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Abstract

Analysis and visualization of molecules and their structural features help biochemists and biologists to better
understand protein behavior. Studying these structures in molecular dynamics simulations enhances this under-
standing. In this paper we introduce three approaches for animating specific inner pathways composed of an
empty space between atoms, called tunnels. These tunnels facilitate the transport of small molecules, water sol-
vent and ions in many proteins. They help researchers understand the structure-function relationships of proteins
and the knowledge of tunnel properties improves the design of new inhibitors. Our methods are derived from se-
lected tunnel representations when each stresses some of the important tunnel properties — width, shape, mapping
of physico-chemical properties, etc. Our methods provide smooth animation of the movement of tunnels as they
change their length and shape throughout the simulation.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—AnimationVisible line/surface algorithms

1. Introduction

Molecular analysis and visualization are currently two of
the most interesting and important areas in biochemistry.
Researchers more often analyze molecular dynamics (MD)
simulations rather than static molecules, as the results are
more biochemically relevant. This involves analyzing and
displaying hundreds of thousands of atoms in order to reveal
important features of protein molecules. While the analysis
leading to the detection and categorization of the protein in-
ner empty space can be very time and memory consuming,
the visualization of results should be performed at interactive
frame rates in order to make the visual analysis applicable.

The protein empty space can be categorized with respect
to its shape and other properties. We distinguish between
cavities, tunnels, channels, pores and pockets. Due to in-
trinsic protein dynamics, these specific inner void struc-
tures change their shape and properties over time [KMO02,
CPB*12,KPK*(09]. The detection and visualization of these
structures can facilitate the study of important biochemical
phenomena as well as designing effective drugs or new cata-
lysts [PGB* 12, PKC*09, KCB*13, GBD13]. The design is
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mostly based on the study of chemical reactions between
proteins and small ligand molecules. These reactions take
place in a specific cavity called an active site. Thus, study-
ing the entrance pathways leading to the active site has been
in the scope of researchers over the last years.

In this paper we concentrate on the description of our
novel techniques for animating tunnels in molecular dynam-
ics. We discuss three different tunnel representations em-
phasizing different tunnel properties, such as tunnel width,
shape and physico-chemical properties.

2. Related Work

Several geometric solutions for the detection of protein path-
ways and inner cavities appear in literature. Numerous algo-
rithms for detecting and visualizing molecular cavities ap-
peared as far back as several decades ago, e.g., in [HMO90,
AWO1, Del92]. Cavities can be detected using different ap-
proaches — a grid algorithm described, e.g., in [VG10], an
approximation algorithm [SNW™96] or a space partition-
ing structure, e.g., the Delaunay triangulation (DT) apply-
ing the alpha-shape [LWE98] or beta-complex [CKW™11]
theory. The existing visualization techniques presenting the
computed inner structures primarily concentrate on cap-
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turing their shape and volume. When stressing the vol-
ume, void structures can be filled with a set of intersecting
spheres [HGOS]. The boundary mesh representation of cav-
ities can be computed and rendered [LB92] as well. Several
techniques utilize the volumetric representation of proteins
which enable the direct display of cavities using ray cast-
ing [ZB07, KFR*11], for example. Parulek and Viola ap-
plied the theory of implicit surfaces to visualize molecular
surfaces [PV12] and cavities [PTRV13].

When performing a visual analysis of cavities in MD, they
must be animated in order to better illustrate the change
in their properties (width, shape, stability, etc.) over time.
Recently, several publications appeared in this field. Meth-
ods described in [PTRV13, KKRE14] are used to present
changes of the shape and size of detected cavities in real-
time. However, both publications concentrate on an inter-
active visual analysis in the form of interconnected graph
statistics which capture the various properties of cavities
rather than animating the 3D cavity over time. Lindow et al.
in [LBBHI12] and in [LBBH13] also track detected cavities
over time but it is not obvious whether or not the algorithm
produces an interpolated animation of the trajectory.

