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Abstract
The characterization of cytoplasmic protein aggregates based on time-lapse fluorescence microscopy imaging data is important
for research in neuro-degenerative diseases such as Parkinson. As the manual assessment is time-consuming and subject to
significant variability, incentive for the development of an objective automated system is provided. We propose and evaluate a
pipeline consisting of cell-segmentation, tracking and classification of neurological cells. Focus is specifically on the novel and
challenging classification task which is covered by relying on feature extraction followed by a hybrid classification approach
incorporating a support vector machine focusing on mainly stationary information and a hidden Markov model to incorporate
temporal context. Several image representations are experimentally evaluated to identify cell properties that are important for
discrimination. Relying on the proposed approach, classification accuracies up to 80 % are reached. By extensively analyzing
the outcomes, we discuss about strengths and weaknesses of our method as a quantitative assessment tool.

1. Motivation

Parkinson’s disease (PD) is characterized by cytoplasmic aggre-
gates of misfolded alpha-synuclein protein. For this reason, elu-
cidating the formation and clearance of alpha-synuclein aggregates
is a central effort to develop neuroprotective strategies for treat-
ment of PD and potentially also for other neurogenerative dis-
eases (e.g. Alzheimer’s disease, amyotrophic lateral sclerosis). Re-
search to develop novel therapies often starts at the cellular level.
In cellular models, clearance of alpha-synuclein protein can be
measured by different techniques, including immunoblots and mi-
croscopy [FSD16]. Aggregates are degraded by autophagy [DS16],
in which parts of the cytosol are engulfed by a membrane, form-
ing autophagosomes, which fuse with lysosomes for degradation.
In this study, focus is on a frame-wise and cell-wise distinction be-
tween three cell-stages, namely normal, aggregate and dead. Visual
characterization by medical experts so far relies on features such
as fluorescence intensity distribution, geometrical appearance and
movement characteristics. In order to study autophagic clearance of
protein aggregates objectively, automated measurement tools that
report protein aggregates are required.

1.1. Recent Work

Recently, significant research has been generally directed towards
quantitative evaluation of microscopic imaging data [NHL∗06,
EBC∗09, CZW06, VND∗09, ZLYW09, CMT∗16, SDFMM15].

Several application scenarios consist of cell phase identifica-
tion [NHL∗06, CZW06, ZLYW09, EBC∗09, SDFMM15], DNA
damage-repair pattern characterization [VND∗09] and cancerous
cell detection [CMT∗16]. The analysis of protein aggregates, as
considered in this work, is so far commonly performed biochem-
ically or by means of flow cytometry [RPC∗12, BOL∗07]. Al-
though imaging theoretically exhibits superior information content,
automated assessment based on image analysis in this field, has
not been investigated so far. As the output of microscopic imag-
ing devices cannot be directly analyzed without further process-
ing, image analysis methods are generally utilized for segment-
ing, tracking and finally classifying cells. For segmentation, vari-
ous established image processing methods were deployed, includ-
ing thresholding, morphological operations, region accumulation
and deformable model fitting [Mei12]. Depending on the image
data, tracking was performed relying on active-contours [PRTR09],
methods relying on a frame-wise segmentation followed by graph
matching [LZMW10] and probabilistic techniques [KFRJ06]. For
cell classification, divergent approaches were recently proposed.
In [EBC∗09], an image representation consisting of an intensity
histogram combined with a curvature histogram was introduced.
Another approach aimed at a discrimination of several cell-stages
based on a set of 23 statistical features (such as area, circular-
ity) capturing both, shape and intensity information [VND∗09].
Whereas these two approaches only incorporate spatial informa-
tion, others also additionally exploit the temporal domain relying
on heuristics concerning the sequence of states [CZW06] or on the
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Markov model [ZLYW09]. Finally, deep learning was recently ap-
plied to the task of cell classification [CMT∗16]. Furthermore, for
feature classification, established machine learning methods such
as support vector machines (SVM), k-nearest neighbor classifiers
and neural networks were utilized.

1.2. Contribution

We propose a pipeline for segmentation, tracking and classification
of neurological cells in fluorescence image data. Whereas for seg-
mentation and tracking established procedures from literature are
utilized, focus is on the novel and challenging classification task.
Specifically we discriminate for each cell and frame between three
classes of fluorescence distribution: homogeneous (C1), aggregate
(C2) and dead (C3) (Fig. 1). As this specific classification task has
not been investigated so far, we analyze several different image rep-
resentations to identify properties that are important for an effective
discrimination. For feature classification, we deploy a hybrid model
relying on a support vector machine (SVM) combined with a hid-
den Markov model (HMM). The SVM stage, which could be inter-
preted as dimensionality reduction, is inserted in order to improve
robustness in combination with a relatively small set of training
data. The HMM model is subsequently applied in order to addition-
ally make use of the temporal context. By comparing the results of
the SVM output with the outcomes of the hybrid SVM-HMM ap-
proach, a statement on the relevance of temporal context can be
made.

