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Abstract

Multi-modal imaging allows for the integration of complementary information from multiple medical imaging
modalities for an improved analysis. The multiple information channels may lead to a reduction of the uncertainty
in the analysis and decision-making process. Recently, efforts have been made to estimate the uncertainty in uni-
modal image segmentation decisions and visually convey this information to the medical experts that examine the
image segmentation results. We propose an approach to extend uncertainty estimation and visualization methods
to multi-modal image segmentations. We combine probabilistic uni-modal image segmentation results using the
concept of ensemble of classifiers. The uncertainty is computed using a measure that is based on the Kullback-
Leibler divergence. We apply our approach for an improved segmentation of Multiple Sclerosis (MS) lesions from
multiple MR brain imaging modalities. Moreover, we demonstrate how our approach can be used to estimate and
visualize the growth of a brain tumor area for imaging data taken at multiple points in time. Both the MS lesion
and the area of tumor growth are detected as areas of high uncertainty due to different characteristics in different
imaging modalities and changes over time, respectively.

1. Introduction

Different medical imaging techniques are applied in clinical
settings. Each imaging modality has its very own strengths
and weaknesses. Hence, it has become a common procedure
to use multiple imaging modalities. The complimentary in-
formation that is captured by the different modalities allow
for an improved analysis and decision making. A core com-
ponent of the analysis process is image segmentation. Such
algorithms can try to operate directly on the multi-modal im-
ages or they can be applied separately to the individual im-
age modalities followed by a combination of the segmenta-
tion results.

In the context of multi-modal medical image analysis,
the process of medical image fusion where a set of images
from single or multiple imaging modalities are registered
and combined to improve the imaging quality by reducing
imaging errors and artifacts and by merging complemen-
tary information is very common. The main goal of such a
process is to increase the clinical applicability of medical
images for diagnosis and assessment of medical problems.
Throughout this paper, we assume that the different modal-
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ities are registered. Recently, James and Dasarathy [JD14]
in their review of over 300 approaches in this field conclude
that multi-modal medical image fusion algorithms and de-
vices have shown notable achievements in improving clini-
cal accuracy of decisions based on medical images. More-
over, the use of multi-modal image fusion methods offer a
greater diversity of the features used for the medical analy-
sis applications. This diversity often leads to a more robust
information analysis that reveals information that can other-
wise not be observed. The extra information obtained from
the fused images can be used for more precise localization of
abnormalities. The survey also listed a wide range of med-
ical applications that make use of these techniques to sup-
port the medical analysis. There are two possible scenarios
for medical image fusion. In the first scenario, the different
modalities are combined to produce a single image that is
assumed to be better for the analysis than each uni-modal
image. In the second scenario, the different modalities are
segmented before they are combined to produce an aggre-
gated segmentation that is assumed to be better than the uni-
modal image segmentations. Our approach follows the latter
concept, as the individual segmentations add meaningful in-
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formation that could be helpful for improving the accuracy
of the fusion process. Multi-modal medical image segmenta-
tion is considered a subfield of medical image fusion which
is called decisions fusion and can be achieved through an
ensemble of classifiers model.

The concept of combining the results of multiple seg-
mentation or classifiers for more reliable and accurate re-
sults when compared to the results of individual classifiers is
known as committee machine, mixture of experts, or ensem-
ble of classifiers. This concept has been confirmed by several
studies in pattern recognition and machine learning commu-
nity. An important aspect of such an ensemble of classifiers
is the diversity, i.e., that the complementary information of
the individual classifiers can improve the final result when
combining them. Multi-modal medical data represent a good
example of such kind of diversity.

Recently, many approaches have been presented to tackle
uncertainty estimation and visualization including a few
techniques in the context of medical image segmentation,
but they typically address the uncertainty associated with
a single segmentation approach. Only recently, Al-Taie et
al. [ATHL14a] generalize their methods for single segmen-
tation to an ensemble of classifier segmentation using mul-
tiple unsupervised segmentations of the same input image
as individual classifiers. These studies show the importance
of uncertainty-aware medical visualization in supporting the
analysis and decision-making process.

To our knowledge, there exists no method to estimate and
visualize the uncertainty associated with multi-modal image
segmentation fusion, although integrating the complemen-
tary information of multi-modal images may reduce the ag-
gregated uncertainty and, consequently, improve the analy-
sis. In this paper, first we apply a multi-modal ensemble of
classifier segmentation that makes use of the complementary
information captured by the different modalities. Second, we
extend the uncertainty estimation and visualization meth-
ods for uni-modal imaging data proposed in [ATHL14b] to
a multi-modal imaging data. We have developed an inter-
active analysis tool that incorporates uncertainty visualiza-
tion methods. Finally, we combine our methods and apply
them to some case studies. In particular, we show how multi-
modal brain MR image segmentations can be fused to detect
and visualize Multiple Sclerosis (MS) lesions. Due to the
different classifications of the lesion for different imaging
modalities, the lesion shows up as a high-uncertainty region.
Also, we apply our method to the fusion of brain MR im-
ages taken at different points in time. Here, the uncertain
regions deliver the changes over time, i.e., the growth of the
tumor. Hence, we can detect and visualize the areas of tumor
growth.