In this paper we present novel solutions concentrating
on the smooth animation of a 3D representation of tunnels.
Some of these methods are robust enough to be applied to
other structures, such as cavities, as well. Our solutions are
based on the dynamic tunnel detection and visualization al-
gorithms presented in [MBS07,KASO7]. The detection algo-
rithm tracks the tunnel using its medial axis, i.e., the center-
line [POB*06]. Then, the dynamic tunnel can be visualized
as a set of intersected spheres positioned onto the center-
line or by visualizing the tunnel as a sequence of tetrahedra
obtained using a 3D Delaunay triangulation (used to detect
tunnels) through which the centerline passes.

In the tetrahedra-based visualization approach, we con-
sider tunnels as meshes represented by the tetrahedra bound-
ary. To present the smooth animation of such a representa-
tion, our main task is to morph (find correspondence and in-
terpolate) [LV98] two meshes between consecutive frames.
In the case of tunnels, the meshes have a rather different
topology due to the triangle flips between frames of the orig-
inal DT [SMHO4]. As a general solution, the correspondence
between faces of meshes can be determined using mini-
mal dynamic displacement criterion [HMTT88]. Other al-
gorithms utilize the topology as well as the geometry of the
meshes. These algorithms project their inputs onto an inter-
mediate surface (e.g., a unit sphere [KCP92] or a circular
disc [KSK97]) and perform the vertex to vertex correspon-
dence by merging the topologies, resulting in a supermesh.
The vertex count of the generated supermesh can be opti-
mized [ALSO4]. It may also be important (as in our case) to
preserve the volume of the mesh throughout morphing. In
this case, the interior of given shapes (e.g., triangulations)
rather than their boundaries can be blended [IMHO5].

Since our meshes are derived from DT, we can avoid us-
ing the rather general (and expensive) morphing method. In-
stead, we employ the original tetrahedral representation to
substantially lower the time and memory requirements of the
smooth mesh interpolation, resulting in robust and real-time
animation.

Our solution utilizes the tunnel representation obtained
by the CAVER 3.0 [CPB*12] algorithm. This algorithm is
based on a Voronoi diagram representation of the molecule
and on the Delaunay triangulation. However, this represen-
tation does not take into account the different size of atoms.
To overcome this problem, CAVER 3.0 uses the approxi-
mation approach where each atom is replaced by a set of
spheres of radii corresponding to the radius of the small-
est atom (hydrogen). Then, the new representation uses only
spheres of the same radii and the basic Voronoi diagram
can be applied. The second option is to utilize an addi-
tively weighted Voronoi diagram (AWVD). The results of
these two approaches are comparable — the approximation
method produces qualitatively similar results as the AWVD
method.

3. Definitions

The novelty of this article is based on designing and develop-
ing new approaches for the animation of tunnels throughout
molecular dynamics. The sequence of snapshots of molecu-
lar dynamics obtained from simulations captures the discrete
states of the molecule in time. The time step used within the
simulation differs according to the demands of biochemists.
Generally, the simulation step is in femtoseconds and the
length of the simulation reaches nanoseconds or even mi-
croseconds. Thus, we can obtain thousands and thousands
of snapshots which can be viewed and evaluated. This re-
quires an enormous amount of time so any technique simpli-
fying this process is quite valuable. However, this problem
is beyond the scope of this paper. Here we concentrate on
animating the movement of proteins and their tunnels and
interpolating between the discrete snapshots of the molecu-
lar dynamics. This helps to understand the continuous move-
ments of the molecule and changes in shape of the tunnels.

In this paper we propose three different approaches to tun-
nel animation which are based on existing methods for vi-
sualization of tunnels in one static snapshot. Each of these
methods has its pros and cons, which will be discussed later
in this section. These methods are:

e tunnels represented by a set of intersecting spheres

e tunnels represented by a mesh derived from the set of in-
tersecting spheres

e tunnels represented by a set of subsequent tetrahedra

First, it is necessary to introduce several definitions. These
are crucial for understanding the proposed algorithms.

As mentioned before, the arrangement of the three-
dimensional structure of proteins allows for the presence of
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specific inner voids (active sites) which play a crucial role
in protein reactivity. Chemical reactions can occur on the
protein surface or deep inside the protein. The latter case re-
quires the active site to be connected with the protein surface
by a pathway. The applicability of the methods is indepen-
dent of the type of these pathways, so in the following sec-
tions we will use the term tunnel only.