2. Methods

The three stages of the proposed processing pipeline consisting of
segmentation & tracking, feature extraction and classification, are
described in detail in the following subsections.

2.1. Segmentation & Tracking

During image acquisition, five z-slices are captured with varying
focus settings. Since cells are focused in different layers, first a
maximum intensity projection is applied, providing the basis for
the segmentation and tracking task. Segmentation is performed by
thresholding each image slice by a predefined, fixed intensity value,
which is based on the fact that images exhibit a homogeneous back-
ground [Mei12]. This leaves segmented objects including only cel-
lular regions. Due to the low movement speed of cells, tracking
is performed by registering centroids of segmented objects to the
closest centroids in the subsequent frame. To increase robustness,
a further constraint is introduced that cells in consecutive frames
must overlap. If there is no overlap between cells, the objects are
tagged as two individual cells. If two objects merge, the new object
is tagged as consisting of multiple cells and is excluded from the
evaluation stage to avoid any bias. Also, objects touching the image
borders or being visible in less than 80 % of the sequence are la-
beled as unsuitable. This problem specific strategy was developed
in cooperation and consensus with medical experts.

2.2. Feature Extraction

In order to extract most discriminative image representation, the
feature extraction is limited to the cell’s focus layer. The fo-

cus layers of individual cells are identified by determining the
planes with the highest intensity value within the segmentation.
Visual expert-based classification relies on several features, such
as fluorescence intensity distribution, geometrical appearance and
movement characteristics. Inspired by this policy and previous
work [VND∗09, NZ08], we identify five promising image repre-
sentations, which are further analyzed and compared. The focus is
specifically on examining conceptually different representations to
obtain best possible insight about the features’ performance.

1. Statistical static features:
Strongly inspired by expert’s classification as well as previous
work [VND∗09] in the field of cell classification, we identified
a set of single (one dimensional) features extracting cell inten-
sity, shape and texture properties. The image representation is
formed by concatenating the following features:

• Maximum intensity
• Mean intensity
• Entropy of intensity values
• Standard deviation of intensity values
• Pixel area of segmented object
• Circularity calculated as quotient of minor axis length and

major axis length cob ject =
lminor
lma jor

.
• Ratio of pixels with intensity equal to the local maximum in-

tensity in the segmented object and the area of the segmented
object rmax,ob ject =

imax,ob ject
aob ject

• Ratio of pixels with intensity values greater or equal to the
global maximum intensity and the area of the segmented ob-
ject rmax,global =

imax,global
aob ject

Figure 1: Appearance of the three considered cell states (homoge-
neous (top row), aggregate (middle row), dead (bottom row)).
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The global maximum intensity imax,global referes to 95 % of
the maximum intensity in the whole image sequence.

• Maximum aggregate correlation coefficient:
Since the visual appearance of fluorescent proteins is char-
acterized by their point-spread function, which can be ade-
quately modeled by a 2D Gaussian [ZZOM07] and aggre-
gates frequently appear as small bright globes, Gaussian dis-
tributions are used to locate aggregates within the segmented
cells. The distributions comprise a mean value 0, standard
deviation 1 and a radius varying from 1 to 5 pixels. For lo-
calization aggregate templates are created and the normal-
ized correlation coefficient is used.

2. Statistical static & temporal features:
To additionally incorporate temporal information (e.g. cell
movement), this image representation contains all statistical
static features (1.) as well as the following temporal ones:

• Euclidean distance between centroids in two consecutive
frames

• Area change in two subsequent frames
achange,local = aob ject,t −aob ject,t−1

• Area change referred to the mean value of all area changes
within the image sequence
achange,global = aob ject,t −amean

• Circularity change in two subsequent frames
cchange,local = cob ject,t − cob ject,t−1

• Circularity change referred to the mean value of all ovality
changes within the image sequence
cchange,global = cob ject,t − cmean

3. Intensity histogram:
The intensity histogram is computed based on a linear space and
16 bins. This method was already applied in previous work on
cell classification [NZ08].

4. Local Binary Patterns [OPH94]:
The well known and widely used Local Binary Patterns ap-
proach is deployed based on the standard eight pixel neighbor-
hood in a circularly aligned pattern, resulting in a histogram
consisting of 256 bins.

