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Abstract

In this paper we present a new control point-based 2D-3D registration approach for a deformable registration

of a 3D volumetric template to a limited number of 2D calibrated C-arm images and show its application to a

personalized X-ray reconstruction of the proximal femur. In our approach, the 2D-3D registration is done with a

hierarchical two-stage strategy: the scaled rigid 2D-3D registration stage followed by a regularized deformable

b-spline 2D-3D registration stage. In both stages, a set of control points with uniform spacing are placed over the

domain of the 3D volumetric template first. The registrations are then driven by computing updated positions of

these control points with intensity-based 2D-2D image registrations of C-arm images with the associated digitally

reconstructed radiographs (DRRs), which then allows computing the associated registration transformation at

each stage. In order to account for intensity nonstationarities and complex spatially-varying intensity distortion

in the deformable b-spline 2D-3D registration stage, the intensity-based 2D-2D image registrations at this stage

are done based on minimizing the complexity of the residual images between the C-arm images and the associated

DRRs. Comprehensive experiments on simulated images, on images of cadaveric femurs and on clinical datasets

are designed and conducted to evaluate the performance of the proposed approach. Quantitative and qualitative

evaluation results are given, which demonstrate the efficacy of the present approach.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]:
Enhancement—Registration

1. Introduction

The applications of registration of a set of two-dimensional
(2D) C-arm images with a three-dimensional (3D) volu-
metric data are pervasive, ranging from pose or morphol-
ogy determination in image-guided interventions [MTLP12]
[ERL∗13] to estimation of 3D bone mineral density (BMD)
distribution in orthopaedic biomechanics [ARW∗10]. The
reported techniques for 2D-3D registration can be split
into two main categories [MTLP12]: feature-based methods
[FL99] [LWH06] [ZGS∗09] [BKB∗11] and intensity-based
methods [ARW∗10] [SCT07] [HJ08] [LSW∗11] [Zhe11]
[WHC∗11] [ERL∗13]. The methods belonging to the for-
mer category typically require an implicit or explicit image
segmentation which is error-prone and hard to achieve au-
tomatically. The errors in segmentation may lead to errors
in the final reconstruction. In contrast, the intensity-based
methods directly compare the input X-ray images with the

associated simulation images called digitally reconstructed
radiographs (DRR), which are obtained by ray casting of a
transformed volume data. No segmentation is required.

Depending on whether there exist deformations between
the objects imaged by the 2D X-ray images and those im-
aged by the 3D volumetric intensity data, the methods for
achieving intensity-based 2D-3D registration can be classi-
fied into two categories: rigid and non-rigid. While intensity-
based rigid 2D-3D registration is regarded as a solved
problem [MTLP12], intensity-based non-rigid registration
is still an active research field [ARW∗10] [SCT07] [HJ08]
[LSW∗11] [Zhe11] [WHC∗11] [ERL∗13]. Most of these
solutions require construction of shape-intensity statistical
models.

The contribution of this paper is a new control point-based
2D-3D registration approach for a deformable registration
of a 3D volumetric template to a limited number of 2D cali-
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brated C-arm images. Our method does not require construc-
tion of shape-intensity statistical mode and uses only one
3D volumetric template. In our method, the 2D-3D registra-
tion is done with a hierarchical two-stage strategy: the scaled
rigid 2D-3D registration stage followed by a regularized de-
formable b-spline 2D-3D registration stage. In both stages,
a set of control points with uniform spacing are placed over
the domain of the 3D volumetric template first. The regis-
trations are then driven by computing updated positions of
these control points with intensity-based 2D-2D image reg-
istrations of C-arm images with the associated DRRs, which
then allows computing the associated registration transfor-
mation at each stage. In order to account for intensity non-
stationarities and complex spatially-varying intensity distor-
tion in the deformable b-spline 2D-3D registration stage, the
intensity-based 2D-2D image registrations at this stage are
done based on minimizing the complexity of the residual im-
ages between the C-arm images and the associated DRRs.

The paper is organized as follows. Section 2 describes de-
tails about our approach. Section 3 presents the experimental
results, followed by the conclusions in Section 4.

2. Control Point-based 2D-3D Registration

2.1. Problem formulation

In this work, we assume that we have a set of Q ≥ 2 C-arm
images and that all images are calibrated and co-registered
to a common coordinate system called c. As we would like
to match the 3D volumetric template to the 2D calibrated C-
arm images. We consider the 3D volumetric template as the
floating image I(x f )and the 2D calibrated C-arm images as
the reference images. The template is aligned to the common
coordinate system c by following equation:

I(xc(Tg,Tl)) = I(Tg ◦Tl ◦ x f ) (1)

where Tg is a scaled rigid transformation and Tl is a local
deformation.

