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Abstract
The automatic detection of retinal blood vessels is a very important task in computer aided-diagnosis of retinal diseases. In this
work a new method is proposed for the automated detection of the retinal vessels. Three new and important contributions are
made. First, a new method capable of vessel enhancement is presented. Second, a new criterium to remove some false vessels
caused by the proximity to bright regions is presented, avoiding the false vessels created by the presence of exudates or bright
artifacts. Third, a new method that discards the false vessel regions that usually tends to appear in the border of the optic disc.
This is achieved using the derivatives of the gradient magnitude local maxima over different scales. The performance evaluation
is made on two publicly available databases, namely, STARE, and HRF with state-of-the-art results. Particularly, the described
method reveals to be very reliable on retinal images with large pathological signs.

CCS Concepts
• Computing methodologies → Image segmentation; • Applied computing → Imaging;

1. Introduction

Several systemic and non-systemic diseases are exposed through
changes in the retinal blood vessels [XNS∗11]. Furthermore, the
eye is unique since its the only region of the human body where
the vascular network can be observed in vivo [MC06]. The analy-
sis of the retinal vasculature is fundamental in glaucoma, diabetic
retinopathy, hypertensive retinopathy, cardiovascular diseases, and
other cerebral diseases like stroke [XNS∗11, PPP16]. In the case
of diabetic retinopathy, which is the second most common cause
of blindness in the developed world, vascular changes include neo-
vascularization, and hemorrhages. Hypertension and atherosclero-
sis also cause changes in the ratio between the diameter of reti-
nal arteries and veins. Thinning of the arteries and widening of the
veins is associated with an increased risk of a stroke and myocardial
infarction [XNS∗11]. The manual segmentation of the retina ves-
sels is a very time consuming task and prone to errors [AGB∗16].
Hence, the automatic quantification of the retinal vessels as well
the vascular features, such as the length, width, tortuosity, branch-
ing pattern, and arteries/veins differentiation can provide important
insights to a proper diagnose and management of the previous men-
tioned diseases. The accurate segmentation of the retinal vessels is
a challenging task for several reasons: the presence of lesions, ex-
udates, and hemorrhages; other structures like the optic disc and
fovea; a wide range of scales; variable contrast between the ves-
sels and retina background, and the central reflex in major arter-
ies [AGB∗16].
Many methods have been reported for the segmentation of the reti-

nal vessels. These can be divided into two major groups: Super-
vised methods and rule-based methods [PPP16,AGB∗16]. The pro-
posed method is rule-based. Supervised methods require manually
labeled images data used as training sets for each image pixel clas-
sification. The rule-based methods do not use any prior labelling
knowledge. The most common used techniques include match-
ing filtering, morphological processing, vessel tracking, multi-scale
analysis, and model based algorithms [AGB∗16]. A detailed re-
view of recent blood vessel segmentation methods can be found
in [MMHM18, LSAR17]. In this paper a reliable and efficient
method for the automated detection of the retinal blood vessels in
retinal images is presented. Several new and important contribu-
tions are made. Firstly, a method capable of vessel enhancement
based on the differences between the neighborhood of intensities
of a given pixel and the pixel itself is developed. Based on this
enhancement method it is possible to perform the detection and
segmentation of the retinal vessels over a large range of widths,
lengths and orientations. Secondly, a set of new criteria that re-
move false vessels branches caused by the presence of bright fea-
tures like the optic disc and yellowish lesions. Finally, a new ap-
proach to remove regions of peripapillary atrophy that appear near
the borders of the optic disc that are misidentified as vessels, is also
established. The performance evaluation is made using two public
databases, namely, STARE [STA] and HRF [OKB∗13]. The rest of
the paper is organized as follows. Section 2 describes the proposed
method and its three main stages; 1) Image pre-processing, 2) Ves-
sel enhancement and 3) Vessel segmentation. Experimental results
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Figure 1: Image pre-processing steps.

are described and discussed in Section 3. Finally, some concluding
remarks are drawn in Section 4.

2. Proposed Method

The proposed method is divided into three stages; 1) Image pre-
processing, 2) Retinal vessels enhancement and 3) Retinal vessels
segmentation.

