
erence. We used the publicly available Diffusion Tensor Imaging
ToolKit (DTI-TK) [ZAY∗07, ZYRG07] to achieve this.

5.3. Spatial Views

After specifying and running a hypothesis test, the analyst would
like to investigate the anatomical location, spatial extent, and shape
of the regions in which a group difference was detected. According
to requirement R2, axis-aligned slice views play a prominent role in
our user interface. We follow the radiological convention, i.e., the
patient’s right hemisphere is shown on the left hand side of each
picture (e.g., see labels for left and right in Figure 7).

Interpreting the results of a statistical test requires viewing them
within a proper anatomical context. By default, we provide this
context by superimposing them on an averaged anatomical MR im-
age which has been transformed into the same reference space as
the DTI data (also in Figure 7). On demand, a more exact assess-
ment of the affected tract can be made by displaying an XYZ-RGB
color encoding of the principal diffusion direction [PP99].

Our system meets requirement R3 by seeding a streamline-based
tractography algorithm [BPP∗00] in an affected region, and provid-
ing a three-dimensional view of the result, with orthogonal slices as
optional anatomical context. In order not to bias the tractography
towards any of the involved subjects, we run it on an average of all
coregistered tensor fields. The average is taken in Log-Euclidean
space [AFPA06], which is known to minimize blurring [KZR∗13].
We found that this strategy preserves the characteristic shapes of
the major bundles. For example, parts of the forceps minor, ante-
rior thalamic radiation, inferior fronto-occipital fasciculus, and un-
cinate fasciculus are well-recognizable in Figure 6.

5.4. Table View

In neuroimaging, contiguous sets of voxels in which a significant
difference was detected are referred to as clusters. To allow for their

Figure 6: Seeding streamline tractography in a region of differ-
ences between the tensor fields allows the analyst to quickly iden-
tify the affected fiber tracts based on their characteristic shapes
and anatomical context.

quick and objective assessment, we present the number and vol-
ume of all detected clusters, sorted by cluster size, in a table. It can
be seen in the immediate neighborhood of the slice views in Fig-
ure 1. The table also includes spatial information (center of gravity
of each cluster) and is linked to the slices, so that clicking on a table
row moves the slices to the respective cluster center.

To highlight and better distinguish clusters of particular interest,
the user may assign a color to them in the table view. In this mode,
unselected clusters are shown in gray, to make them less visually
salient than the more relevant ones, while still distinguishing them
from the rest of the brain and the background. In Figure 1, two
clusters are shown in maroon and green, respectively.

5.5. Comparative View

To address requirement R4, our framework supports the compar-
ison of results from different tests, thresholds, or levels of data
smoothing. After running a test, optionally with cluster enhance-
ment, one can save the resulting binary mask to a file. Up to three
different test results can then be loaded into an overlay map, shown
in Figure 7.

It is a difficult task to visually encode the overlap of differ-
ent classes in a manner that is intuitive and easy to interpret. Af-
ter trying out several alternatives, we chose an encoding that has
been proposed in a very different application context, namely, in
the “splatterplot” approach to overcoming overdraw in scatter plots
[MG13]. This encoding combines specific rules for color blending
and modulation with contouring.

Colors that encode regions of overlap are obtained in two steps:
First, the colors that represent the overlapping classes are averaged
in the CIE Lab color space to obtain a color that has approximately
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Figure 7: A multivariate test FA+mode is compared to the two re-
spective univariate tests by mapping the results of each to a differ-
ent color, mixing them in a perceptual color space, and delineating
them with contours. A Venn diagram serves as a color legend for
regions of overlap.

the same perceptual distance to all involved classes. Second, in or-
der to more clearly indicate the presence of multiple classes, light-
ness and chroma of the mixed color are attenuated in the LCH color
space, with an increasing effect for an increasing number of over-
lapping classes. The exact equations can be found in [MG13], and
the result can be observed in Figure 7. To further facilitate inter-
pretation of the overlay map, our user interface displays a Venn
diagram as a color legend.