Eq. (1) describes a forward transformation and should be
interpreted as follows. Given a voxel x f in the template,
the destination of this voxel under the forward transforma-
tion is xc(Tg,Tl) = Tg ◦Tl ◦ x f . The aligned volume at voxel
xc(Tg,Tl) is set to the intensity I(x f ), which then allows cre-
ating DRRs by simulating X-ray projection.

It is suggested by Zheng [Zhe11] that implementing this
forward transformation may result in holes in the aligned
volume and he suggested that a backward warping as follows
should be used.

x f = (Tl)
−1 ◦ ((Tg)

−1 ◦ xc(Tg,Tl)) (2)

It is straightforward to compute the inverse of the scaled

rigid transformation Tg. However, it is tricky and time-
consuming to compute the inverse of the forward local de-
formation Tl .

In this paper, we solve the problem differently. The non-
rigid registration is done with a hierarchical two-stage strat-
egy: a scaled rigid 2D-3D registration stage (we refer it
as “Stage-ScaledRigid2D3D” in the later description) fol-
lowed by a regularized deformable b-spline 2D-3D registra-
tion stage (we refer it as “Stage-Nonrigid2D3D” in the later
description). In the first stage, the forward scaled rigid trans-
formation Tg is estimated while in the second stage, we di-
rectly estimate (Tl)

−1, which is a deformation field from the
reference image space (i.e., the common coordinate system
c) to the floating image space. Obtaining this deformation
field will allow us to warp the floating volumetric template
to the reference C-arm image space. No inversion of the for-
ward deformation field is required. Details about these two
stages will be present below.

2.2. Registration Method

In both stages, a set of control points with uniform spac-
ing are placed over the domain of the volumetric tem-
plate as follows. Denote the domain of the volumetric tem-
plate as Ω = {(x,y, z)|0 ≤ x ≤ n1,0 ≤ y ≤ n2,0 ≤ z ≤ n3},
where n1,n2,n3 denote the number of voxels in x-, y- and
z-coordinate direction, respectively. Choosing s1, s2, s3 ∈
ℜ≥1, describing the spacing (in units of voxels) between
any two mesh points (or control points) in each coordinate,
a mesh G can be defined by setting:

G := s1Zz1 × s2Zz2 × s3Zz3 (3)

with zi :=
⌈

ni

si

⌉

+1 ∈ N and Nzi := {x ∈ Z|−1 ≤ x ≤ zi}.

Such setting guarantees that every voxel of the volumetric
template is surrounded by a local mesh cube of size 4×4×4
due to the fact that a control point is placed in every corner
of Ω and an extra layer of control points around Ω is added.
There are in total (z1+2)×(z2+2)×(z3+2) control points.

2.2.1. Control Point-based 2D-3D Registration Process

In both stages we follow a similar control point-based 2D-
3D registration process but with different implementations
in some steps, leading to two different 2D-3D registration
pipelines. Below we first present this generic 2D-3D regis-
tration process, followed by describing the details of differ-
ent steps in these two different stages.

Step 1: DRR Generation. The generic control point-
based 2D-3D registration process starts with generating
DRRs using the calibration parameters of the associated in-
put images and the current estimation of the registration
transformation. To speed up the DRR generation process,
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Figure 1: A schematic view of how to compute paired points for the scaled-rigid registration. Here we focus on only one paired

point and the same procedure can be applied to all paired points. On both C-arm images, we superimposed the associated DRRs

as well as contours extracted from these DRRs (blue solid lines) for purely visualization purpose. Please note that our 2D-3D

registration methods in both stages do not need the extraction of contours from DRRs. The green dot is the original location

of a 3D control point and its projection to each DRR is shown as a green cross. A intensity-based 2D-2D image registration is

then performed to estimate a 2D similarity transform to update the projection of this control point to a new location (red cross).

Using a triangulation-based point reconstruction, we can reconstruct a new 3D location of this control point (red dot) from

those updated projection locations (red crosses) to obtain a paired point (green and red dots).

we have implemented the process in Nvidia’s CUDA envi-
ronment [Apr13].

Step 2: Control Point Projection. Using the current es-
timation of the registration transformation, we transform all
control points from the floating volume space to the refer-
ence C-arm image space. To make the description later eas-
ier, here we denote the location of an arbitrary control point
with index i, j,k as L

r,0
i jk

in the Stage-ScaledRigid2D3D or

L
n,0
i jk

in the Stage-Nonrigid2D3D, respectively. After that, us-
ing the calibration parameters of the qth C-arm image, we do
a forward projection of all transformed control points.