The main contributions of this paper can be summarized
as: (1) Uncertainty estimation for multi-modal medical im-
age segmentation from ensemble of classifiers with their vi-
sualization. (2) Interactive uncertainty visualization tool for

visual analysis. (3) Application of our approach for an im-
proved segmentation result for multi-modal medical imaging
data.

2. Related Work
2.1. Ensemble of classifiers segmentation

In recent years, combining ensemble of classifiers in order to
improve their performance have witnessed a great attention
by researchers across different fields to solve different clas-
sification problems. Kittler et al. have reviewed the combin-
ing rules and introduced a common theoretical framework
of these rules [KHDMO98]. Dietterich has reviewed the en-
semble methods algorithms and explained from a statistical,
computational, and representational point of views why en-
sembles can often performs better than any individual clas-
sifier [Die00]. Mignotte introduced the probabilistic Rand
index (PRI) as combining strategy in a label field fusion
Bayesian model for image segmentation [Mig10]. Fred et al.
have explored the idea of evidence accumulation for combin-
ing the results of multiple clusterings using different ways of
producing data partitions in order to achieve the diversity for
more improvement [FJO5]. Recently, Paci et al. proposed an
ensemble-based texture classification system [PNS13].

The main motivation behind the ensembles of classi-
fiers concept is the ensemble’s diversity. Diversity can be
achieved in multiple ways: One way is to apply different al-
gorithms or the same algorithm with different settings to the
same image. Another way is to apply the same algorithm to
different representations of the image such as using differ-
ent intensity mappings or color spaces. Multi-modal medical
data belong to the later class of diversity, where we are deal-
ing with different image representations of the same subject.

In the context of combining the members of the ensem-
ble of classifiers, there are several combining rules proposed
in the literature. Examples of these rules are majority vote,
weighted majority vote, or probability rules such as product,
sum, maximum, minimum, median, etc. In general, the con-
cept of ensemble of classifiers was mostly used in machine
learning applications for supervised classification.

As image segmentation plays an essential role in any
medical visualization system, medical image segmentation
is the most addressed problem to be solved using the en-
sembles of classifiers concept in the biomedical field. Sev-
eral researchers exploited the concept of ensemble meth-
ods to tackle the drawbacks of the individual segmentation
approaches or to estimate the accuracy of individual ap-
proaches . Rohlfing et al. proposed a multi-classifier frame-
work for atlas-based image segmentation. Images from sev-
eral subjects have been segmented using multiple individ-
ual atlases, or using one atlas registered with different pa-
rameter settings for different subjects. Then, the combining
rules are used to produce the final segmentation [RMOS].
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Warfield et al. presented the STAPLE algorithm for the val-
idation of image segmentation using a collection of seg-
mentations produced by human raters or by automated seg-
mentation algorithms [WZWO04]. The algorithm uses an
expectation-maximization approach in an iterative way to
estimate a probabilistic ground truth. The estimated ground
truth is then used for performance assessment of an au-
tomated image segmentation algorithm or for performance
comparison of human raters and the automated algorithms.
Langerak et al. have proposed the SIMPLE algorithm as an
improvement to the STAPLE algorithm. Artaechevarria et
al. [AMBdASO09] followed up on the idea by Rohlfing et al.
in combining multi-atlas-based image segmentations. Rohlf-
ing et al. [RMO5] pointed out that producing multiple atlases
(also human-rater segmentations for STAPLE or SIMPLE) is
time-consuming and tedious, such that atlases are, in prac-
tice, not always available. Langerak et al. [LvdHK*10] re-
ferred to the shortcoming of atlas-based segmentation as be-
ing equivalent to the segmentation by human expert. These
drawbacks may lead to the fact that the ensemble methods
using atlas-based segmentations become impractical.

In this paper, we combine the result of several unsu-
pervised classification-based segmentations of the multi-
modal input images using similar or different segmenta-
tion approaches with acceptable accuracies. We achieve the
required diversity and remove the above-mentioned draw-
backs, i.e., the requirement for producing atlas-based or
human-rater segmentations.