A tunnel is defined as a continuous empty space leading
from the inner void out to the protein surface. The tunnel
surface is limited by its surrounding atoms. Tunnels can be
calculated using different approaches and algorithms (e.g.,
[POB*06,CPB*12,SVB*13, YFW™*08]). Our solution is de-
rived from Voronoi diagrams and the Delaunay triangula-
tion, which results in the representation of a tunnel by a set
of successive tetrahedra (see Figure 1, top). The vertices of
these tetrahedra are formed by the centers of atoms lining
the tunnel. From this representation, the tunnel centerline
can be derived — it crosses the inner triangles of the tetrahe-
dra. The centerline can be utilized to create a second tunnel
representation — a set of intersecting spheres. In this rep-
resentation, spheres are positioned onto the centerline and
have maximum radii with respect to the surrounding atoms
(see Figure 1, bottom). This representation is widely used
because it describes the tunnel width well. However, it is
not as suitable in situations when a biochemist wants to map
various physico-chemical properties (e.g., hydrophobicity,
charge) onto the tunnel surface or to explore the inner tun-
nel environment. For such tasks, a mesh representation of
the tunnel is more suitable (because of simpler mapping). To
preserve the tunnel width, a representation covering the tun-
nel spheres with a mesh and resembling a tube (see Figure
1, bottom) has been developed.

Figure 1: Top — tunnel represented as a set of neighbor-
ing tetrahedra. The dotted polyline represents the tunnel
centerline. Bottom — the tunnel as a set of intersecting
spheres (grey) and illustration of the tube mesh covering
these spheres (green).
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A tunnel represented by a set of subsequent tetrahedra
consists of triangles which can be classified into two groups
according to their position in the tetrahedra. Triangles sit-
uated in the inner part of the tetrahedra (invisible from the
outside) are called gates (see Figure 2, green) and they in-
tersect the tunnel centerline. Each gate is defined by three
atoms whose centers form the vertices of the gate. Except
for the first and the last gate of the tunnel, the gates are
always shared by two neighboring tetrahedra. The second
group contains those triangles on the boundary of the tun-
nel. We call them bounding faces (see Figure 2, grey).

Figure 2: Tunnel gates (green) and tunnel bounding faces
(gray) forming together the tetrahedra of the tunnel.

4. First approach — sphere tunnel animation

The simplest method smoothly animates the movement of a
tunnel represented as a set of intersecting spheres. Here, we
must solve the correspondence between the tunnel spheres
in two snapshots. Problems can occur in situation when the
number of spheres representing the tunnel in these two snap-
shots is different. In this case, the correspondence can be
derived from the tunnel gates because each gate contains
exactly one sphere from the original tunnel sphere repre-
sentation. More formally, lets identify two tunnels, #; and
ty. These tunnels are defined by their lists of gates G| =
[g115---,81n), G2 = [g21, ..., &2m] respectively. Our goal is to
create the tunnel 7 representing the transition between #; and
1, and to determine its list of gates G = {{a,b} :a € G|,b €
G, }. This means that each gate from G references one gate
from G| and one gate from G». To attain this, we can select
one of the following strategies:

e Linear stretch
e Linear interpolation with respect to surrounding atoms
e Cubic interpolation with respect to surrounding atoms

4.1. Linear stretch

First, we mark the lists of gates G| and G, with respect to
their length (number of gates). The longer list is marked
as Gmqax and the shorter one as Gy,i,. The final list G will
have the same length as Gax and each item /; will be com-
puted as h; = {Gmax[i], Gin[round (i = 7==)]}, where nyiy
and nyuqy 1s the number of items in Gy, and Gyax. As a re-
sult, each item from Guqx Will be referenced only once, and
each item from G,,;, will be referenced at least once. In the
final animation, this occurs as dividing some gates (sphere)
or collapsing more spheres into one.
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4.2. Linear interpolation with respect to atoms

In this case, we take into account the atoms forming gates
of G| and G, (see Figure 3). First, we add to G those pairs
of gates {a € G|, b € G, } where a and b are formed by the
same triplet of atoms. Such gates are subsequently removed
from the original G| and G lists which causes the break up
of these lists to several smaller lists. The newly created lists
are then mapped using the previously described linear stretch
approach. Using this approach, we can avoid the situation
when gates consisting of the same atoms are mapped to other
gates (the linear stretch applied to the whole lists of gates
cannot ensure this condition).