Step 3: 2D-2D Image Registration. In this step, an
intensity-based 2D-2D registration between each C-arm im-
age and the associated DRR is performed. Depending on
the registration stage, this step is slightly different. Details
about the 2D-2D image registration for each stage will be
presented below. Common to both stages for this step is that
after 2D-2D image registration, locations of all the projected
control points in the associated 2D image will be updated
using the obtained 2D-2D registration transformation.

Step 4: Triangulation-based Point Reconstruction.

Given the updated 2D locations of the projections of a 3D
control point with index i, j,k in all images, a updated 3D po-
sition of this control point can be reconstructed from those
updated 2D locations via triangulation strategy [ZML∗02]
(see Fig. 1 for an illustration). This is done by minimiz-
ing sum of squared distances from this position to all back-
projection rays of the corresponding updated 2D locations.
Again, depending on the registration stage, we denote the
updated position of a control point as L

r,1
i jk

in the Stage-

ScaledRigid2D3D or L
n,1
i jk

in the Stage-Nonrigid2D3D, re-
spectively.

Step 5: 2D-3D Registration. Given two point sets with
known correspondences, we can compute an updated 2D-3D
registration transformation at each stage. Details about how
the registration transformation is calculated at each stage
will be presented below.

Repeat Step 1-5 until convergence at each stage to get the
final estimation of the 2D-3D registration transformation.

2.2.2. Scaled-rigid 2D-3D Registration Stage

Here, we assume that we have a rough estimation of the ini-
tial transformation T 0

g between the floating volume space
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Figure 2: A schematic view of how the control point-based deformable b-spline 2D-3D registration pipeline is conducted.

The complete pipeline consists of following five steps: (1) DRR generation; (2) intensity-based 2D-2D deformable b-spline

registration; (3) updating positions of all control points’ 2D projections; (4) triangulation-based reconstruction of 3D positions

of control points based on the updated positions of the 2D projections; (5) Calculating a displacement vector on each control

point and using the resultant 3D displacement field to warp the volumetric template to the reference image space.

and the reference image space. Given the initial transforma-
tion T 0

g , the control point-based scaled rigid 2D-3D registra-
tion pipeline will be executed. Below we present the details
about how Step-3 and Step-5 of this pipeline are performed.
All other steps are the same as described in the generic pro-
cess.

Step 3: 2D-2D Image Registration. At this stage, an
intensity-based scaled rigid 2D-2D registration between
each 2D DRR to its associated 2D C-arm image is performed
using the intensity-based registration toolbox ”elastix”
[KSM∗10] to estimate a similarity transform from each DRR
to its associated C-arm image, which will then be used to up-
date the locations of the 2D projections of all control points
(See Fig. 1). Please note that at this stage we try to esti-
mate a similarity transform from each DRR to its associated
C-arm image and that for the intensity-based scaled rigid
2D-2D registration, we choose to use Mattes mutual infor-
mation [MHV∗03] as the similarity metric and the adaptive
stochastic gradient descent optimization [KPSV09] as the
optimization method.

Step 5: 3D-3D Scaled-rigid Paired-point Registration.

Given two 3D point sets {L
r,0
i jk
} and {L

r,1
i jk
} with known cor-

respondences, we can compute an updated scaled rigid reg-
istration T 1

g .

Step 1 - 5 of the control point-based scaled rigid 2D-3D
registration pipeline will be repeated until convergence, and
consequently, the output from this stage is the forward trans-
formation Tg.

2.2.3. Regularized Deformable B-spline 2D-3D

Registration Stage

The scaled rigid transformation Tg obtained in the last stage
allows us to align the floating volume template to the ref-
erence image space. After that, the control point-based de-
formable b-spline 2D-3D registration pipeline will be exe-
cuted. Fig. 2 shows a schematic view of how the control
point-based deformable b-spline 2D-3D registration pipeline
is conducted. Below we present the details about how Step-3

and Step-5 of this pipeline are performed.

Step 3: 2D-2D Image Registration. Different from the
last stage, here we switch the roles of the C-arm images and
the DRRs. We propose to conduct an intensity-based de-
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formable b-spline 2D-2D registration by minimizing resid-
ual complexity [MS10] to match each 2D C-arm image to its
associated DRR. The obtained 2D deformation field will be
used to update the locations of the 2D projections of all con-
trol points (See Fig. 2, where green crosses are the original
positions and red crosses are the updated positions). These
updated locations will then allow for a triangulation-based
reconstruction of new 3D locations of all control points in
the next step (Step 4). See Fig. 2 for an illustration.