Despite the advanced color blending and additional visual cues
from contours, which we draw in slightly darker shades of the re-
spective color, we came across cases in which the underlying maps
were so complex that trying to understand the exact relationship
of all three from a single image remained challenging. For these
cases, our interface allows the user to temporarily hide some of the
classes in order to build a better understanding in an interactive and
iterative manner.

The exact number of voxels included in each mask, and the num-
ber of voxels in the overlapping regions, are displayed as a tooltip
of the Venn diagram. We also update the table view to reflect the
connected components of the regions where the results of all three
tests overlap. Specific use cases, and interpretation of Figure 7, are
discussed in Sections 6.2 and 6.3.

6. Case Study on SLE

During the design and implementation of our system, we continu-
ously accounted for feedback from our clinical co-authors. In this
section, we report results from a specific case study, which used
DTI data from a clinical study of systemic lupus erythematosus
(SLE). A standard analysis of this data has been published previ-
ously [SWCW∗14], along with details about the data acquisition,
clinical parameters, and criteria for inclusion. The study included
56 subjects. Our analysis used 37 of them, comparing 19 SLE pa-
tients with neuropsychiatric symptoms (NPSLE) to 18 subjects in
a healthy control group.

6.1. Hypothesis Formation on Clinical Data

As it was explained in Section 4.1, our framework tests changes
in tensor values associated with certain tensor invariants or rota-
tions. This makes a univariate test of Fractional Anisotropy (FA)

(a) Fractional Anisotropy

(b) Frobenius Norm

(c) Tensor Mode

(d) Rotation around main axis

Figure 8: In data from a study on SLE, results for Fractional
Anisotropy differences between healthy controls and NPSLE pa-
tients agree with previously published results, which validates our
approach. Additional hypothesis tests can be constructed using our
tool, and lead to interesting new observations.
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in our tool similar, but not equivalent to traditional hypothesis
tests, which are based on changes in (pre-computed) FA. There-
fore, comparing the results to those from a traditional analysis can
serve as a valuable initial validation. Figure 8 (a) shows the re-
sult from comparing healthy controls to NPSLE patients in our
framework, based on FA-related changes and threshold-free clus-
ter enhancement. The detected regions are remarkably similar to
those from a previous analysis of the same data with standard meth-
ods [SWCW∗14]. Seeding tractography in them also reveals most
of the fibers that have been reported in a previous tractography-
based study [SSW∗16] and have been ranked highly in terms of
their predictiveness [KSWS∗17], including the genu of the corpus
callosum, left and right inferior fronto-occipital fasciculus, and left
uncinate fasciculus (see also Figure 6).

The remaining parts of Figure 8 show the results from other uni-
variate hypothesis tests that are enabled by our framework, and
for which no similar results have been reported previously. Subfig-
ure (b) shows regions in which the Frobenius norm of the diffusion
tensors is increased in the patients, indicating increased overall dif-
fusivity. The largest cluster (yellow arrows) is immediately adjacent
to, and partly overlapping with, the previously detected changes in
FA. Only a small part of the second largest cluster is visible in Fig-
ure 8 (b) (blue arrows).

Subfigure (c) shows a cluster in which tensor mode is decreased
in the patients, which means that diffusion is restricted more to
a plane than a line. This might indicate a larger degree of fiber
spread in the patients. A tractography result seeded in this cluster
indicates that the difference extends over parts of the forceps major
and inferior fronto-occipital fasciculus.

The only result we observed when testing for differences in ori-
entation was a cluster in the corona radiata of the right hemisphere,
where tensors are systematically twisted (rotated around their prin-
cipal eigenvector) in the patient group compared to the controls. It
is unclear whether this is an artifact of the specific sample or the
registration algorithm, or if it corresponds to a true difference be-
tween the populations, especially given that the cluster is small.

In summary, our framework was successfully used to produce
new hypotheses that should be tested in a confirmatory setting in
future clinical studies.