Gl G2
o———-=0

Figure 3: Correspondence between two lists of gates when
using linear interpolation with respect to surrounding atoms.
Thick lines represent pairs of gates formed by the same
atoms, the dotted lines mark the subsets of gates processed
by the linear stretch approach.

4.3. Cubic interpolation with respect to atoms

The two aforementioned approaches can produce slightly
scattered animations. However, thanks to their simplicity,
they can be used for the real-time animation of tunnels
in complex molecular structures consisting of hundreds of
thousands of atoms. In order to produce a smooth and plausi-
ble animation, we introduce another approach which uses the
cubic interpolation between tunnels in different snapshots.
Here, we calculate the interpolated tunnel from four consec-
utive snapshots. This means finding the correspondence be-
tween four lists of gates, G, ..., G4. This is performed pair-
wise — for each pair of lists from neighboring snapshots (G
and Gy, G, and G3, G3 and Gy) using the linear interpola-
tion with respect to the surrounding atoms. Then, we simply
join the results.

When computing the interpolation spline, gates from G,
and Gj3 define the positions of spline end points (lets mark
them start and end) and gates from G| and G4 determine the
normals in these end points. It is necessary to add a normal
to start and end points. On the other side, not every normal
must be assigned to some end point. This can happen when

some point p from G, is assigned with two or more points
from Gj. In such a case only one point from G| (e.g., the
first one) is chosen, others are ignored (see empty circles in
Figure 4).

Gl G2 G3 G4

Figure 4: Correspondence for the tunnel in four consecutive
snapshots.

However, there can be situations when more points from
G are used. Such a situation occurs when the corresponding
point p from G, maps onto more points from Gs. Then, the
sphere represented by this point p is divided and branching
of the tunnel appears. For these branches it is advisable to
use different normals. We can use, for example, the first n
gates (if possible) from G| belonging to p, where n is the
number of branches. This situation is highlighted by thick
lines in Figure 4.

5. Second approach — tube mesh tunnel animation

The second representation is derived from the previous one,
which uses a set of spheres. This representation, which we
call a tube mesh because of its shape, preserves the tunnel
width, which is one of the most important properties of tun-
nels. Moreover, this technique is more suitable when map-
ping other properties (physico-chemical) onto the tunnel sur-
face. When the mesh is visualized as a semi-transparent sur-
face, it also enables a biochemist to walk through the tunnel
and observe the surrounding atoms.

When searching for the correspondence between two tube
meshes, we can utilize the results of the method described
in Section 4. Therefore, even when the final representation
forms the mesh, the interpolation is performed on tunnel
spheres. When the correspondence is determined, the inter-
mediate mesh is constructed and interpolated.

The process of transforming a set of spheres into a tube
mesh is as follows (see Figure 5):

1. For each sphere we find the plane passing through its cen-
ter, which is orthogonal to the tunnel centerline. By inter-
secting this plane with its corresponding sphere we obtain
a circle.

© The Eurographics Association 2014.



Kozlikovd et al. / Visualizing movements of protein tunnels in molecular dynamics simulations 101

2. For each pair of neighboring circles we create a mesh
connecting them. This mesh resembles a tube.

3. To close the tunnel, the first and the last circle is capped
by cones with a height set to the radius of these circles.

4. We use Loop subdivision to smooth the mesh. Here it is
sufficient to set the subdivision step to 1.

2°9g

— )
TR

Figure 5: Basic steps of creating the tunnel tube mesh from
a set of spheres.