2.2. Uncertainty estimation and visualization in
segmentation results

Recently, several approaches presented robust methods to
estimate and visualize the uncertainties associated with
probabilistic segmentations. These studies show how the
methods can be useful for post-segmentation visual analy-
sis and for decision-making support. Saad et al. [SMH10]
introduce two-way and three-way interactive tools, which
measure the difference between the first and second largest
and between the second and third largest probabilities, re-
spectively. These tools are used to highlight the uncertainty
regions in the segmentation results. Prafni et al. [PRH10]
use the probabilistic segmentation result of a random walker
algorithm. After classifying the pixels into being certain
or uncertain based on some selected probability thresholds,
they use the gradient of the maximum probability of the
uncertainty information to estimate the uncertain area at
the boundary of segments. The approaches by Potter et al.
[PGA13] and Al-Taie et al. [ATHL14b] use concepts from
information theory to estimate and visualize the uncertainty
of a probabilistic segmentation result. In [ATHL14a], Al-
-Taie et al. generalize their methods for single segmentation
in the latter work to estimate the uncertainty associated with
multiple segmentations using the ensemble-based framwork.
Ristovski et al. [RPHL14] present a taxonomy to a wide
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range of uncertainty sources that encountered in the medi-
cal visualization pipeline.

2.3. Multi-modal image segmentation

James and Dasarathy contracted a survey of more than 300
approaches on medical image fusion that encompasses a
broad range of techniques from image fusion to address
medical issues captured by human body, organ, and cell im-
ages. The techniques include several multi-modal medical
image segmentation methods using a decision fusion model.
This review shows a growing interest and application of the
imaging technologies in the areas of medical diagnostics,
analysis, and historical documentation. The survey article
lists a wide range of applications that use multi-modal fusion
in diagnosis and assessments of medical conditions effect-
ing brain, breast, lungs, liver, bone marrow, stomach, mouth,
teeth, intestines, soft tissues and bones. They also provide a
collective view of the applicability and progress of informa-
tion fusion techniques in medical imaging for clinical studies
and document that the three major areas of studies in medi-
cal image fusion comprise: (a) identification, improvement,
and development of imaging modalities useful for medical
image fusion, (b) development of different techniques for
medical image fusion, and (c) application of medical image
fusion for studying human organs of interest in assessments
of medical conditions (for more details see [JD14]).

Although there exists this wide range of methods, we
are not aware of any approach that estimates the uncer-
tainty associated with multi-modal image segmentation. In
this paper, we extend the recently developed uncertainty
measure by Al-Taie et al. [ATHL14b] and their generaliza-
tion in [ATHL14a] for multiple segmentations to estimate
the uncertainty associated with ensemble-based multi-modal
image segmentations suitable for several combining rules.
The proposed method does not rely on ground truth. More-
over, we apply the proposed methods for certain multi-modal
medical image analysis applications. An interactive tool sup-
ports the visual analysis of the estimated uncertainty.

3. Combining segmentation ensembles

In the context of probabilistic segmentation, the output asso-
ciated with each voxel x is the probability vector P(x) where
the i entry P;(x) of the vector denotes the probability that
voxel x belongs to the segment (or class) i out of C segments
(classes) such that ):iC:I Pi(x) =1 (i.e., P;i(x) is the a poste-
riori probability for class 7). Traditionally, the maximum a
posteriori (MAP) Bayesian principle is applied to obtain a
hard classification from this "soft" output.

In the framework of combining the results of L classifiers,
some combining rules depend on the soft output (the a pos-
teriori probabilities) of the individual classifiers such as the
product, sum, max, min, and median rules, while other rules
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depend on the label field (i.e., on the hard classification out-
put) such as the majority voting or the weighted majority
voting (see [KHDMO98]). In this paper, we use the majority
voting (as it represents the rule with best performance from
an uncertainty point of view according to [ATHL14a]) and
its variants the weighted majority voting rules.

For quick reference, we rewrite these rules here (the ma-
jority vote as defined in [KHDMO9S]). To each pixel x, we
assign the class that maximizes the value of the argument
of the corresponding rule. Hence, we assign the following
classes:

e Majority Vote Rule: Applying the MAP Bayesian princi-
ple to the a posteriori probabilities Py ; produces a binary-
valued function Ay ; as

I if Py(x) = max P,
Aj = { if Pyj(x) = max Fij(x)
0 otherwise.

Then, under the assumption of equal priors, the majority
vote rule simply counts the votes received for each class
from the individual classifiers and selects as final decision
the class with the largest number of votes:

c L
arg max Z Ay
k=1 j=1
e Weighted Majority Vote Rule: Based on some assump-
tions, the individual classifiers are assigned different
weights (e.g., the accuracy level of the individual clas-
sifiers). In this case, the majority vote rule becomes a
weighted majority vote rule

c L
arg max Z WA,
k=1 i=1
J

where ; is the weight assigned to classifier j.

