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Abstract

Multi-compartmental models are popular to resolve intra-voxel fiber heterogeneity. One such model is the mixture of central
Wishart distributions. In this paper, we use our recently proposed model to estimate the orientations of crossing fibers within a
voxel based on mixture of non-central Wishart distributions. We present a thorough comparison of the results from other fiber
reconstruction methods with this model. The comparative study includes experiments on a range of separation angles between
crossing fibers, with different noise levels, and on real human brain diffusion MRI data. Furthermore, we present multi-fiber
visualization results using tractography. Results on synthetic and real data as well as tractography visualization highlight the
superior performance of the model specifically for small and middle ranges of separation angles among crossing fibers.

1. Introduction

Multi-compartmental models solve the multi-fiber heterogeneity
where MR signal can be represented as the weighted sum of sig-
nals from multiple compartments within a voxel. Bi-exponential
diffusion MRI was first proposed by Inglis et al. [IBB*01] and
Tuch et al. [TRW*02] employed it to resolve multiple fiber popula-
tions. The mixture of central Wishart distributions (MoCW) and the
mixture of Hyper-spherical von Mises-Fisher Distributions models
were proposed by Jian et al. [JVO*07] and Kumar et al. [KVW*09]
respectively. In our previous work [SGB*17], we proposed a mix-
ture of non-central Wishart distributions (MoNCW) model and pre-
sented comparative results with other multi-compartmental mod-
els based on the mixture of probability distributions. MoNCW is
theoretically similar to Jian et al.’s MoCW model and adds a non-
centrality parameter to the Wishart distribution.

In this work, we extend our prior work [SGB*17] by presenting
detailed experiments on comparing the MoNCW model with
state-of-the-art algorithms [DCRD*14] in Section 3. The MoNCW
model exhibits improved performance over other algorithms for
small and middle ranges of separation angles between crossing
fibers. Furthermore, we present the results of tractography using
MoNCW model in section 3.3. Section 3.4 includes results
with real data where tractography results are compared with the
multi-tensor model. The MoNCW model shows visually promising
results for crossing fiber regions as compared with other methods.
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2. Theory

In this section, we present a brief theoretical background of the
MoNCW model. The interested reader is referred to [SGB*17] for
theoretical details of different multi-compartment models and the
parameter estimation of the model.

In probabilistic framework, MRI signal decay can be given as:

S =S /P f(D)exp(—bg' Dg)dD, (1)

So /P (D) exp(—trace(BD))dD = SoL/(B),  (2)

where Py, is the manifold of n X n symmetric positive-definite ma-
trices, Sq is the signal in the absence of any diffusion weighting
gradient, D is the apparent diffusion tensor and {B = bggT;B eP,}
with b = (y8G )%t is the ‘b-value’, y is the gyromagnetic ratio, & is
the diffusion gradient duration and ¢ is the effective diffusion time.
G and g are the magnitude and direction of the diffusion sensitizing
gradient G and f(D) is a density function on the space of P, with
respect to some measure dD. L is the standard Laplace transform
of a function f.

The Laplace transform of non-central Wishart distribution,
Wi(p,X,Q), is given as follows [May13] (Here, we omit the defi-
nition of Wy, for brevity):

/exp (—trace(@u))Wn(p,Z,Q)du = [I, + O] " x
3)
exp [ftrace(®(ln + @Z)flﬂ)} ,
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where (® +X7!) € P,. The expected value of the non-central
Wishart distribution is given as pX + Q [dW72]. To resolve
intra-voxel multi-fiber heterogeneity, we propose a (weighted)
MoNCW model as a probabilistic multi-compartmental model for
D [SGB*17] and Eqn. 3 becomes:

Sa) _y Bx;) P B(I, +Bx) !0
S0 ; wi(1 4 trace(BY;)) "exp [—trace( (In +BYy) i)},
C))

where w; are the mixture weights. If p;’s, X;’s and Q;’s are fixed,
the above system of linear equations can be solved to determine w;.

We fix the value of p = 2 and the eigenvalues of D; = p%; + Q; to
(A1,A2,A3) = (1.5,0.4,0.4) ,umz/ms for each i, as assumed by Jian
etal. [JVO*07]. We choose the non-centrality parameter, Q; = oD;
with o0 = 0.99 [SGB*17]. Finally, Eqn. 4 leads to a linear system
of equations, Aw = s, where s = S(q) /Sy is the normalized signal
vector, w is the vector of unknown weights and A is the matrix with
elements {Aji;j = 1,2,...,K,i=1,2,...,N} given as,

Aji = [1 +trace(B;Z;)] Pexp [ftrace {Bj (In +BjEi)7IQiH .
(5)

The matrix A needs to be calculated once. The total number of dif-
fusion weighted measurements is denoted by K. To avoid an under-
determined system, the condition N > K has to be met. We em-
ployed the non-negative least square (NNLS, L-2 norm) to estimate
w. Results were compared in terms of ‘angular accuracy’ 0 defined
as follows [DCRD*14]:

~ 180
0= o arccos(|dsrue - degtimatedl)

where the vectors dyrue and d g imareq are true and estimated fiber
orientations, respectively, and (-) represents the dot product.