5. Feature fusion:
Finally, all image representations (1. - 4.) are merged aiming at
thereby increasing the discriminative power.

For classifier training, each single feature is normalized (zero mean
and one standard deviation).

2.3. Classification

SVMs represent effective established classification models
and were successfully applied in cell classification scenar-
ios [NHL∗06]. However, they are not capable of exploiting tempo-
ral context informations, which potentially leads to unsteady clas-
sification sequences in the investigated scenario. To overcome this
problem, a hybrid SVM-HMM model as presented in [VP07] is uti-
lized, which requires to further process the output obtained by the
SVM. For the SVM stage, a one-vs-one classification procedure is
preferred over a one-vs-all method, since it leads to more accurate
predictions [VJIJ11]. The SVM raw-output provides distance mea-
sures between the feature points and the separating hyperplanes.

Following Platt’s method [Pla99] these distances are transformed
to pairwise probabilities p(qi| or q j,x) using a sigmoid function.
qi and q j represent two classes of one classpair and x represents
the feature vector. To obtain posterior probabilities p(qi|x) the fol-
lowing function is applied:

p(qi|x) = 1/

[
3

∑
j=1, j 6=i

1
p(qi| or q j,x)

−1

]
(1)

Conditional probabilities p(x|qi) are calculated by converting the
posterior probabilities via Bayes’ theorem,

p(x|qi)∝
p(qi|x)
p(qi)

(2)

where p(qi) are the a-priori probabilities for classes i which are
attained from the training dataset. Due to proportionality, the emis-
sion probabilities have to be further normalized in order to set the
sum over all classes equal to 1.

3

∑
i=1

p(x|qi) = 1 (3)

Based on these extensions, the SVM stage delivers a three dimen-
sional likelihood/probability vector, rather than a fixed label. The
HMM model is then built on these likelihoods. Due to the low di-
mensionality and the ignorance of the distribution of the SVM out-
put, we decided to utilize a discrete HMM model. To obtain discrete
observations, vector quantization is applied. We specifically rely on
k-means clustering, due to its combination of low cost intensity and
effectiveness. To achieve the transition and emission probabilities
for the HMM stage, a maximum likelihood estimation is performed
on the training data set.

3. Experiments

3.1. Setup

For time-lapse microscopy we use an Olympus IX81 epifluores-
cence microscope (Olympus xcellence software, 40x air objective,
NA 0.9) equipped with an incubator (37◦ C, 5 % CO2) and a motor
stage to acquire images at defined positions every 30 minutes over
25 hours (50 frames). At each position, five z-slices are acquired
with a z-distance of 2 µm to accommodate for differences in cov-
erslip thickness. Fluorescence excitation is reduced to 3.95 % of
maximum, exposure is 150 ms. For experimental purposes cells in
90 image sequences have been manually labeled by an expert neu-
rologist, which provides a ground truth with a total of 136 cell se-
quences adding up to 3522 single cell images. To obtain conclusive
and unbiased outcomes, we applied a policy of independently and
repeatedly selecting 80 % of the image data for training, 10 % for
parameter optimization and 10 % for evaluation. To further prevent
bias, the training and the evaluation data is balanced in a way that
the occurrence of all classes within the sets is equalized by means
of random sampling. For the SVM, a linear kernel is used exhibiting
good performance in similar application scenarios. Specifically, all
combinations of the SVM’s c-values (2−1− 210) and the number
of clusters (22−210) are computed and the optimized model is ap-
plied to the evaluation data set. Finally, the mean accuracy as well
as the accuracy distribution of 200 iterations are reported. As the
change between classes does not occur immediately, a classification
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Figure 2: Boxplots of accuracies for all feature compositions. Blue
plots represent the SVM results and red plots represent the results
of the hybrid SVM-HMM model.

of frames near state transitions often cannot be determined reliably
even by manual inspection. To avoid bias due to vague data, analy-
sis ignores windows around the transitions. The impact of variable
window sizes ∆t = [1,15] is furthermore analyzed.