Residual complexity was originally introduced by My-
ronenko and Song [MS10] as an efficient image similarity
measure for handling intensity nonstationarities and com-
plex spatially-varying intensity distortions in mono-modal
settings. Considering the inherent differences between a real
C-arm image and a simulated DRR, residual complexity will
be a better choice than most of the state-of-the-art similarity
measures. Assume that the qth C-arm image is I

q
C−arm and

the associated qth DRR is I
q
DRR, we can define the residual

complexity S
q
RC of these two images as:







rq = I
q
C−arm − I

q
DRR

cq = DCT(rq)

S
q
RC = ∑ log((cq)2/α+1)

(4)

where DCT is the forward multidimensional discrete co-
sine transforms [Str99] and α is a trade-off parameter. Please
note that in above equation, I

q
C−arm, I

q
DRR, and rq are all in

column-vector form.

Step 5: Regularized Deformable B-spline 3D-3D Reg-

istration. Given two location sets {L
n,0
i jk

} and {L
n,1
i jk

} with
known correspondences, we can compute a displacement
vector di jk = L

n,1
i jk

− L
n,0
i jk

for every control point (see Fig.2
for an illustration). After that, we can then use the 3D ten-
sor product of the familiar 1D cubic b-splines to compute a
free-form deformation at any position of the reference space.
For details about how this deformation is computed, we refer
to [RSH∗99].

Usually the displacement vectors estimated from above
procedure are noisy. Regularization is required for a better
behavior. In this paper, we propose to regularize the dis-
placement vectors of the control points by minimizing ob-
jective function: E(d) = ‖∆d‖2, where ‖∆d‖2 is the discrete
Laplacian (squared) on the control points with Neumann
boundary condition [Str99] and can be efficiently solved
with following iterative update:

∣

∣

∣A
T dt

∣

∣

∣
=

√

DCT 2(dt
x)+DCT 2(dt

y)+DCT 2(dt
z)

dt+1
l = IDCT(

|AT dt |
|AT dt |+γB

·DCT (dt
l)), f or l = x,y, z

where A is a discrete cosine transform basis of the mul-
tidimensional Laplacian; DCT and IDCT denote forward

and inverse multidimensional discrete cosine transforms; t

means the tth iteration; dx,dy,dz are the 3D arrays of cor-
responding control point displacements. Array B denotes
the eigenvalues of the multidimensional Laplacian with ele-
ments: bi jk = B(i, z1+2)+B( j, z2+2)+B(k, z3 +2), where

B(n,N) = 2(1 − cos( π(n−1)
N )). γ is a regularization coeffi-

cient.

3. Experiments and Results

We designed and conducted three studies to verify the effi-
cacy of the present method. In all studies the initial transfor-
mation T 0

g was estimated by an anatomical landmark-based
2D-3D registration as suggested by Zheng [Zhe11].

Study on simulation data. This study was conducted on
CT data of 39 proximal femurs with following procedure.
We chose a CT data as the volumetric template and tried
to register this template to simulated X-ray images of all
other 38 proximal femurs. For each one of these 38 femurs,
two simulated X-ray images are generated, one from the an-
teroposterior (AP) direction and the other from the lateral-
medial (LM) direction. Each time, the template was non-
rigidly registered to the pair of images. Since the images
were generated from a CT data, we can take the CT data as
the ground truth to evaluate the 2D-3D registration accuracy.
After a semi-automatic segmentation of both datasets, Dice
metric (Dice) [Dic45] and surface distance (SD) between
the ground truth data and the reconstructed data were calcu-
lated. This procedure was repeated 10 times and each time
a different CT data was randomly chosen as the volumetric
template and matched to the simulated X-ray images of all
other 38 proximal femurs, leading to in total 10× 38 = 380
reconstructions. Furthermore, in order to compare the per-
formance of the residual complexity with those of the state-
of-the-art similarity measures, we implemented an intensity-
based deformable b-spline 2D-2D registration by optimizing
Mattes mutual information [MHV∗03] in the 2D-2D Image
Registration step of the Stage-Nonrigid2D3D while keeping
all other conditions the same (Hereafter we refer reconstruc-
tion results from this implementation as “MattesMI”). Fig.
3 and Fig. 4 respectively shows the SD and the Dice com-
parison results when two different similarity measures were
used. Overall quantitative comparison results are shown in
Table 1. From this table, one can clearly see that better re-
construction results were achieved when the residual com-
plexity was used.