4. Uncertainty Estimation for Uni-modal Image
Segmentation

Al-Taie et al. [ATHL14b] proposed several forms of the nor-
malized Kullback-Leibler divergence as measures to esti-
mate the uncertainty associated with the probabilistic seg-
mentation result for uni-modal images. We give their second
form here, which we will extend in the next section: The
uncertainty for voxel v using the second form of Al-Taie et
al. [ATHL14b] is defined by

DKL (PV| ‘Pmax)

DKL(Pmin| |Pmax) ’

Dk, denotes the Kullback-Leibler divergence. For two prob-
ability distribution P and Q, the Kullback-Leibler diver-
gence is defined as: Dk (P||Q) = X; Piloga(P;/Qi). Pumin
represents the minimum (i.e., no) uncertainty which is ob-
tained when one entry of the probability vector is 1 and
all the others 0 (e.g., Ppin = (1,0,...,0)), and Ppx rep-
resents the maximum uncertainty which is obtained when

Um(v) =1—-

a pixel is equally likely to belong to all segments, i.e.,
Piax = (1/c,...,1/c). The vector P, represents the segmen-
tation probability vector for voxel v. The normalization term
Dkr (Pmin||Pmax)) represents the maximum amount of ran-
domness, which amounts to logs(c) for ¢ segments. In case
of no uncertainty, i.e., P, = P,,;,, we obtain that U (v) = 0.
Likewise, in case of maximum uncertainty, i.e., Py = Py,
we obtain that U(v) = 1. If one wants to distinguish uncer-
tain from certain voxels, one defines an uncertainty threshold
8. All voxels with uncertainty larger than 8 are then consid-
ered uncertain, the others certain.

5. Uncertainty Estimation for Multi-modal Image
Segmentation

We now extend the methods for uncertainty estimation and
visualization from uni-modal to multi-modal image segmen-
tation. First, we apply to each modality of the multi-modal
imaging data a probabilistic segmentation algorithm to pro-
duce a soft classification. The combination of the individual
segmentations form an ensemble of classifiers. For the com-
bination, one could use the (weighted) majority vote rule to
produce a hard classification. However, we would like to es-
timate and visualize the uncertainty associated with multi-
modal image segmentation using the uncertainty measure
presented in the previous section. Hence, we need a soft
classification of the multi-modal images. We achieve this
by converting the hard segmentation of the ensemble-based
model to a probabilistic ensemble-based multi-modal im-
age segmentation. The probabilistic ensemble-based multi-
modal segmentation can be computed by using the respec-
tive combining rule without the application of the final max-
imum operator and normalizing the vectors. The probability
vectors of the probabilistic version of the combining rule can
be computed by assigning:

x— P(x),i=1,...,C

where P;(x) in the probabilistic combining rules represents
the probability that voxel x belongs to class i according to the
corresponding combining rule. Le., P;(x) represents the i/
entry of the probability vector of the probabilistic ensemble
segmentation result at each voxel x. Extending the concept
of the (weighted) majority vote rule, we can compute the
probabilities as follows:

e Probabilistic Majority Vote Rule:
ZL': A
Pi(x) = C ! lL &
Yo X1 Ak
e Probabilistic Weighted Majority Vote Rule:
L
X 04
— yC L '
Yio1 X1 A

In a similar way, the concept can be extended for the other
combining rules such as the sum, maximum, minimum, and

Pi(x)
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|Moda]ity 1| |Moda]jty 2| -- | Modality n

29 E

Uncertainty Probabilistic
Image Segmentation

Figure 1: The proposed uncertainty estimation and visualiza-
tion model for an ensemble-based multi-modal image seg-
mentation (Si: Segmentation i, LI i: Labeled Image i, PCR:
Probabilistic Combining Rule, UE: Uncertainty Estimation,
UV: Uncertainty Visualization).

median rules. Throughout this paper, we focus on the ma-
jority vote rule, as it fits the applications we address. Once
we have the probabilistic multi-modal segmentation result,
we can directly apply the uncertainty measure presented in
the previous section to estimate and visualize the uncertainty
associated with each voxel. The estimated uncertainty using
majority vote rule has zero uncertainty when all individual
segmentations of the different modalities agree in their de-
cision (label). The uncertainty increases as the agreement
among the segmentations decreases and reaches the maxi-
mum uncertainty (i.e., 1) when each modality has a different
decision (maximum diversity). Figure 1 shows the proposed
system to estimate and visualize the uncertainty associated
with an ensemble-based multi-modal image segmentation.

6. Interactive Visual Analysis

The visualization of the uncertainty in the multi-modal seg-
mentation result is performed using a color-coding of the
original 2D images. For the color-coding, we follow the
ideas presented by Al-Taie et al.’s [ATHL14b], but we inte-
grate them into an interactive visual analysis tool. The color-
coding uses a color map with multiple hues but increasing
luminance. The hues vary from purple over red and orange
to yellow, see Figure 2(a). So, the first option is to just apply
this color map to the uncertainty estimated for each pixel
of the 2D image. Alternatively, we can combine the color
mapping with the uncertainty threshold 8. The threshold is
defined by the user. All pixel with uncertainty values above
the threshold use the color map as described above to en-
code the amount of uncertainty of the pixel. All pixels with
uncertainty values below the threshold use a greyscale color
mapping of the intensity value of the pixel. Figures 2(b)
and (c) show examples of the applied color mapping. Fi-
nally, the chosen color map can be discretized to a banded
color map. The amount of bands is, again, defined by the

(© The Eurographics Association 2015.