3. Results and Discussion

In this section we present a comparative study with other recently
reported reconstruction methods. For all simulation cases, the b-
value was chosen as 1500 s/mmz. The values of N and K were
chosen as 321 and 81 to generate synthetic data. These values were
chosen to make a fair comparison with the MoCW model.

3.1. Experiments with changing noise levels

We used the adaptive kernel [BJV09] and the mixture of Gaussian
model (MoG) [DCRD™14] to generate synthetic data. We then re-
constructed fiber orientations with the MoCW and MoNCW mod-
els. We performed simulations for two-fiber case with the angle
of separation increasing from 0° to 90° with the increment of 1°.
The weights for these fibers were kept equal to 0.5. Two different
levels of Rician noise were added to the data. Experiments were
repeated 10 times for each angular configuration. Figure 1 shows
angular accuracy when SNR was 30. The plot on top includes the
comparison of 20 reconstruction algorithms as reported by Daducci
et al. [DCRD* 14]. The bottom plot shows results with the MoCW
and MoNCW models on synthetic data generated using both the
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Figure 1: Angular accuracy (in degrees) with increasing separa-
tion angles between two crossing fibers. Top: comparison of 20
reconstruction algorithms, reproduced from [DCRD* 14]. Bottom:
plots obtained from the MoCW and MoNCW models, SNR=30.

MoG and adaptive kernel methods. The angular error is low for
the MoNCW model for both datasets. However, we focused on
the MoG model for the comparison as Daducci et al. [DCRD* 14]
used the same model to generate their data. The performance of the
MoNCW model is better than many of the 20 other algorithms and
is comparable to the diffusion spectrum imaging based on Lucy-
Richardson deconvolution (DSI;z) which was shown to be the best
in terms of angular accuracy. For example, the average angular ac-
curacy values for the MoNCW model (vs. DSI g model) were ob-
served to be 5° (vs. 6° ), 7° (vs. 5°) and 3° (vs. 3 —4°) for separa-
tion angle ranges of 0° —30°, 31° —60° and 61 — 90° respectively.

Next we increased the noise level in the data to assess the sta-
bility of the MoNCW model. The plots for angular accuracy with
a noise level of SNR=10 are shown in Fig. 2. Most of the recon-
struction algorithms become unstable in the presence of high noise
except the DSI; g model. The MoNCW model also exhibits small
fluctuations in the angular accuracy curve. However, it performs
better than most of the other 19 reconstruction algorithms. In this
case the average angular accuracy values for the MoNCW model
(vs. DSI; g model) were observed to be 6.8° (vs. 6 —7°), 11.2°
(vs. 8—9°) and 7.6° (vs. 6 — 7°) for the separation angle ranges of
0° —30°,31° —60° and 61 — 90° respectively. The next best per-
forming model was based on diffusion spectrum imaging, namely
3D Stationary Wavelet Transform (DSIgy ), where the average an-
gular accuracy for the three separation angle ranges were 6 — 7°,
13 —14° and 8°. Hence, the MoNCW model performed better than
the second best DSIsyr model in the presence of high levels of
noise. One noticeable point is that DSI based models are developed
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Figure 2: Angular accuracy (in degrees) with increasing separa-
tion angle between two crossing fibers. Top image, which features
the same coloring scheme as in Fig. 1, is comparison of 20 recon-
struction algorithms [DCRD™ 14] and bottom image shows plots
obtained from MoCW and MoNCW models, SNR=10.

for multi-shell data and our simulations are based on single shell
data. Therefore, DSI based models are expected to perform better.

3.2. Experiments with changing weights of fibers

Next, we performed simulations by changing the weights of two
crossing fibers in the test data generation. The crossing angle be-
tween two fibers was kept fixed at 60° arbitrarily while the fiber
weights were changed from 0.2 to 0.5 with an increment of 0.01.
Angular accuracy plots for this experiment are shown in Fig. 3. In
this case, we compared results with the MoCW model only as there
was no similar study available to compare results with the afore-
mentioned other 20 algorithms. The left plot shows outcomes from
the MoCW and MoNCW models in the absence of noise, and the
right plot is in the presence of noise of SNR=30. The error with the
MoCW model is significantly higher when the fiber weight is less
than 0.3 as the model fails to reconstruct fibers with less weight. It
is nearly 4° when the fibers share equal weights while it fluctuates
between 2° an 8° for other weights in the MoNCW model. This
error, however, ranges from 6° to 30° with the MoCW model.

