
Eurographics Workshop on Visual Computing for Biology and Medicine (2018)
A. Puig Puig, T. Schultz, and A. Vilanova (Editors)

Uncertainty-Guided Semi-Automated Editing of CNN-based Retinal
Layer Segmentations in Optical Coherence Tomography

S. Gorgi Zadeh1, M. W. M. Wintergerst2 and T. Schultz3,1

1 Department of Computer Science, University of Bonn, Germany
2 Department of Ophthalmology, University of Bonn, Germany

3 Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Germany

Abstract
Convolutional neural networks (CNNs) have enabled dramatic improvements in the accuracy of automated medical image
segmentation. Despite this, in many cases, results are still not reliable enough to be trusted “blindly”. Consequently, a human
rater is responsible to check correctness of the final result and needs to be able to correct any segmentation errors that he or
she might notice. For a particular use case, segmentation of the retinal pigment epithelium and Bruch’s membrane from Optical
Coherence Tomography, we develop a system that makes this process more efficient by guiding the rater to segmentations that
are most likely to require attention from a human expert, and by developing semi-automated tools for segmentation correction
that exploit intermediate representations from the CNN. We demonstrate that our automated ranking of segmentation uncertainty
correlates well with a manual assessment of segmentation quality, and with distance to a ground truth segmentation. We also
show that, when used together, uncertainty guidance and our semi-automated editing tools decrease the time required for
segmentation correction by more than a factor of three.

1. Introduction

Deep convolutional neural networks (CNNs) have greatly increased
the accuracy of fully automated image segmentation [GLGL18].
Despite this, there are still important reasons to design effective
methods for editing the results of automated analysis, especially in
a medical context. First, results are usually still not perfect, in par-
ticular in the presence of additional pathological changes that may
not have been adequately represented in the training data. This im-
plies a continued need for proofreading and correction. It is par-
ticularly important in cases where segmentation results affect di-
agnostic or therapeutic decisions, but it should also be considered
to ensure valid conclusions when deriving image-based biomarkers
for statistical evaluation within clinical and scientific studies.

Second, in order to achieve high accuracy and robustness, CNNs
typically have to be trained on a large number of images for which a
reliable ground truth segmentation exists. Especially when dealing
with three-dimensional inputs, creating this training set completely
manually can be a prohibitive effort. Once the number of annotated
images is large enough to train an initial network, it is highly at-
tractive to try out semi-automated approaches to speed up creation
of a more comprehensive training set, as it is required to further
increase the CNN’s accuracy.

These reasons motivated us to develop a system for editing
CNN-based segmentations. We focus on a specific use case, seg-
mentation of retinal layers from Optical Coherence Tomography

(OCT). OCT is a technique for obtaining three-dimensional images
of the retina. It is commonly used for monitoring age related macu-
lar degeneration (AMD), which is the leading cause for irreversible
vision loss in most of the developed countries [JMM08, AGS10].
The high resolution and volumetric nature of OCT make it difficult
and time consuming to segment and measure AMD biomarkers, es-
pecially in epidemiological studies, which may require analysis of
thousands of eyes.

The retina has a layered structure, and derivation of several AMD
biomarkers involve a segmentation of retinal layers [WSB∗17].
One example are drusen, which appear early on in AMD and whose
size, number, and location contribute to AMD staging and tracking
of disease progression. Drusen evolve as deposits of extracellular
debris under the retinal pigment epithelium (RPE) layer. In a nor-
mal eye, the RPE layer should run parallel to the Bruch’s membrane
(BM). Therefore, being able to segment RPE and BM allows us to
detect drusen as abnormal deviations between the two.

Based on a segmentation from a pretrained CNN, our pro-
posed system introduces the following strategies for efficient semi-
automated segmentation editing: First, we estimate and visualize
segmentation uncertainty, in order to guide the expert towards im-
ages, and specific locations within those images, that are likely to
require his or her attention. Second, we introduce two tools that
allow the user to more quickly edit the CNN-based layer segmen-
tation: The first one exploits intermediate results from the segmen-
tation process to find the most plausible segmentation that contains
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Figure 1: Main view of our retinal layer segmentation editor. The larger subwindow overlays the CNN-based layer segmentation on the
image data and color codes uncertainty both on the segmentation result itself and in a navigation bar below the viewer. Here, each cell
visualizes the aggregated uncertainty of each B-scan. By clicking on a cell, the user can select between uncertainty estimates from entropy
(E) or probability (P), defined in Section 4. In this figure, uncertainty P is selected for the 10th B-scan. Beside basic pen and line tools, the
toolbox subwindow offers our constrained shortest path (CSP) and local smoothing (LS) tools, which are shown to greatly decrease the time
required for editing the segmentation.

specific locations indicated by the user. The second one can be used
to easily smooth noisy segmentations that occur especially in re-
gions of high uncertainty. Figure 1 shows the main view of our
prototype implementation.