6. Third approach — tetrahedra tunnel animation

The third tunnel visualization is derived from its tetrahedral
representation, and it displays a mesh that can be of an ar-
bitrary subdivision level. The most challenging part is again
to determine the correspondence between individual vertices
on the surface mesh of the tunnel in two different configura-
tions. We can utilize the fact that the mesh was created from
tetrahedra and thus we can search for the correspondence on
the original tetrahedral representation. Then, the information
will be transferred backwards to the original mesh. The idea
of finding the correspondence between two tunnels repre-
sented by their thetrahedra is based on detecting three poly-
lines on the tunnel surface. When the polylines on both tun-
nel configurations are detected, we can interpolate between
them and, as the last step, reconstruct the tunnel mesh.

6.1. Correspondence between mesh vertices

The whole process of searching the correspondence between
two meshes representing a tunnel in different time steps can
be divided into three main phases.

6.1.1. Searching for the polylines on the tunnel surface
Each tunnel is represented as a linear sequence of tetrahe-

dra. Such a tunnel contains exactly three possible polylines
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(linear sequences of edges of bounding faces) that fulfill the
following conditions (see Figure 6):

e The polyline starts in one of the vertices of the first gate.

e The polyline ends in one of the vertices of the last gate.

e The polyline does not contain any edge of any gate. In
other words, it follows edges belonging only to one tetra-
hedron. Each tetrahedron possesses exactly one such edge
which is not shared with any neighbor (except for the first
and the last tetrahedron) which makes the solution unique.

S

Figure 6: Three polylines (red, green, blue) on the tunnel
surface.

6.1.2. Correspondence between snapshots

When the triplets of polylines in two tunnel configurations
are known, we can search for the correspondence between
them. In other words, for each polyline in the first configu-
ration we must determine its corresponding polyline in the
second configuration. Here we can utilize the fact that each
vertex of any gate belongs to one of the three polylines so
we can start searching the correspondence from a specific
gate and its vertices in both configurations. The correspon-
dence between vertices of gates can be then determined by
measuring the distance between them (see Figure 7). In our
case, we choose the gates which are closest to the active site
from both configurations as the starting gates. This is due
to the fact that this area of the protein is the least variable
within molecular dynamics simulations. Thus we expect that
the distance between vertices is minimal.

Figure 7: The correspondence between vertices of a gate
in two snapshots. Each triangle represents the state of the
gate in one snapshot and the distance between vertices is
calculated.
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6.1.3. Correspondence between vertices of polylines

This step is straightforward as we have the information about
the correspondence of polylines, obtained from the previ-
ous step. Here we need to interpolate two linear lists of ver-
tices. Firstly, we define the mapping between gates (using
one of the methods described in Section 4). We obtain the list
G ={{a,b} :a € G,b € Gy}. Then two vertices v| and v,
correspond to each other if there are gates x and y such that
v is the vertex of x and v, is the vertex of y and {x,y} € G.

6.2. Interpolation

When animating protein tunnels we face several situations
which require specific interpolation. In this section we de-
scribe these situations along with the solution we have cho-
sen for their interpolation.

6.2.1. Interpolation using circular pathways

Lets consider the situation when, during the animation, one
gate has to be rotated 180° (see Figure 8, left part). In this
case, the interpolation, which tries to maintain the minimal
distance between the initial and final vertex positions, causes
the triangle to be shrunk to one point in the first half of the
animation and in the second half this point expands to a new
triangle with the desired final positions of its vertices. This
behavior is unwanted because it evokes changes in the tunnel
width which are incorrect.

To overcome this problem, we shift the points on circu-
lar pathways instead of the shortest ones (see Figure 8, right
part). The shifting consists of a translation of the circle cen-
ter and rotation of the point. The center of each such circle is
positioned in the center of its corresponding gate (when be-
longing to more gates at once, the average position is com-
puted). The center of the circle follows the line pathway
heading from the center of the starting gate to the center of
the final gate. The plane where the circle lies is determined
by two vectors vec| and vecy where vec) is derived from the
position of the point in the starting position and the center
of the first gate and vec; is computed identically at the end
position.