3.3. Experiments on crossing tensor field

In this section, we present the simulation of crossing fiber field
with known fiber orientations. For visualization of fibers, stream-
line tracing is the most commonly used technique which is also
known as fiber tracking [MvZ02] or tractography [BPP*00]. This
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Figure 3: Angular accuracy (in degrees) with changing weights.
Left: no noise, Right: SNR=30. MoCW and MoNCW models are
compared using synthetic data generated from the MoG model.

technique uses diffusion tensors of each voxel to follow the ax-
onal tracts in 3D from voxel to voxel. We used open-source soft-
ware toolkit Camino [CBNG*06] to perform tractography. This
tool uses compartmental models, multi-fiber and HARDI recon-
struction techniques to find major fiber orientations within a voxel.
We performed tractography utilizing fiber orientations obtained
from the MoNCW model. The seed points to initiate the stream-
lines were defined from the fractional anisotropy (FA) map and the
ITK snap [YPH*06] imaging tool was used to define a region of
interest (ROI). Fractional anisotropy threshold also needs to be de-
fined to terminate fibers that enter a voxel with anisotropy lower
than the specified threshold.

Fig. 4 presents the original crossing fiber field. The left image
shows the discrete representation of fibers using spherical harmon-
ics of order 8 while the right image shows the continuous represen-
tation of fibers through tractography. The separation angle between
two fibers in crossing region is 45°. For our simulation, we chose
seed points to be parallel to the fibers running from left to right
and saved this region of interest in NIfTI (.nii) format. Next, the
selected region and the outcomes from the MoCW and MoNCW
models were used to perform tractography and the streamlines were
visualized in a tool called Paraview [AGLOS5]. The results are dis-
played in Fig. 5. The middle left image is reconstructed with the
MoCW model where, in the crossing region (bottom left of the im-
age), the recovered single fiber can be observed to be an approxi-
mate average of the two fiber orientations. Whereas in the middle
right image (reconstructed with the MoNCW model), in the cross-
ing region (bottom right of the image) the presence of two distinct
fibers can be observed. Although the MoNCW model was able to
capture the presence of two crossing fibers, the error in both fiber
orientations appeared to be high. It could be due to the interpola-
tion of fiber orientations while computing streamlines. Therefore,
we also present fiber orientations using spherical harmonics. The
top left image is the reconstruction with the MoCW model and the
top right image is with the MoNCW model which clearly shows
that the latter exhibits less error.

3.4. Experiments on real data

Finally, we applied the MoNCW model on real human brain data.
We used a two-shell healthy DWI-MRI dataset from MyConnec-
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Figure 4: Visualization of true fiber orientations of a crossing field
Left: spherical harmonics, Right: tractography.
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Figure 5: Top left and right images are reconstructions with the
MoCW and MoNCW models respectively (display with spherical
harmonics); Bottom left and right images are displayed with trac-
tography.

tome project [LGA™15] (myconnectome.org). The dataset was col-
lected for multiband EPI sequence for two b-values of 1000 and
2000 s/ mm?. More detailed information about the experiment can
be found in [SGB*17]. Here, we present the 42" glice, where
spherical harmonics are used to visualize fiber orientations. This
result is shown in Fig. 6 and also reported earlier [SGB™* 17]. Frac-
tional anisotropy (FA) is calculated using FSL software [JBB*12]
and computed displacement probability maps are superimposed on
this FA map. These images show that the MoNCW model is able to
extract the orientations of anisotropic fibers in the regions of corpus
callosum splenium (left) and of corpus callosum genu (right) of the
human brain.

Next, we conducted tractography for the same data from the My-
Connectome project [LGA*15]. The ROI of the seed points lies in
the middle of the corpus callosum and is shown in the top image
of Fig. 7. The bottom image is the outcome of tractography with
input from the MoNCW model. The anisotropy threshold was set
to 0.2 for this case. As the ROI is large, the number of stream-
lines is very large and hence it is difficult to make any observation.
Therefore, we experimented further with a smaller ROI and larger
threshold value. Fig. 8A shows the sagittal plane of the anisotropy

Figure 6: Probability maps for corpus callosum splenium (lower
left) and genu (lower right) of healthy human brain overlaid on FA
maps. Images on top, (a) and (c) are the FA maps of whole brain
slice with selected regions displayed in (b) and (d).

map with selected ROI and Fig. 8B shows the coronal plane with
the same ROI as in image A. Tractography is performed with this
ROI and an anisotropy threshold value of 0.68. Fig. 8C shows the
result with the MoNCW model and Fig. 8D shows the outcome by
using Camino’s built-in two tensor (positive definite) model [SA14]
and [ALEOS]. We highlight a region in the pink circle in image B
and compare images in panels C and D. It can be observed that the
region of fiber bifurcation is visible with the MoNCW model but is
invisible with the two tensor model.

4. Conclusions

In this paper, we presented detailed experiments on mixture of non-
central Wishart distributions. Our experiments demonstrate that the
model’s performance is comparable and, in some cases, better than
the state-of-the-art algorithms specially when the separation angle
between two fibers is in the middle range(25° — 65°). We per-
formed some simulations and tested our method for real human
brain data. We compared tractography results with multi-tensor
model utilizing Camino software and showed that the MoNCW
model performs better for the crossing regions.
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