Throughout our discussion, we will focus on the two specific lay-
ers that are required for drusen detection, RPE and BM. However,
all methods in this paper easily carry over to other retinal layers,
provided that corresponding training data is available for the CNN.

We position our system with respect to existing work in Sec-
tion 2, and provide a brief overview of the automated segmentation
pipeline underlying our work, as well as the specific modifications
that we had to make to it, in Section 3. In Section 4, we propose
two measures for estimating the uncertainty of segmentation, and
we introduce two special tools for segmentation correction in the

next section. In Section 6, we validate our approach in two steps:
First, we demonstrate a clear correlation between our uncertainty
measures and a manual assessment of the segmentation quality, as
well as with distance to a “ground truth” reference segmentation.
Second, we asked two users to correct retinal layer segmentations
in multiple test cases, and found that our novel tools allow them to
achieve their task in a much shorter time.

2. Related Work

The two main aspects of our work are estimation and visualization
of segmentation uncertainty on one hand, and segmentation editing
on the other hand. In our discussion, we will distinguish between
segmentation errors, which can be quantified by comparing a given
segmentation to a reference (“ground truth”), and segmentation un-
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certainty, which has to be inferred without such a reference. For
example, it could be estimated from internal states of the segmen-
tation method, or from properties of the given image data.

Visualization of segmentation errors has recently been addressed
by several authors: Cárdenes et al. [CdLGC09] visualize segmenta-
tion quality based on newly derived similarity measures. Von Lan-
desberger et al. visualize convergence of statistical shape model
based segmentations to an expert segmentation [vLAA∗13] and
present a system for comparative evaluation across larger datasets
[vLBB16]. Geurts et al. [GSK∗15] visually compare segmentation
quality to identify the most suitable automated algorithms. Raidou
et al. [RMB∗16] developed a system for visually exploring seg-
mentation errors both in individuals and in whole cohorts.

All of the above-mentioned approaches follow a different goal
than our own, which is intended for cases in which no ground truth
is available, but where we would still like to guide the user to-
wards images where corrections are most likely to be required. A
previous work that follows a similar goal is the uncertainty-aware
guided volume segmentation framework of Praßni et al. [PRH10].
However, it is tied to a specific algorithm, random walker segmen-
tation, while the segmentations we would like to correct are gener-
ated via Convolutional Neural Networks and shortest path finding.
Similarly, recent work by Summa et al. [STP17] on quantifying un-
certainty in 2D image segmentations does not directly apply to our
case, since it is specific to min-cut algorithms. Saad et al. [SHM10]
take a different approach to guiding the user towards potentially
erroneous segmentations, based on learning shape and appearance
priors from expert segmentations. This idea does not easily carry
over to our specific task of segmenting retinal layers in the pres-
ence of pathological anomalies. Yao et al. [YGLG12] propose an
interactive system which we found inspiring with respect to its user
guidance, but which addresses object detection rather than segmen-
tation, and is not based on CNNs either.

Since we build on a CNN-based segmentation, we note that
numerous recent works have used visualization to support better
understanding of neural network architectures [TM05, EBCV09,
ZF14, MV15, YCN∗15, RFFT17, WSW∗18, KAKC18, SGPR18],
to monitor their training process [LSC∗18], and to facilitate tun-
ing of hyperparameters such as the number of neurons and lay-
ers [LSL∗17, PHG∗18, RG17]. However, none of them are con-
cerned with using intermediate results to support correcting indi-
vidual outcomes, which is our main focus.

We will use entropy as a building block for one of our uncertainty
measures. We consider this to be a natural choice, and note that it
was used previously for visualizing segmentation uncertainty by
Potter et al. [PGA13]. A closely related measure was also used by
Al-Taie et al. [AHL14]. We will adapt this measure to our needs,
combine it with a second uncertainty measure, and validate it in the
context of our application.