6.2.2. Interpolation between tunnels crossing atoms

Another situation occurs quite often when a part of the tun-
nel (or even the whole tunnel) substantially changes its posi-
tion within the protein. This is caused by movements of the
atoms defining the tunnel gates. In this situation we again
use the interpolation, maintaining the minimal distance be-
tween interpolated points, and the tunnel could pass through
atoms, which is undesirable (see Figure 9).

The correct visualization should avoid this artifact. There-
fore, the animation displays the tunnel jumping to the new
position without intersecting any atom. This better corre-
sponds to actual tunnel behavior. Moreover, the snapshots

Figure 8: Interpolation between two positions of a gate, ro-
tated by 180°. Left — interpolation maintaining the minimal
distance between start and end positions. Right — interpola-
tion using circular pathways. Transparent parts in both fig-
ures represent the intermediate states of the animation.

Figure 9: Interpolating the tunnel position using minimal
distance rule. In this case the tunnel can intersect with
atoms.

of molecular dynamics capture the protein state in discrete
time steps and we cannot claim that we precisely know what
happened to the tunnel between the neighboring snapshots.
‘We only know that the tunnel cannot pass through any atom
at any time.

However, the jumping between individual snapshots
causes avoidable flickering. When the tunnel between snap-
shots changes only slightly, we can use the interpolation to
produce a smooth animation. To determine when the tunnel
changes slightly or substantially, we have to set two thresh-
olds. Both can be derived from the distance between tunnel
tetrahedra in two snapshots. When the distance between tun-
nel tetrahedra in two consecutive snapshots is less than 0.9
/&ngstréms (size of hydrogen atom), it is ensured that the in-
terpolation does not cross any atom and we can interpolate
without any restrictions. The second threshold, experimen-
tally set to 5 Angstroms, defines that the tunnel changes sub-
stantially. In this case, the tunnel can jump directly to a new
position or, to make the animation smoother, it can gradu-
ally disappear and appear again on different site. When the
distance is between these two thresholds, we face a situation
where the tunnel crosses through atoms (see Figure 9). We
solved this by introducing the successive disappearance and
appearance of the given tunnel part within the animation as
illustrated in Figure 10.
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Figure 10: lllustration of morphing the tunnel position be-
tween three snapshots. The given part, which should be
moved, narrows and finally disappears. This part appears
again in the final position, where it successively broadens.

6.3. Mesh reconstruction

All of the interpolation methods described until now worked
with a triplet of polylines representing the tunnel. However,
the tunnel was originally represented as a mesh. To present
the animated tunnel mesh, we must reconstruct its triangu-
lation from the polylines. This is performed for each pair of
polylines separately (when marking the polylines as A, B and
C, the pairs will be A-B, B-C and C-A) (see Figure 11).

Face A-B

Face B-C
Path B

Figure 11: Three polylines and their corresponding faces.

Algorithm 1 Triangle strip reconstruction between polylines

Require: A = [ay,ay,...,an], B=[b1,b2,...,bn]
1: pa < ay
2: pp < by
3: forall g €0,...,NumOfGates — 1 do

4: if g = last(pa) then
5: Add triangle pa, pa+1, Do
6: Pa <= Da+1
7 end if
8: if ¢ = last(py,) then
9: Add triangle py, pp+1, Pa
10: Pb <= Pb+1
11: end if
12: end for

The algorithm 1 reconstructs the triangle strip between
two polylines. Lets consider G as the list of tunnel gates,
sorted according to their position in the tunnel, and two poly-
lines, A and B, which are determined by their lists of vertices:
A =lay,az,...,an], B=[b1,by,...,bm]. Each vertex a; (b; re-
spectively) can correspond to one or more gates. For each
such vertex we select its corresponding gate with the highest
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index (with respect to the ordering taken in G). For vertex
a;, mark this gate as last(a;). Then, the algorithm processes
all gates of the tunnel. We utilize the fact that each gate can
be last for exactly one vertex. Additionally, the position of
this vertex will be updated — shifted to its new i+ 1 position
(see Figure 12).

P..  Path A

Path B

pb+1
Ps

P..  Path A

Path B

pb+1
Py

Figure 12: Creating triangle strip between two polylines.
Each illustration corresponds to one condition in the pseu-
docode 1.