6.2. Comparing the Results of Different Tests

One question that the comparative view from Section 5.5 allows us
to answer is how the results from two univariate tests, e.g., ones that
compare NPSLE patients to healthy controls based on FA or tensor
mode alone, differ from a single multivariate test that combines
both. Figure 7 shows the corresponding overlay.

As it was mentioned in Section 4.2, our software does not con-
vert the results from TFCE to p values, since this would require
time consuming permutation testing. In order to still compare uni-
variate and multivariate tests in a meaningful manner, Figure 7 was
created using the Hotelling test without TFCE. In this case, the null
distribution has a parametric form [Sri02], which allows us to com-
pute p values within interactive runtimes. To compensate for the
fact that testing FA and mode separately amounts to performing

twice as many tests as a single combined test, we made the thresh-
olds for the univariate tests twice as restrictive (puncorr < 0.005 vs.
puncorr < 0.01).

In this example, the comparative view revealed that the volume
highlighted by the multivariate test (7.8cm3) mostly agrees with
the union of the two univariate tests (4.3cm3 for FA and 4.0cm3 for
mode), with almost no overlap between FA and mode. This leads
us to the hypothesis that testing mode in future studies of SLE may
result in new findings that complement the ones from FA.

6.3. Visualizing the Effect of Data Smoothing

There has been some controversy about whether to smooth diffu-
sion tensor data in preparation for statistical analysis. On one hand,
spatial smoothing helps to compensate for anatomical misalign-
ment that may remain after registration, it smoothes out noise that
might otherwise lead to false positive detections, it makes the data
distribution more Gaussian and, when the bandwidth is matched
to the spatial scale of regions of difference, it can boost statisti-
cal power. On the other hand, the ideal spatial scale is usually not
known in advance, and there is no principled approach for select-
ing the bandwidth parameter, which might have a substantial effect
on the results [JSCH05]. Moreover, it has been argued that, since
smoothing amounts to artificially decreasing the image resolution,
it is counter-productive for DTI in particular, which specifically
measures diffusion in order to overcome the limits of image res-
olution and to infer tissue parameters at a microscale [SJJB∗06].

For these reasons, Tract-Based Spatial Statistics (TBSS), a
widely used method for statistical hypothesis testing of diffusion
tensor fields, avoids spatial smoothing and instead corrects for
residual misalignment by projecting FA values onto a so-called
white matter skeleton, a medial surface representation of the ma-
jor fiber tracts [SJJB∗06]. However, TBSS has been designed for
scalar invariants, and does not include any mechanisms for tensor
re-orientation, which might be required for correctly aligning the
full tensors. Therefore, recent studies that have analyzed the full
tensor have still employed smoothing [BNH∗16].

We have used the comparative view from Section 5.5 to explore
the effects of data smoothing, as shown in Figure 9. In this exper-
iment, we compared the healthy and NPSLE populations with re-
spect to the full tensor information. As in [BNH∗16], we compare
the spatial regions that result from different processing pipelines by
showing the 5% “most significant” voxels, rather than setting some
a priori threshold.

Figure 9 (a) compares results on the original data (red) to data
that has been smoothed with bandwidth σ = 0.7 voxels (green)
and σ = 1.7 voxels (blue), respectively. Many isolated voxels and
small regions are shown in red, indicating that they are removed
by smoothing, while many of the larger ones grow, as indicated by
blue halos around them. Optionally, the analyst can focus on the
dark brown regions, indicating differences that are considered sig-
nificant irrespective of the amount of smoothing.

Figure 9 (b) shows results from the same experiment, but ad-
ditionally uses threshold-free cluster enhancement (TFCE). Even
without any smoothing, TFCE eliminates many of the small clus-
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(a) Results without TFCE (b) Results with TFCE

Figure 9: Our decision to use threshold-free cluster enhancement (TFCE) is based on comparing results with (b) and without it (a). Results
without any smoothing are shown in red, with σ = 0.7 in green, with σ = 1.7 in blue. Regions of overlap are encoded as indicated in the Venn
diagram on the right. We observe that TFCE reduces the effect, and also the necessity, of pre-smoothing.

ters, and leads to larger connected ones. It also reduces the over-
all effect of smoothing, leading to a 10% increase in the number
of consensus voxels. Based on these results, we decided to omit
smoothing, but use TFCE in the experiments in Section 6.1.