The need for interactive intervention in medical image segmen-
tation has long been recognized [OS01], and methods for more
efficient segmentation correction have remained an active topic
[HKR∗14, VFI∗16]. In their overview of segmentation editing,
Heckel et al. [HMTH13] distinguish between three basic types of
approaches: Systems that allow for convenient parameter tuning,
refinement approaches that integrate additional information about

Figure 2: In this overview of the original segmentation pipeline,
the parts that had to be modified for our guided semi-automated
editing framework are highlighted with dashed blue boxes.

the desired result into an automated segmentation, and ones in
which the correction is done manually, independently from the al-
gorithm that generated the original segmentation. We provide edit-
ing tools from the second and third of these categories: Our con-
strained shortest path tool (Section 5.2) allows the user to specify
points that should lie on the final layer segmentation. This is a clas-
sic and widely used type of interaction [NL98] which we imple-
ment for the first time in the context of our specific segmentation
method. Our local smoothing tool (Section 5.3) allows the user to
regularize selected parts of the given segmentation, and works in-
dependently from the underlying image and segmentation method.

Most existing software for visualizing and analyzing data from
Optical Coherence Tomography is only commercially available.
For instance, Stratus OCT (Carl Zeiss Meditec, Inc. Dublin,
CA) can be used for measuring retinal nerve fiber layer thick-
ness [CCAG∗05]. Other existing software includes Spectralis
HRA+OCT (Heidelberg Engineering, Inc., Heidelberg, Germany),
Spectral OCT/SLO (Opko/OTI, Inc., Miami, FL), SOCT Coperni-
cus (Reichert/Optopol Technology, Inc., Depew, NY), RTVue-100
(Optovue Corp., Fremont, CA), and Cirrus HD-OCT (Carl Zeiss
Meditec, Inc.). They can all be used for macular thickness mea-
suring and are compared with each other in [WSCB∗09]. To the
best of our knowledge, they currently do not offer CNN-based seg-
mentations or any specific tools for guiding the user’s attention to
potential segmentation errors.

3. Background on Retinal Layer Segmentation

Our uncertainty estimation and one of our segmentation editing
tools rely on details of the underlying method for segmenting reti-
nal layers. To make our paper more self-contained, this section pro-
vides a brief summary of that algorithm. Its overall computational
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pipeline is illustrated, and the parts that had to be modified for our
editing tool are highlighted with dashed blue boxes, in Figure 2.

Retinal layer segmentation is an important and widely studied
problem in medical image analysis, with a large body of litera-
ture [WSB∗17]. Recently, various groups have started to lever-
age the power of convolutional neural networks for this appli-
cation [GZWW∗17, AZC∗17, FCW∗17, HACR∗18]. We selected
one of these modern approaches [GZWW∗17], which has been
shown to be more accurate than a traditional state-of-the-art method
[CLZ∗13], as the basis of our system.

Optical Coherence Tomography acquires three-dimensional im-
ages of the retina as a sequence of two-dimensional slice images,
which are called B-scans. The part of the pipeline that is relevant to
our system acts on these. The first step is to convert the images to a
set of maps that indicate the probability of a given pixel to be part
of a particular retinal layer, or to show some other structure (“back-
ground”). This is achieved with a suitably trained U-Net [RFB15],
a type of convolutional neural network that is specialized for se-
mantic image segmentation. Our editing tool uses the probability
maps as the basis for uncertainty estimation.

For each layer, a cost function is used to convert its probabil-
ity map into a cost map. Compared to [GZWW∗17], implementing
our constrained shortest path tool required a modification of that
function, and updates of the cost map that reflect the user interac-
tions. This modification is discussed in more details in Section 5.2.
Dijkstra’s shortest path algorithm [Ski90] is run on the (modified)
cost map to extract a layer segmentation. In the fully automated ap-
proach, its result is used as is. If needed, our correction software
allows the rater to modify it further using freehand manual editing,
or a smoothing tool.

The rest of the pipeline is used to detect drusen based on the layer
segmentations, and is less relevant to our editing system, which
focuses on improving the layer segmentations.