2.1. Image pre-processing

The image pre-processing stage normalizes the images in terms of
contrast and non-uniform illumination. The scale-space and dif-
ferential operators used in this work are also defined. The green
channel component IG(x) (where x represents the location (x,y))
of each RGB retinal image is selected, since it offers the best con-
trast between image features [WMM09] (see Figure 1 a)). If not
provided, the Black-and-White masks BW (x), that define the re-
gion of interest in IG(x), are created by selecting all the pixels in
the red channel of the RGB image larger than 35 [tH05]. Next,
if the image dimensions are large, IG(x) is proportionally resized
using a bicubic interpolation, such that its smaller dimension is
700 pixels. The size normalization allows the definition of a set
of algorithm parameters that are effective in all databases. To re-
move background lightening variations, a shade-correction algo-
rithm is performed [AGB∗16, MAGAB11]. First, an inpainting al-
gorithm performs a smooth interpolation of the peripheral pixels
of IG(x). This is done with a discretization of the Laplace‘s equa-
tion ∇2I(x) = 0 [LOD12], creating the image IP(x) (see Figure 1
b)). Next, a median filtering with a mask size [89× 89] is applied
to IP(x). This large filter is necessary to create an image repre-
sentation of the lightning variation in IP(x) and is designated by
IM(x). The shade-correction algorithm ends by subtracting IM(x)
from IP(x), creating the image IS(x) = IP(x)− IM(x). The next step
is the detection and removal of bright regions in IS(x). These bright
regions may represent exudative lesions, central arterial reflex or
belong to the optic disc. In any case they can complicate vessel
segmentation. Initially the bright regions image, BL(x) is created
by thresholding IS(x) and selecting all pixels larger than 12. Next,
the optic disc is detected using the method proposed in [SCBP16].
A binary image OD(x) where the pixel of the optic disc center has
a value of 1 and all the remaining pixels have a value of 0 results.
This point is then dilated by a ‘disk’ structuring element of size 60.

This value is sufficient to cover both smaller and larger discs. All
the regions in BL(x) that intersect slightly or full the optic disc re-
gion in OD(x) are removed.
Finally, the peripheral regions in BL(x) are also removed. This is
achieved by considering an inverted eroded BW (x) image with a
structuring disk element of size 20. All the regions in BL(x) that in-
tersect in part or full this inverted image are removed (see Figure 1
c)). The image pre-processing stage is finalized with the inpainting
of IS(x) in the BL(x) regions, using the previously described in-
painting method. This creates the final processed image IF (x) (see
Figure 1 d)).

2.1.1. Differential operators definition in scale-space

Retinal blood vessels have a wide range of scales, which makes a
scale-space analysis ideal for their detection. The used scale-space
was defined in [SCBP14] and is briefly described next. A family
of derived images is defined by the convolution of IF (x) with the
Gaussian filter g(x; t), are given by,

L(x; t) = g(x; t)∗ IF (x), ∀t. (1)

where g(x; t) = 1√
2πt

e−
|x|2

2t is the Gaussian kernel and ∗ represents
the convolution [Wit83]. 2t is the variance of the Gaussian filter,
where t represents the scale. t is defined in this work at N different
scales according to tn = n

√
2

4 , with n ∈ {1, ...,N} (n = 0 represents
the initial pre-processes image IF (x)). N was set to 20. Due to the
noise present in the lower scale, t0 was discarded. The first and sec-
ond order image derivatives Lx(x; tn) and Lxx(x; tn) are calculated
with the derivative mask [−1 0 1]. The derivative mask transpose is
used to compute the derivatives in the y direction, namely Ly(x; tn)
and Lyy(x; tn). To obtain a normalized response at each scale tn, the
derivatives are multiplied by the normalization factor (tnσ)α where
α is the order of the derivative [MPHT∗07]. Considering the image
L(x; tn) as an intensity surface, it is possible to describe the local
shape characteristics (x; tn) using the Hessian matrix,

H(x; tn) =
[

Lxx(x; tn) Lxy(x; tn)
Lyx(x; tn) Lyy(x; tn)

]
. (2)

The minimum and maximum principal curvatures of H(x; tn)
at (x; tn) are represented by λ1(x; tn) and λ2(x; tn) respec-
tively [DZM∗07].
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(a) E(x) (b) V (x)

Figure 2: Retinal vessel enhancement.