3.2. Results

From manual expert segmentations we observed an ideal threshold
of one-tenth the maximum intensity value (212) to exclude back-
ground and noise successfully. Low background noise prevents er-
roneous segmentations and sparse arrangement of cells allows strict
exclusion of cells either touching each other or the image border
without significantly reducing the data available for evaluation. To
analyze the impact of the appended HMM stage and thereby the in-
troduction of temporal context, we compare the SVM classification
results to the hybrid model’s performance. Results for SVM classi-
fication vary between a mean accuracy of 19.64 % for Histograms
and 64.80 % for statistical static features (Fig. 2, blue plots). Fur-
thermore, the confusion matrix is examined to get an insight of the
classifiers strengths and weaknesses (Table 1). The classes C1 and
C3 are predicted with an accuracy of 84.14 % and 87.06 % respec-
tively, C2 impairs the overall results with an accuracy of 39.52 %.
The hybrid SVM-HMM model is able to improve the mean accu-
racy for all feature compositions, particularly up to 69.48 % for
statistical static features (Fig. 2, red plots). Moreover, the confu-
sion matrix is corrected by balancing erroneous classifications of

Table 1: Confusion matrix of SVM predictions trained by statistical
static features

Groundtruth
Prediction

C1 C2 C3

C1 0.8414 0.0602 0.0984
C2 0.1472 0.3952 0.4576
C3 0.0368 0.0927 0.8706
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Figure 3: Boxplots of prediction accuracies for increasing window
sizes ∆t using a SVM-HMM hybrid model for statistical static fea-
tures

class 2 (Table 2). Hence, utilizing temporal context for classifica-
tion sequences turns out to significantly and consistently improve
the classification. Utilizing additional temporal, texture (Local Bi-
nary Patterns) or histogram features, however, does not further im-
prove the results. Variable window sizes (as motived in Sect. 3.1)
consistently increase the prediction accuracy further up to 80.39 %
for a window size of 15 frames for statistical static features (Fig. 3).
Considering this window size, class accuracies of 92.95 % (C1),
69.71 % (C2) and 82.01 % (C3) are obtained.

3.3. Discussion

Regarding the classification performances with the established
SVM classification model combined with general purpose as well
as domain specific features, the application scenario proved to be
tough. Without considering the temporal context, overall classifica-
tion rates of 64.80 % are obtained. Exploiting temporal context as
well, the proposed hybrid HMM-SVM model improved the accu-
racy to 69.48 %. Obviously, the introduced knowledge on cell-state
transmission can be effectively utilized to increase robustness. Con-
sidering the classification performance of the proposed method, we
notice that the distinction between class C1 and the other classes
can be performed quite precisely (87.64 % of class C1 samples
were correctly classified). Difficulties were detected in case of a
discrimination between class C2 and C3. 30.31 % of class C2 sam-
ples are categorized as class C3 and 24.64 % of class 3 samples are

Table 2: Confusion matrix of SVM-HMM predictions trained by
statistical static features

Groundtruth
Prediction

C1 C2 C3

C1 0.8764 0.0809 0.0427
C2 0.1612 0.5357 0.3031
C3 0.0392 0.2446 0.7162
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wrongly categorized as class C2. This is obviously due to the high
similarity between these two classes combined with a high intra-
class variability (Fig. 1). Although the reported accuracies seem
to be rather low, by increasing the window size, overall classifica-
tion rates raised to 80.39 %. As the manual assessment is subject to
inter-observer variability and state transitions are often vague, these
rates are certainly more informative. To allow for a valid statisti-
cal analysis, especially the distinction between the classes C2 and
C3 yields potential for improvements. The established image repre-
sentation and classification methods investigated in this work show
weaknesses in distinguishing between these two classes exhibiting
a very high similarity. To increase reliability, in future work we will
focus on two strategies: First, the amount of annotated training data
will be increased to specifically obtain higher diversity. Addition-
ally, annotations will be performed by multiple raters, to increase
the ground truth’s validity and to allow investigations of the inter-
observer variability. As a second strategy, further image features
will be developed specifically extracting markers with a high (vi-
sual) distinctiveness between the classes C2 and C3 derived from
expert knowledge. As additional tool to increase the confidence of
experimental outcomes, the certainty of each predicted sequence
can be shown to the user along with the sequence labels. This al-
lows to focus on the x % of most certain predictions and to drop
cells that may have been wrongly classified. However, the inherent
tradeoff between data reduction and precision improvement has to
be considered.

4. Conclusion

In this paper, the aim was to automatically characterize fluorescent
cells. To this end, we compared the SVM classifier with a hybrid
SVM-HMM model. Cells were represented by various features,
whose impact was further analyzed. SVM classification exhibited
unsteady prediction sequences and thus inadequate results, since
especially transitions are crucial. Appending a HMM classification
stage enabled to exploit temporal informations and eliminated un-
steady predictions. This resulted in a consistent improvement of
the accuracy. It was further demonstrated, that the defined static
features led to most accurate results.
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