4. Segmentation Uncertainty

When analyzing the failure cases of the automated pipeline de-
scribed above, we found that they include advanced stages of AMD,
and the presence of additional pathological changes. Our first goal
is to guide the rater towards such problems by estimating and visu-
alizing segmentation uncertainty.

4.1. Uncertainty Estimation

We define two different measures that estimate segmentation uncer-
tainty, ue and up. Both of them are derived from the retinal pigment
epithelium (RPE) and Bruch’s membrane (BM) probability maps
generated by the CNN. The goal of the first measure, ue, is to es-
timate how uncertain the CNN is concerning the exact localization
within a given image column. This amounts to considering whether
layer probabilities within a column are highly concentrated (low
uncertainty) or diffuse, so that they provide some level of support
for layer localization in different places (high uncertainty).

We quantify this by normalizing the probabilities p(l)i j , with l ∈

{RPE, BM} being a retinal layer and (i, j) the pixel position in the
probability maps, so that in each column they sum to one, i.e.,

q(l)i j =
p(l)i j

∑i p(l)i j

, (1)

and then computing the information entropy of the resulting val-
ues. As there is an inverse relation between the concentration of
layer probabilities in a column and the entropy value, we turn en-
tropy into a normalized uncertainty measure u(l, j)e ∈ [0,1] via the
equation

u(l, j)e = 1−Gσ ∗ exp

(
∑

i
q(l)i j lnq(l)i j

)
, (2)

where the superscript (l, j) indicates that we consider the uncer-
tainty in layer l and image column j. A small amount of Gaussian
smoothing Gσ (in all our experiments, σ = 2) across neighboring
columns is used to add robustness, so that isolated columns of high
entropy do not receive an excessive weight. In our experiments
Gaussian window size is set to 17 pixels, and at the boundaries,
the values are reflected.

Regularization via Gσ is particularly important when aggregat-
ing per-layer/per-column uncertainties into a per-B-scan uncer-
tainty ue, which we achieve by taking the maximum over all u(l, j)e ,
since even increased uncertainty in a relatively small area and in
one of the layers will still require the expert’s attention:

ue = max
l, j

(
u(l, j)e

)
(3)

The goal of our second measure, up, is to indicate cases in which
the CNN failed to detect the presence of the respective layer with
reasonable confidence. Its definition is based on probabilities p(l)j =

p(l)i j which are directly taken from the probability map of layer l,
at the row index i where the shortest path traversed column j. If
this probability decreases along the layer, it means that uncertainty
increases:

u(l, j)p = 1−Gσ ∗ p(l)j (4)

Gaussian smoothing is done for the same reason as before, and
per-layer/per-column values of u(l, j)p are again aggregated into a
global up by taking the maximum over l and j.

4.2. Uncertainty Visualization

As it can be seen in the largest subwindow within Figure 1, our user
interface visualizes the per-layer/per-column uncertainties on top of
the segmentations. We use separate color maps for ue (orange/red)
and up (blue) to clarify which measure is currently shown. In both
cases, we use more saturated colors to make regions of higher un-
certainty stand out more from the grayscale background.

Even though we found that ue and up frequently highlight the
same regions as problematic, we decided to include both of them
because of occasional cases in which one was more sensitive to seg-
mentation errors than the other. Examples of this are shown in Fig-
ure 3: On the left, the segmentation failed to follow a large druse,
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Figure 3: Two examples that illustrate the relative strengths of our
uncertainty measures up (top) and ue (bottom): On the left, ue is
elevated below a missed druse that did not affect up. On the right,
up indicates an implausible kink that has no clear effect on ue.

which was equally flagged as problematic by ue and up, but also a
smaller one (marked with a cyan arrow), which is indicated by an
increased ue on the RPE layer, but not reflected in up. On the right,
the cyan arrow marks an implausible kink in the BM, on which up
indicates increased uncertainty, but ue is much less affected.

Below the viewer in Figure 1, there are two color coded tables.
The color of the ith cell in each of them represents the aggregated
uncertainty in the ith B-scan, and clicking on one of the cells shows
the corresponding B-scan in the viewer. We consider these navi-
gation tables to be even more important than the overlays on the
segmentation itself, since they quickly guide the user towards the
B-scans that are most likely to require attention.