6.4. User Feedback

We had a two-hour in-person meeting in which we provided a live
demo of the system to one of our collaborators and went through
several examples together, discussing both the design of our soft-
ware and the clinical implications of our findings.

Our collaborator particularly liked the fact that our system tightly
integrates statistical and quantitative data analysis with visualiza-
tion, which is not achieved in the standard software packages avail-
able to him, and which he found to encourage data exploration and
hypothesis generation. He considered this particularly helpful for
DTI analysis, due to the complexity inherent in the different tensor
properties, and the opportunity to directly seed tractography from
regions in which significant differences were found. However, he
also mentioned that he would like to see similar systems for other
modalities, such as functional MRI or Voxel Based Morphometry.

In preparation for the meeting, we reorganized our original user
interface by placing controls that we considered to be less crucial
to the main workflow into an optional “advanced” view, as indi-
cated in Figure 1. Our collaborator found that, despite this effort, a
certain level of complexity remained. However, he thought it was
commensurate with the complexity of the analysis task and told us
that a certain amount of training is also needed to become familiar
with the standard software packages in the field.

7. Conclusion

Hypothesis testing based on data from diffusion tensor MRI is
widely used to study how different brain diseases affect white mat-
ter microstructure. The multivariate nature of the diffusion tensor
makes it challenging to formulate suitable statistical tests. Most
available options are either so simple that they might miss impor-

tant group differences, or so complex that reduced statistical power
and interpretability limit their practical utility.

In this paper, we have argued for a middle ground in between
these extremes, by introducing a steerable hypothesis test which
can be customized to include any combination of the six degrees of
freedom in the diffusion tensor, after reparametrizing tensor differ-
ences so that they become interpretable.

We also present a visual analytics system that supports the ex-
ploratory task of deciding which tensor attributes to include in the
test. Closely following the requirements that have been agreed upon
with domain experts, it provides a visual interface to specify dif-
ferent null hypotheses and to quickly explore the resulting regions
within their anatomical context, based on the assumption that larger
connected clusters are more likely to be relevant. Linking them to
three-dimensional fiber tractography helps to identify the affected
bundles. Finally, overlay views make it easy to compare the results
from different tests, thresholds, or levels of smoothing.

We demonstrate our system in a case study on data from a clini-
cal study on systemic lupus erythematosus. In an exploratory anal-
ysis, we arrived at several new hypotheses, in particular, that the
disease goes along with changes in overall diffusivity, as well as
with changes in tensor mode, in regions that are disjoint from the
ones in which Fractional Anisotropy changes. We emphasize that
exploratory and confirmatory analysis have to be done on indepen-
dent cohorts. In our case study, the confirmatory part had to be left
to a future work.

There are many interesting opportunities for future extensions
of our system: First, adding visualizations that provide additional
insights on which tensor attributes most strongly determined the
result of a multivariate test, and how they correlate, would al-
low for a more in-depth analysis. Second, even though the diffu-
sion tensor model is still dominant in clinical studies, it has long
been known to be insufficient for modeling multiple fiber directions
within the same voxel. High-angular resolution diffusion imaging
is now considered to be a state-of-the-art alternative for fiber trac-
tography [JDML19], and multi-shell models, such as diffusional
kurtosis [JH10] or NODDI [ZSWKA12], provide even more de-
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tailed quantitative information. So far, only very few visualization
techniques are available for these [BZGV14,SV19]. Third, a quan-
titative user study based on synthetic data could assess the agree-
ment between user reported insights and true (simulated) group dif-
ferences [ZZZK18]. Finally, despite the prevalence of hypothesis
testing in clinical studies, Bayesian data analysis is certainly an in-
teresting alternative [WJP∗09].
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