1 1 1 1 1 1

Uncertainty Vis. Parameter
Lower Bound 0.65 [

U
Upper Bound 1.0 [

U

U Intervals U Threshold
4 - 0.2 v
Modality

1
0 0 0 0 0 0 i

@ O® © @ @© O (€]

Figure 2: Uncertainty visualization interacting tools: uncer-
tainty color-mapping legends for continuous mapping (a),
continuous mapping with uncertainty threshold = 0.2 (b) and
0.35 (c), banded mapping with uncertainty threshold 0.2 and
2 bands (d), threshold 0.25 and 3 bands (e), and threshold
0.35 and 5 bands; (g) interactive tool panel for parameter
setting of uncertainty threshold, number of bands, lower and
upper bound, and modality.

user. The banded color map can also be combined with the
thresholding we just explained for the continuous color map.
Figures (d)-(f) show respective banded color maps with dif-
ferent number of bands and different thresholds 8.

The user can interactively define the different visualiza-
tion parameters that are shown in Figure 2(g). Obviously, the
user can choose the uncertainty threshold o (none if & = 0)
and the number of bands (U Intervals) in case the banded
color maps are used. The color map is, by default, applied to
the interval [0, 1] for the first visualization option and [J, 1]
for the second and third visualization option (i.e., when the
continuous or the banded color map is combined with the
original image intensities through thresholding), but can be
applied to a subinterval of [0, 1] defined by a lower and up-
per bound. A modality parameter allows for switching be-
tween the different image modalities to be combined with
the continuous and banded color maps. These simple inter-
acting tools allow for different visual interpretation, better
analysis, and highlighting the different categories of uncer-
tain areas.

7. Uncertainty-based Multi-modal Image Segmentation

In addition to estimating the uncertainty and visually ana-
lyzing it the main goal of the proposed system is to enhance
the visual analysis through the combined information inte-
grated from the different modalities which is not possible
using only a single modality.

The main reason for using multi-modal imaging is that
a single modality is insufficient to capture all the necessary
information. Often, there are certain structures that cannot
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be distinguished in one modality, but can very well be dis-
tinguished in another modality, where the other modality
then has other difficulties. Consequently, there may be re-
gions that have conflicting classifications in different modal-
ities. Those would show up as areas of high uncertain-
ties. Hence, we could easily identify those regions using
our approach. Figure 3(a) shows the proposed ensemble-
based multi-modal segmentation approach that incorporates
the complementary information integrated from the differ-
ent modalities to segment suspicious or special regions. We
refer to this segmentation result obtained by our model as
multi-modal rule (MMR) segmentation. Figure 3(b) shows
how the proposed MMR segmentation can be combined with
the proposed uncertainty estimation system to segment and
highlight the suspicious or special regions that cannot be de-
tected using only a single modality. In the application sce-
narios presented in the subsequent two section, we show how
we can make use of our concept to detect MS tumors from
multi-modal MR brain imaging data and tumor growth in
brain images taken at different points in time.

8. Application Scenario to Multi-modal Brain MRI for
MS Lesion Segmentation

The characteristics of an MS lesion tissue in brain MR im-
ages is similar to healthy brain tissues, which makes the
task of segmenting it as a separate tissue difficult when us-
ing state-of-the-art segmentation approaches. Luckily, the
MS lesion has different characteristics for different imag-
ing modalities. For example, the MS lesion in PD- , T1-,
and T2-weighted MR imaging could have intensities similar
to cerebrospinal fluid (CSF), gray matter, and CSF, respec-
tively, or CSE, white matter, and CSF, respectively, or some-
times gray matter, white matter, and CSF, respectively, or
even as CSF, white matter, and grey matter, respectively (see
the individual segmentations in Figure 6). Hence, when us-
ing uni-modal image segmentations, one cannot separate the
lesion from other brain tissues. However, when combining
the conflicting information from the uni-modal image seg-
mentation results in the sense of an ensemble of classifiers,
one can use the complementary information to draw correct
conclusions. To segment and highlight the MS lesion area
using the majority voting combining rule, we perform the
following steps:

First, we produce a new segmentation result in addition to
the uni-modal image segmentation results. We call the ad-
ditional segmentation result multi-modal rule (MMR) seg-
mentation (see Figure 3(a)). It is based on the segmen-
tations of the three modalities using the following proce-
dure: 1) Generate a probabilistic segmentation using fuzzy
c-means (FCM) or one of its variants to segment each of
the three modalities assuming only normal brain tissues, i.e.,
cerebrospinal fluid (CSF), gray matter (GM), white matter
(WM), and background (Bg). Hence, we generate a segmen-
tation of each modality using exactly four classes. 2) Calcu-

| Modality 1| | Modality 2| - [ Modality n]
|

patterns
matched

MMR Yes
Segmentation
gm New Label
(a) MMR segmentation
| Modality 1| | Modality 2| __ [ Modality n]
T
LI1 LI2 = Lin

Final MMR
Segmentation Segmentation
Uncertainty
Image
(b) The combined system

Figure 3: The proposed multi-modal image segmentation
rule (MMR) (a), and the combined MMR with MM uncer-
tainty estimation system (b) (Si: Segmentation i, LI i: La-
beled Image i, CCs: Compute Centroids, CNLI: Compute
New Labeled Image, (W)MVR: (Weighted) Majority Vote
Rule, MMR: Multi-Modal Rule, UE-V: Uncertainty Estima-
tion and Visualization).
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late the centroids of the corresponding tissue classes in the
segmentation results for each of the three modalities. 3) For
each modality, assign to each voxel the tissue whose cen-
troid is closest to the voxel’s intensity according to the cor-
responding uni-modal segmentation result. 4) Apply to each
voxel the ensemble voting procedure for the three modalities
to assign the winning class as the label of the new MMR seg-
mentation. However, if the uni-modal segmentation results
deliver the pattern for MS lesions (i.e., one of the combina-
tions listed above), the MMR segmentation assigns a new
(fifth) class label "MS lesion". 5) Finally, we correct outlier
voxels, i.e., voxels whose label differs from all surrounding
neighboring voxels, in a post-segmentation step.

Second, we use our uncertainty visualization methods to
highlight the MS lesion area. To assure that the uncertainty
is sufficiently high for the MS lesion area and sufficiently
low for other tissue types, we use a weighted majority vote
combining rule, where the MMR segmentation result gets
double the weight (weight 2) as the other three uni-modal
segmentation results (weight 1) (see Figure 3(b)). Thus, we
reduce the uncertainty for the normal tissue types, as we have
a higher vote for the already winning tissue, and we increase
the uncertainty of the MS lesion area, as we raise the vot-
ing probability for the newly inserted class leading to an ap-
proximately similar voting probability as other (two or three)
classes.

In the following, we present results that document that this
scenario succeeds in segmenting the MS lesion with accept-
able accuracy with only a few false negatives and a few false
positives voxels around the MS lesion area (i.e., inside the
safety margin of lesion treatment).

In the first experiment, we apply the proposed ensemble-
based multi-modal image segmentation with its uncertainty
estimation and visualization to a simulated MR images of
PD-, T1-, and T2-weighted modalities for a healthy brain
without MS lesions [MNI97]. As individual classifiers for
the three modalities, we use the standard fuzzy c-means
(FCM) algorithm introduced by Bezdek [Bez81]. In our pro-
posed system, it is possible to use the same or different ap-
proaches of probabilistic or FCM segmentation as individual
classifiers. Also, the ensemble segmentation and its uncer-
tainty estimation can be done using the other known com-
bining rules such as median and sum rules (through this pa-
per we use only the majority vote rule). Figure 4 shows the
segmentation result in (e), and the uncertainty visualization
in (f) of the proposed methods for an ensemble-based multi-
modal image segmentation with three simulated brain MRI
modalities (PD-weighted in (a), T1-weighted in (b), and T2-
weighted in (c)). Only the result when using the majority
voting rule is shown. Figure 4(d) shows the ground truth
segmentation. We can observe that pixels in the background
area have zero uncertainty (shown in dark purple) as all three
modalities agree for this area. In the brain area, a large por-
tion of the pixels have low uncertainty of around 0.4 (shown
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(a) PD-w MRI (b) T1-w MRI (C) T2-w MRI

(d) Ground Truth
Figure 4: Uncertainty visualization of an ensemble-based
multi-modal segmentation result for simulated of (a) PD-
weighted, (b) T1-weighted, and (c¢) T2-weighted MR im-
ages: (d) ground truth, (e) segmentation result, and (f) un-
certainty visualization using the proposed methods with the
majority voting as combining rule.

(C) MV Rule (D Uncertainty

in red), a small portion have zero uncertainty, and very few
pixels have high uncertainty of around 1.0 (shown in yel-
low). The concentration of pixels with low and zero uncer-
tainty differs for the different tissues as the distribution of
the aggregated uncertainty (such as noise or partial volume
effect) differs for them. The red color can be interpreted
that one of the three modalities makes an error, while yel-
low color (high uncertainty where the user should be careful
about) can be interpreted that the three modalities have three
different decisions.