5. Tools for Segmentation Editing

5.1. Basic Tools

A prerequisite for detecting and correcting segmentation errors is
to overlay the layers on the original B-scan. However, in ambigu-
ous cases, the fact that the layer segmentation occludes part of the
image can impair the rater’s assessment of the original data. There-
fore, our interface provides a slider to modify the layers’ opacity.

The layer that should be affected by our tools can be selected
with radio buttons. We consider two of our editing tools to be
“basic” and use them as a baseline in our evaluation: The pen al-
lows the user to mark individual pixels as belonging to the selected
layer. To speed up the correction of the segmentation, the previous
layer segmentation in the columns that the pen tool is applied on,
is simultaneously and automatically erased. This is based on the
assumption that the layers run from left to right without looping
back. It agrees with the data format in which ground truth segmen-
tations were given to us (i.e., one coordinate per image column) and
worked well in all our examples.

For parts of the layers that are rather straight, the line marker
offers a more convenient basic tool. It can be used to mark every

Figure 4: Images on the left show cases in which drusen were
missed in the automated RPE segmentation. Corrected results on
the right are obtained with our constrained shortest path tool, by
clicking once (in the top image) or twice (for the pairs of missed
drusen in the other two). Shortest paths are updated to go through
the selected points, while remaining smooth and on pixels that are
likely to belong to the given layer.

pixel along a line segment as belonging to the selected layer. The
same automatic deletion of previous segmentations as in the pen
tool is also included here.

5.2. Constrained Shortest Path Tool

A very common error in CNN-based segmentations of the RPE
concerns cases in which they failed to follow drusen. A few ex-
amples of this can be seen in Figure 4. Since drusen are curved
structures, the line marker is not very suitable for correcting these
errors, and tracing them freehand with the pen tool can be tedious
and time-consuming. Therefore, we were aiming to design a semi-
automated tool that should be able to correct such errors by clicking
on a single point along the desired (corrected) contour.

We found that, in most cases, this effect can be achieved by re-
peating the shortest path extraction from the original segmentation
pipeline after modifying the cost maps based on the user’s input.
In particular, clicking on a pixel should set its cost to zero, and the
cost of every other pixel in the same image column should be set
to a large number. This has the effect of enforcing the new shortest
path to run through the selected point.

In our initial experiments, this constrained shortest path (CSP)
tool sometimes led to implausible spiky results, in which the
layer took a very steep slope to interpolate the selected point.
We found that this was partly caused by the exact cost function
from [GZWW∗17], which involved dividing layer probabilities by
the maximum within the same column. Combined with the con-
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straints, this sometimes made vertical moves within the cost map
much cheaper than horizontal or diagonal ones. This problem was
greatly reduced by replacing the maximum over the column with
the maximum over the full image, i.e., our new cost function is

χ
(l) =− log

 p(l+o)
i j

max p(l+o)
::

 , (5)

where pi j is the probability at position (i, j), χ
(l) is the cost image

for layer l, and max(p(l+o)
:: ) is the maximum, taken over the full

B-scan, of the combined probability of l and a special class o that
is used to encode layer overlaps. Class o is defined separately, since
the two layers might overlap in some pathological cases.

To steer the smoothness of the CSP results, we also provide a
slider that allows the user to modify a scaling factor that determines
the relative cost of horizontal compared to vertical moves.

In order to allow the user to continue working on the segmenta-
tions at a later time, they can be saved (along with the modified cost
maps) and reloaded later on, with all the states unchanged. To make
it easy to remember which layers have already been modified, we
render them in yellow. In addition, as can be seen even more clearly
in Figure 5, the uncertainty values in the navigation table below the
viewer are updated, i.e., are set to absolutely certain, to help the
user keep track of B-scans that were already modified.

5.3. Local Smoothing Tool

Finally, we introduce a local smoothing (LS) tool that can be used
in cases where the automated layer segmentation is in the correct
overall location, but too “wiggly”, which can happen due to noise
in regions of weak contrast. This tool allows the user to select a
layer and a horizontal interval on the image. It replaces the original
layer segmentation in that interval with a smoothed version, which
is obtained by fitting a low-degree polynomial to the pixel positions
of the original segmentation. The user can control the amount of
smoothing by changing the polynomial order. Figure 5 shows two
examples in which Bruch’s membrane was corrected with this tool.