2.2. Retinal vessel enhancement

In this section a new retinal vessel enhancement transform is de-
fined. The maximum principal curvature λ2(x; tn) is commonly
used for vessels structures enhancement [MLG∗18]. To improve
the enhancement, a cumulative maximum over scales of the prin-
cipal curvature λ2(x; tn) is proposed. Considering a scale tu where
u ∈ {1, ...,N}. For all scales tu, such that u ≤ n, the proposed cu-
mulative maximum over scales of the principal curvature λ2(x; tn)
is given by,

Λu(x) = max
u≤n

(
λ2(x; tu)
(tuσ)2

)
, (3)

Retinal vessels have a large variation of intensity values in a given
direction, while in the perpendicular direction the intensity val-
ues variation is small. If a difference is made between Λu(x) and
Λu(x’), where x’ is a pixel location in a neighborhood of x, a re-
sponse is obtained. To further improve the vessels enhancement, it
is necessary to consider all neighborhood pixels of x. The neigh-
borhood itself has to be widened due to the various widths that
vessels can have. Furthermore, if performed in scale-space the ef-
fects of noise is reduced. Formally, this can be expressed using a
polar framework. For every pixel location x a neighborhood pixel
at a range ρ and angle θ given by x(d,θ) is defined. The final retinal
vessel enhancement operator is given by,

E(x) = ∑
tu

(
∑
θ

∑
ρ

(
Λu(x(ρ,θ))−Λu(x)

))
. (4)

The parameters ρ and θ vary according to the set of values ρ =
{1,2, ...,5} and θ = {22.5o,45o, ...,360o} (see Figure 2 a)).

2.3. Retinal vessels segmentation

In this section the segmentation of retinal vessels is described.
Firstly, E(x) is thresholded with two different values, T1 and T2,
defining a hysteresis selection where only a percentage of its max-
ima are selected. The threshold value T1 creates the binary image
VT1(x) and its regions are considered vessel seeds. The value T2 cre-
ates the binary image VT2(x) and its regions represent a more com-
plete definition of the vessels branches in terms of shape, length
and width. Regions in VT1(x) smaller than 30 pixels are removed
to avoid overseeding and a final oversegmentation. Furthermore,
vessel seeds that are too close to bright regions in BL(x) are most

(a) V (x) (b) G(x) (c) V+
x (x)

(d) V−
x (x) (e) R(x) (f) VF (x)

Figure 3: Peripapillary atrophy regions removal.

likely artifacts and are removed. For any vessel seed region, the
mean distance of its perimeter pixels to the bright regions in BL(x)
is determined. If it is closer than eight pixels, the vessel seed is re-
moved from VT1(x).
The next step is a normalization between 0 and 1 of Λu(x) for all
the scales, that is, when u = n, followed by a histogram equaliza-
tion (64 levels). A binarization is then performed using a threshold
of 0.85, resulting in ΛB(x) [SCBP14]. An initial vessel segmen-
tation V (x) is obtained by selecting all the regions in VT1(x) that
intersect the regions in VT2(x) and also the regions in ΛB(x) as rep-
resented in Figure 2) b). Usually, along the optic disc borders ap-
pear darker regions of peripapillary atrophy. Due to its low pixel
values they are misidentified as a vessel (see Figure 3 a)). Even
if the optic disc was previously removed before the retinal vessel
enhancement, these regions will still be present because of the re-
quired feature preservation. These false regions are removed based
on the normalized maximum over different scales of the gradient
magnitude, given by,

G(x) = max
tn

(
|∇L(x; tn)|

(tnσ)

)
, (5)

and the sign of its derivatives Gx(x) and Gy(x). The process is first
explained to the x-direction. Gx(x) is calculated by the convolu-
tion of G(x) with the mask [−1 0 1]. The vessels in V (x) have a
gaussian profile. This means that if a vessel is divided along its
centerline, Gx(x) has positive or negative values on each side of the
centerline [MC06]. Darker regions near the optic disc border do
not exhibit a gaussian profile, meaning that its regions have either
negative or positive values in Gx(x). These regions in V (x) are de-
tected by the sgn(Gx(x)), where sgn(.) stands for the sign function,
according to,

V+
x (x) =V (x)sgn(Gx(x)) : Gx(x)> 0,

V−x (x) =V (x)sgn(Gx(x)) : Gx(x)< 0.
(6)

V+
x (x) and V−x (x) represents the positive and negative values of

the darker regions near the optic disc border (see Figure 3 c) and
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d)). When V+
x (x) and V−x (x) are compared to V (x), only half the

vessels are present, but darker regions near the optic disc border
either suffers no change or totally disappear. A line scan search is
performed in V (x) to determine the regions that either suffer no
change or completely disappears in V+

x (x) and V−x (x). These re-
gions are saved in Rx(x). The above process is repeated along the
y-direction creating the image Ry(x). The darker regions near the
optic disc border are given by R(x) = Rx(x)+Ry(x). Spurious re-
gions in R(x) smaller than 10 pixels are discarded. Furthermore,
the regions in R(x) that do not intersect the regions in OD(x) are
discarded (see Figure 3 e)). The final segmented vessels VF (x), rep-
resented in Figure 3 f) are given by,

VF (x) =V (x)−R(x). (7)