The reconstructed mesh is quite rough. When visualiz-
ing this surface mesh, we use the Loop subdivision scheme
[Loo87] to produce a smooth surface. When using the
scheme for animations, it is crucial to balance the smooth-
ness of the surface and the performance. Experimentally we
decided to set the subdivision step to 2.

6.4. Results

All three proposed solutions for tunnel animation were
tested on MD simulations obtained from biochemists. They
capture the real movements of the DhaA haloalkane dehalo-
genase wild type and its different mutations. The largest
tested dataset contains 20,000 snapshots of DhaA dynam-
ics. The length of explored tunnels stretches from 15 to 50
Angstréms. The results obtained by the testing of the pro-
posed algorithms can be viewed from different perspectives.
We observed the performance of these techniques in order
to evaluate their applicability in real-time. Then, we con-
centrated on the usability and the predicted value from the
biochemical point of view.

Table 1 shows the performance of all techniques (illus-
trated in Figure 13). It shows the comparison between an-
imation frame rates when animating more tunnels at once.
As the animation of tunnel spheres is the most simple tech-
nique, its performance when animating more tunnels de-
creases only slightly. The performance of the other two ap-
proaches decreases when animating more tunnels at once.
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Figure 13: Three different visualization styles of tunnels utilized in our animation techniques — from the left: spheres, tube or
tetrahedra. Coloring according to hydrophobicity of surrounding amino acids is mapped onto the tunnel surface. The distribu-

tion of coloring is better in the tube and mesh representations.

# of tunnels | spheres tube tetrahedra
1 tunnel 98.8 90.5 85.6
5 tunnels 97.3 64.3 39.3
10 tunnels 96.8 48.9 25.4

Table 1: Comparison between animation frame rates (in
FPS) when animating more tunnels at once.

However, the length of the simulation does not influence the
overall performance as the interpolation is calculated at most
from four subsequent snapshots.

The test was performed on an Intel Core 15 3470 3.2GHz
CPU, 16GB RAM, Win7 64-bit, and it is obvious that all
three techniques reached real-time rates enabling interac-
tive visual analysis of reasonable and meaningful amounts
of tunnels in molecular dynamics. From a biochemical point
of view, the animation speed is mostly very limited because
the main aim of the animation is to explore the tunnel and
understand its behavior. Moreover, exploring more tunnels
at once is impractical and does not lead to a better under-
standing of the protein structure.

All methods were evaluated by biochemists as well. The
first approach animating the tunnel spheres was perceived
very positively because it captures the tunnel width and is
easy to understand. Moreover, this representation is common
in existing visualization tools so it is familiar to biochemists.
The only problem of this technique is appears mainly when
interpolating between tunnels crossing atoms. When shrink-
ing the tunnel on one side or broadening it on the other side,
the tunnel seems to be discontinuous — tunnel spheres be-
come too small and do not intersect (see Figure 14 top). This
could be solved by adding another spheres to the tunnel.
However, the visual appearance of such solution was not ac-
ceptable by the biochemists. Another solution provides the
tube mesh tunnel representation which better describes the
tunnel shape (see Figure 14 bottom). The tube mesh and
tetrahedra representations also enable more intuitive map-
ping of physico-chemical properties onto the tunnel surface.
Moreover, the tetrahedra tunnel can capture the mutual cir-
cumfluence of neighboring tunnels. On the other hand, in the
representation derived from tetrahedra, the tunnel changes
more dynamically which is sometimes confusing for bio-
chemists.

Figure 14: Tunnel discontinuities when using the tunnel
sphere representation (top). Tube mesh representation (bot-
tom) solves this problem.

6.5. Conclusion

‘We have proposed three methods for animating protein tun-
nels in molecular dynamics simulations. These methods are
derived from existing visualization techniques designed pri-
marily for static structures. We extended these methods
by adding specific morphing techniques which enable the
smooth animation of tunnels. This helps biochemists and bi-
ologists in visual analysis and exploration of detected dy-
namic tunnels. Methods were designed and tested in cooper-
ation with biochemists and can serve as useful guidance for
large molecular dynamic simulations.

© The Eurographics Association 2014.
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