In the next experiments, we test our approach to segment
the brain MS lesion and highlight it in the uncertainty vi-
sualization as suspicious tissue in the multi-modal images.
First, we apply the proposed methods to synthetic images
that simulate normal brain tissues and MS lesion (circle) in-
tensities in PD-, T1-, and T2-weighted MRI modalities, re-
spectively. All the three modalities are corrupted with mixed
noise (Gaussian and salt-and-pepper noise). In Figure 5, we
can observe how the proposed segmentation method suc-
ceeds in segmenting the MS lesion (shown in purple) with
high accuracy (we got 100% segmentation accuracy for the
tumor) and how the uncertainty visualization methods high-
light the lesion area successfully. Figures 5(a)-(c) show the
three imaging modalities, (d) the ground truth. The MMR
segmentation is shown in (e) and the majority voting out-
put in (f) using five distinct colors for the five labels. The
uncertainty according to the color map in Figure 2(a) is vi-
sualized in Figure 5(g) where the light orange represents the
high uncertainty area. Figure 5(i) shows the uncertainty vi-
sualization using the color map in Figure 2(b) for threshold
& = 0.2. Figure 5(h) shows the segmentation result visual-
ization combined with the estimated uncertainty where the
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(a) PD -w + MSL (b) T1-w + MSL () T2-w + MSL

(d) Ground Truth (€) MMR Rule (f) MV Rule

(g) Uncertainty (h) combined (1) overlaid
Figure 5: Segment and highlight MS lesion in an ensemble-
based multi-modal segmentation result for synthetic images
that simulate (a) PD-weighted, (b) T1-weighted, and (c) T2-
weighted MR images: (d) ground truth, (¢) MMR segmen-
tation result, (f) majority voting segmentation result, (g) un-
certainty visualization of segmentation result, (h) combined
uncertainty-segmentation visualization, and (i) uncertainty
overlaid with original image.

associated uncertainty is assigned as the intensity of segmen-
tation” color map to highlight the uncertain pixels.

Then, we apply the same experiment on simulated brain
MRI PD-, T1-, and T2-weighted modalities with MS lesion
obtained from BrainWeb [MNI97]. We apply the same pro-
cedure and get comparable results as shown in Figure 6. We
can observe that the MS lesion is segmented (shown in pur-
ple in Figures 6 (g) and (k)) with high accuracy (see Table
1 slice No. 96) and few false positives (shown in red) sur-
rounding the MS lesion area (see Figure 6(h)).

Table 1 provides quantitative assessments of the MS le-
sion segmentation accuracy and its false positive ratio with
lesion size (in pixels) for 10 slices from the dataset in Figure
6. The segmentation accuracy is computed by the number of
correctly classified voxels over the lesion size. The false pos-
itive ratio (FP) is computed by the number of false positives
divided by the slice size.

Figure 7 shows examples of how the segmentation result
and the estimated uncertainty can be visually and interac-
tively analyzed using different visualization strategies that
support different analysis tasks. The uncertainty color map-
ping with MS lesion (for slice No. 101 in Table 1) is high-
lighted shown in Figure 7 (a) for the whole 2D image, (e)

(a) PD-w + MSL (b) T1-w + MSL

(d) PD-w FCM (e) Tl-w FCM

(g) Ground Truth (h) MMR Rule

(]) Uncertainty (k) combined (1) overlaid
Figure 6: Segment and highlight MS lesion in an ensemble-
based multi-modal segmentation result for simulated (a) PD-
weighted, (b) T1-weighted, and (c) T2-weighted MR images
obtained from BrainWeb: (d), (e), and (f) the FCM segmen-
tation results for the images in (a), (b), and (c), respectively,
(g) ground truth, (h) MMR segmentation result (false posi-
tives shown in red), (i) majority voting segmentation result,
(j) uncertainty visualization of segmentation result, (k) com-
bined uncertainty-segmentation visualization, and (1) uncer-
tainty overlaid with original image.

Table 1: Examples of MS lesion segmentation accuracy (SA)
and false positive ratio (FP) using the proposed methods with
MS lesion size for selected slices from dataset in Figure 6.

Slice No. SA % | FP Ratio | MSL size
94 0.8941 | 0.00109 85
95 0.9304 | 0.00127 115
96 0.9877 | 0.00140 163
97 0.8961 | 0.00096 154
98 0.8758 | 0.00162 153
99 0.9461 | 0.00193 167
100 0.9682 | 0.00246 189
101 0.9419 | 0.00208 224
102 0.9638 | 0.00142 221
103 0.9687 | 0.00229 160

(© The Eurographics Association 2015.
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(a)
(d)