6. Evaluation

We provide a statistical evaluation of our proposed uncertainty
measures by showing that they correlate with manually derived
measures of segmentation quality. We also performed experiments
with test users that quantify how much time is saved by using our
proposed editing tools, and by the uncertainty guidance.

6.1. Statistical Evaluation of Uncertainty Measures

In Section 4, we introduced two uncertainty measures ue and up
with the goal of drawing the rater’s attention to B-scans that are
likely to require corrections. If these measures are suitable for this
purpose, they should correlate with segmentation errors as mea-
sured by more traditional means. To test this, we compared rank-
ings of B-scans according to ue and up to two other rankings: The
first one is based on manually classifying segmentation quality in
six different OCT scans with about 365 B-scans in total, on a scale

Figure 5: Layer correction with our local smoothing tool: In the
examples on the left, a lack of image contrast caused a noisy esti-
mate of Bruch’s membrane. On the right, this has been fixed using
polynomial fitting. In addition, the uncertainty color codes in the
navigation tables are updated.

from 1 to 5, 1 being no further attention by user is required, and 5
indicating a strong need for correction. The ranking is done by a
human rater considering the severity of segmentation failure. The
second one is based on the segmentation error with respect to an
expert-provided ground truth. For this, the column-wise Euclidean
distance between the automated segmentation and the ground truth
was taken. Since many layer segmentation errors only affect rel-
atively small regions in the data, our error measure averages the
largest 10% of per-column distances in each B-scan.

We compare the rankings based on our uncertainty measures to
the manual and segmentation error based ones using Kendall’s tau-
b rank correlation coefficient [Ken45]. It ranges between 1 (identi-
cal rankings) and -1 (inverted rankings), and is applicable to rank-
ings that include ties, as they will occur in our manual ranking due
to the discrete nature of the underlying scale.

From the six different OCT scans, we obtain six different rank
correlation coefficients, which we summarize using boxplots in
Figure 6. As a reference for the magnitude of correlations that
we can reasonably expect, both plots include a direct comparison
between segmentation error based and manual rankings (black).
The remaining comparisons are between our uncertainty measures
and manual rankings (top) or segmentation errors (bottom), respec-
tively. As uncertainty measures, we consider ue, up, and the average
of the two. We aggregate them over the B-scan either using the max
(as suggested in Section 4.1, shown in blue), or by averaging over
all image columns (red).
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Without guidance With guidance Without guidance With guidance
Only basic All All Only basic All All All (repeated)

Time per B-scan (Sec) 22.1 12.8 6.9 17.6 8.5 4.1 5.2
Total time (Sec) 3206 1860 1009 2565 1227 598 760

Total actions (clicks) 576 395 208 660 327 176 196
Pen 46.4% 0.9% 0% 27.6% 6.2% 0% 0%
Line 38.8% 11.2% 10.9% 70.3% 3% 5.4% 0%
CSP - 73% 76.2% - 85.6% 90.5% 96.8%
LS - 11.5% 12.4% - 3.6% 3% 2.1%

Undo/Redo 14.8% 3.4% 0.5% 2.1% 1.6% 1.1% 1.1%
Novice User Experienced User

Table 1: Each of two test users corrected OCT scans with basic and all editing tools, and with and without uncertainty guidance. The first row
shows the corresponding average time needed to correct segmentations in one B-scan. The second row shows the time spent on correcting
one full OCT. The third row shows the number of total actions (clicks) per experiment, and the remaining rows reveal the percentages of using
the different tools in each experiment. To confirm that remembering the required modifications is not the main factor behind the observed
efficiency gain, the experienced user repeated the final part of the experiment after two months.

Figure 6: Comparing our uncertainty measures to a manual rating
of segmentation quality or to segmentation errors with respect to a
ground truth indicates a clear correlation, which shows that they
are suitable for guiding users to problematic cases.

These results confirm our choice of max-aggregation by illustrat-
ing that it leads to slightly stronger overall correlations than simple
averaging. Also, slightly better results were obtained when combin-
ing ue and up than when using them individually, which confirms
their complementary nature as observed qualitatively in Figure 3.

The overall correlation between our uncertainty measures and
manual or error-based rankings was similarly strong as the correla-
tion between our two references. Together with the results from the
following section, this confirms their suitability for user guidance.