3. Results and discussion

In this paper a new method for the automated detection of the reti-
nal vessels is presented. To evaluate the proposed algorithm two
publicly available databases were used, namely the STARE and
the HRF. The STARE database [HG03] is composed by 10 images
of healthy retinas and 10 images of pathological retinas. The im-
ages were captured by a TopCon TRV-50 fundus camera at 35o of
field view. Each slide was digitized to produce a 605x700 pixel
image, with 24 bit per pixel. Each of the 20 images were hand la-
beled by two manual experts, namely, AH and VK. As it is com-
mon in previous works using this database, the AH segmented im-
ages are used as the groundtruth [MPHT∗07]. The High-Resolution
Fundus (HRF) Image database [OKB∗13] is composed by 45 im-
ages, divided into three sets of 15 images each with healthy retinas,
retinas affected with glaucoma, and retinas affected with diabetic
retinopathy. The images were acquired with a CANON CF-60 UVi
equipped with a CANON EOS-20D digital fundus camera with 60o

FOV. Each image has its retinal vessels segmentation groundtruth.
To evaluate the performance, the vessel segmentation resulting in
VF (x) is compared to its groundtruth. If a vessel pixel in VF (x) be-
longs to a blood vessel in the groundtruth is a true positive (TP),
otherwise if it belongs to the background is a false positive (FP).
If a background pixel in VF (x) belongs to the background in the
groundtruth image it is a true negative (TN), otherwise if it belongs
to a blood vessel in the groundtruth is a false negative (FN). The
evaluation of the propose method is performed in terms of Sen-
sitivity (SE), Specificity (SP) and Accuracy (ACC). SE is the ra-
tio of correctly classified pixels and SP is the ratio of corrected
classified non vessel pixels. ACC is the proportion of true results
considering the total number of pixels. These metrics are defined
as, SE = T P

T P+FN , SP = T N
T N+FP , and ACC = T P+T N

T P+T N+FP+FN . The
average sensitivity, specificity and accuracy accomplished by the
proposed method is 0.7126, 0.9758 and 0.9482 for the STARE
database. For the HRF database the average sensitivity, specificity
and accuracy are, 0.7384, 0.9727 and 0.9521 respectively. A com-
parison with the existing methodologies is presented in Table 1.
Figure 4 shows some segmentation results of a image, of each test-
ing database. From Table 1 it is possible to observe that the pro-
posed method achieves comparable results with existing method-
ologies. This is particularly relevant considering that both databases
represent images with pathological signs, making the accurate de-
tection and segmentation of retinal vessels a bigger challenge. Fur-

STARE HRF
Method SE SP ACC SE SP ACC
Panda et al. [PPP16] — — — 0.8159 0.9508 0.8407

Christodoulidis et al. [CHTC16] — — — 0.8506 0.9582 0.9479
Orlando et al. [OPB17] 0.8951 0.9387 — 0.7874 0.9584 —

Kovacs et al. [KH16] 0.8034 0.9786 0.9610 0.7502 0.9868 0.9674
Zhang et al. [ZDB∗16] 0.7791 0.9758 0.9554 0.7978 0.9717 0.9556

Yu et al. [YBA∗12] 0.7112 — 0.9463 0.7938 — 0.9566
Budai et al. [OKB∗13] 0.5800 0.9820 .09386 0.6690 0.9850 0.9610

Annunziata et al. [AGB∗16] 0.7128 0.9836 0.9562 0.7128 0.9836 0.9581
Azzopardi et al. [ASVP15] 0.7716 0.9701 0.9497 — — —

Our Method 0.7126 0.9758 0.9482 0.7384 0.9727 0.9521

Table 1: Segmentation results of the proposed method and some
well known methods.

thermore, the proposed algorithm is a deterministic method that
requires no training, with the ability to overcome the presence of
bright lesions like exudates or drusens. All thresholds of the pro-
posed algorithm were defined after extensive testing. In particu-
lar the T1 and T2 percentage values were defined as T1 = 7% and
T2 = 20%.

4. Conclusion and future works

In this paper, an effective methodology for the automatic segmen-
tation of the retinal vessels is presented with several important con-
tributions: 1) a new retinal vessel enhancement method and 2) a
new approach to remove darker regions near the optic disc bor-
ders based on differential operators. The method depends on sev-
eral fixed values. Improvements are currently being implemented
in terms of dynamic thresholding to improve there stabilization.
Furthermore, the final segmentation result exhibits some discon-
nected vessels as well small vessels that are not detected. The im-
plementation of new pre-processing methods and supervised tech-
niques are currently being developed to overcome this situation.
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