Study on 3 clinical datasets. For this study, we first
aligned the CT data of the 39 femurs in the first study to
compute a mean intensity model, which was then used as the
volumetric template of this study. Each clinical dataset con-
tains two calibrated C-arm images and no ground truth of
the imaged patient is available. Thus, we mainly used these
datasets to demonstrate qualitatively the performance of the
present approach in clinical settings. Fig. 5 shows a patient
data reconstruction example
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Figure 3: Box-plots of the surface distances between the reconstructed models and the associated ground truth when 10 different

volumetric templates were used with the present method. Blue: results when MattesMI was used, red: results when residual

complexity was used.

Figure 4: Box-plots of the Dice coefficients between the reconstructed models and the associated ground truth when 10 different

volumetric templates were used with the present method. Blue: results when MattesMI was used, red: results when residual

complexity was used.

Table 1: Quantitative comparison results when two different

similarity measures were used.

Metrics Average Min Max

When MattesMI was used

Mean SD (mm) 1.25 0.63 1.93
Mean Dice (%) 93.2 89.5 96.8

When residual complexity was used

Mean SD (mm) 1.14 0.58 1.82
Mean Dice (%) 93.8 89.8 97.0

Study on calibrated C-arm images of 10 cadaveric fe-

murs. For this study, again we used the mean intensity
model created from the CT data of the 39 femurs used in

the first study as the volumetric template.The reconstruction
accuracies were evaluated by randomly digitizing dozens
points from the surface of each femur and then computing
the distances from those digitized points to the associated
surface model which was segmented from the reconstructed
volume. Again, we compared the performance when two dif-
ferent similarity measures were used. When the MattesMI
was used, an average mean reconstruction accuracy of 1.4
mm was found. This value decreased to 1.3 mm when the
residual complexity was used. Fig.6 shows the errors of re-
constructing the 10 cadaveric femurs when the residual com-
plexity was used. It took on average 4 minutes to finish a
reconstruction when running on a computer with 2.5 GHz
CPU and GPU acceleration.
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Figure 5: An example of personalized X-ray reconstruction of the proximal femur from a clinical dataset. Left two images show

the projections of the reconstructed volume while the right two images show the original C-arm images superimposed by the

contours detected from the top two images.

Figure 6: Box-plots of the errors of reconstructing 10 cadaveric femurs.

4. Discussions and Conclusions

In this paper, we presented a new approach for the non-
rigid registration of a 3D volumetric template to 2D cal-
ibrated C-arm images and showed its application to the
proximal femur. Unlike other intensity-based non-rigid 2D-
3D registration methods, our method does not require con-
struction of shape-intensity statistical models. Additional
advantage includes that it can be used to further improve
the shape-intensity statistical models-based reconstruction
as our method only needs one 3D volumetric template.

Both the method introduced by Zheng [Zhe11] and the
present method have been evaluated on the calibrated C-arm
images of the 10 cadaveric femurs. An average mean re-
construction accuracy of 1.5 mm was reported in [Zhe11].
In contrast, the present method achieved an average recon-
struction accuracy of 1.3 mm. Although further evaluation
is needed before we can draw a definitive conclusion, the
preliminary evaluation conducted on the calibrated C-arm
images of the 10 cadaveric femurs demonstrates that the

present method is more accurate than the shape-intensity sta-
tistical models-based method introduced by Zheng [Zhe11].

When comparing the performance of the residual com-
plexity with that of Mattes mutual information [MHV∗03]
on the simulation data, we found a consistent improvement
of Dice coefficients and surface distances for all 10 trial as
shown in Fig.3. Thus, our experimental results demonstrate
that the residual complexity is a better similarity measure
than the Mattes mutual information. Our findings are consis-
tent with the results reported in [MS10] where the residual
complexity was used for 2D-2D registration or 3D-3D regis-
tration tasks. To the authors’ best knowledge, this is the first
time that the residual complexity was used for 2D-3D regis-
tration tasks. The superior performance of the residual com-
plexity over other similarity measures as reported in this pa-
per and in [MS10] can be explained by its ability to account
for intensity nonstationarities and complex spatially-varying
intensity distortion, as shown by the qualitative evaluation
results obtained from the study on 3 clinical datasets (see
Fig.5 for an example).
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In summary, we developed a new approach for person-
alized reconstruction of the proximal femur via a new con-
trol point-based 2D-3D registration and residual complexity
minimization. Studies conducted on simulated data and real
data demonstrated the efficacy of the present approach.
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