6.2. Quantifying the Achieved Efficiency Gain

In order to quantify how much time is saved by the uncertainty
guidance and advanced editing tools, we asked two users to correct
the automated segmentation of an OCT scan consisting of 145 B-
scans, which we had noticed to contain serious errors. One test user
was actively involved in designing the system, and will be denoted
as “experienced”. The other test user (“novice”) was previously un-
familiar with our system. She was given about 10 minutes of train-
ing on how to use our tools, and was then given about an hour to
become more familiar with them on data that also contained seg-
mentation errors, but was not included in the experiment itself.

In order to distinguish the roles of the improved editing tools and
the uncertainty guidance, each user was asked to perform the seg-
mentation correction three times. In the first round, users were only
allowed to use the basic tools (pen and line marker), and were not
shown any uncertainty information. In the second round, all edit-
ing tools were provided (including CSP and LS), but still without
indicating uncertainty. In the final round, users could additionally
navigate through the data based on the per-B-scan uncertainty es-
timates, and local uncertainties were color coded on the layers, as
discussed in Section 4.2.

In all cases, our software counted how frequently each of the
editing tools and the undo/redo functionality was used, and we
measured the time it took the users to reach a predefined level of
accuracy, which was computed with respect to a ground truth ref-
erence that had been created previously by an independent expert,
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using the OCT manufacturer’s software. In particular, experiments
were terminated when the average segmentation error fell below 5
pixels for the whole OCT scan, and there was no B-scan left that
included any segmentation errors greater than 10 pixels. We used
such a termination criterion to ensure that users achieve the same
accuracy in each round, and do not stop prematurely. The specific
tolerances were determined in a pilot experiment in which we tested
how close we could reasonably expect our users to get to the ground
truth without revealing it to them.

Table 1 summarizes the results of these experiments. Even
though the novice user required roughly 70% more time than the
experienced user, and made much more use of undo/redo, both
users clearly benefitted from our novel editing tools, which reduced
the time required for the corrections approximately by a factor of
two. This went along with a clear reduction in the number of ac-
tions (clicks). Usage statistics suggest that this speedup was mostly
enabled by the constrained shortest path tool. However, the rela-
tively low numbers for the local smoothing tool should be seen in
the light of the fact that a single application is usually enough to
correct the whole BM layer. Guidance from the uncertainty visu-
alization led to an additional reduction of the required time, by an
overall factor of more than three.

To ensure that no differences in difficulty confound our findings,
all three rounds of the experiments were done on the same dataset.
However, this means that part of the speedup might be explained
by users remembering some of the required changes. In order to
account for this, we asked the experienced user to repeat the cor-
rection just once, with all advanced tools and uncertainty guidance,
after two months of not viewing the data. The results of this re-
peated experiment are also reported in Table 1, and indeed suggest
a small effect from familiarity with the data. However, the main
improvement can still be attributed to the use of our framework.

We note that part of the benefit from the uncertainty visualiza-
tion that was observed in our experiment could be due to the fact
that our termination mechanism might have ended the experiment
even before the user viewed all B-scans. When the goal is to en-
sure the best possible accuracy within an arbitrary amount of time,
this might be considered to be unacceptable. On the other hand, if
the goal is to improve the quality of a given large-scale training
set (e.g., [GZWW∗17] used 52377 B-scans) as much as possible
within a limited time budget, we expect uncertainty guidance to
improve efficiency considerably.

7. Conclusion

Even though CNNs are now widely used for image segmentation,
there is still little work on efficiently editing their results. For the
specific use case of retinal layer segmentation in OCT, we intro-
duced a set of tools that make it easier for human raters to find
images in which the automated segmentation may have failed, and
faster to correct segmentation errors. We developed our prototype
implementation using Python and Qt. We deployed it in the depart-
ment of ophthalmology that our clinical co-author is affiliated with,
and it is available at https://github.com/MedVisBonn/
OCT-Annotation-Tool. We evaluated our system by correlat-
ing our uncertainty measures with segmentation quality and mea-
suring the time saved by using our framework.

We expect that tools like ours will make it more efficient to gen-
erate large high-quality training sets as they are required to achieve
optimum results with CNNs. In our future work, we plan to add
functionality for specific AMD biomarkers including drusen, geo-
graphic atrophy, and hyperreflective foci.
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