(2 () O]
Figure 7: Interactive visualization tool provides several

methods to visually highlight the segmentation results for
different analysis tasks: The uncertainty color mapping with
MS lesion is highlighted for the whole 2D image (a), filtered
by the lower and upper bound interacting tool with values
(0.6 and 0.99) (b), overlaid with T2-weighted modality (e),
and combined with segmentation result visualization (MS le-
sion shown in purple) (c); the same visualization in (b) over-
laid with the three modalities in (g), (h), and (i), ground truth
(@).

overlaid with T2-weighted modality, and (c) combined with
segmentation result visualization (MS lesion shown in pur-
ple). Figures 7 (b), (g), (h), and (i) show the uncertainty map-
ping filtered by the lower and upper bound interacting tool
with values (0.6 and 0.99). We can observe how the modality
interacting tool shown in Figure 2(g) is used in selecting the
desired modality to overlay the uncertainty mapping with it
in Figures 7(g), (h), and (i). In Figure 7 (f), different settings
of the lower and upper bounds (0.26 and 0.59) are used to
highlight different categories of uncertain areas for compar-
ison. The ground truth is shown in Figure 7 (d).

9. Application Scenario to Multiple Time Points for
Tumor Growth Analysis

We use the same scenario as above to highlight the differ-
ence of the brain tumor size in real MR images of the same
subject taken at two different points in time dataset taken
from IBSR [IBS96]). In this application scenario, the two
T1-weighted images are segmented and the tumor can be la-
beled as a separate class. Hence, the goal here is different
than in the preceding section. Instead of combining different

(© The Eurographics Association 2015.

modalities for an improved segmentation, we are now com-
bining two different points in time to estimate how much and
where the tumor grew or shrank over time. The individual
segmentation results of the two time steps would disagree in
the area of growth/shrinkage. Hence, it is expected to be an
area of high uncertainty and we can apply the same proce-
dure as above for producing the desired result.

Figure 8 shows the result of the segmentation and uncer-
tainty estimation. The tumor at time-1 (a) is not present at
time-2 (b). The MMR rule detects the shrinkage area as a
separate class (c). The segmentation using the majority vot-
ing rule shows the class of shrinkage area in purple (d). The
uncertainty visualization conveys that the shrinkage area is
the area of highest uncertainty (e). The segmentation result
for uncertain pixels is shown in (f). Next, an uncertainty vi-
sualization using a banded color map with four bands (g)
and two bands (h), where certain pixels show pixel intensi-
ties, is shown. Finally, we show the uncertainty visualiza-
tion restricted to uncertainties out of interval [0.6,1] in Fig-
ure 8(i). The uncertainty mapping overlaid with the image
at time-1 in Figures 8(g), (h), and (i). We can observe that
both the segmentation and uncertainty visualization succeed
in estimating and highlighting the shrinkage in tumor size
accurately.

10. Discussion and Conclusion

The imaging technologies have witnessed a growing number
of advancements in recent years leads to improve imaging
features and accuracies. However, every modality of imag-
ing has its own practical limitations due to the nature of the
underlying organ or tissue and no single modality can cap-
ture all details necessary for diagnosis and analysis. This
observation, in addition to the diversity of features and the
complementary information provided by combining differ-
ent modalities, enforces the need of using multiple imag-
ing modalities. Multi-modal approaches have proven to be
more efficient and accurate when compared to uni-modal
approaches. The combined information and the accumulated
evidences from the different modalities can reduce the uncer-
tainty in the decision-making and analysis process. Recently,
several approaches have been proposed to estimate the un-
certainty in uni-modal image segmentation decisions and vi-
sually convey this information to the medical experts that
examine the image segmentation results. In this work, we
presented an approach to extend uncertainty estimation and
visualization methods to multi-modal image segmentations.
We use the concept of ensemble of classifiers to combine
probabilistic uni-modal image segmentation results. The un-
certainty is estimated using a measure that is based on the
Kullback-Leibler divergence. We apply our approach to the
segmentation of Multiple Sclerosis (MS) lesions from mul-
tiple MR brain imaging modalities. Moreover, we demon-
strate how our approach can be used to estimate and visual-
ize the growth of a brain tumor area for imaging data taken
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(d) MYV Rule (f) combined

(g) overlaid (h) overlaid (1) overlaid
Figure 8: Estimate and highlight brain tumor shrinkage in
an ensemble-based multi-time image segmentation result for
real T1-weighted MR images at (a) timel, and (b) time2:
(c) MMR segmentation result, (d) majority voting segmen-
tation result, (e) uncertainty visualization, (f) segmentation
result for uncertain pixels, (g) uncertainty visualization with
threshold & = 0.2 using banded color map with four bands,
(h) uncertainty visualization with threshold & = 0.2 using
banded color map with two bands, and (i) uncertainty visu-
alization for pixels with uncertainty out of interval [0.6,1].

at multiple points in time. Both the MS lesion and the area of
tumor growth are detected as areas of high uncertainty due to
different characteristics in different imaging modalities and
changes over time, respectively.
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