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Abstract
Efficacy of radiotherapy treatment depends on the specific characteristics of tumorous tissues. For the determi-
nation of these characteristics, clinical practice uses Dynamic Contrast Enhanced (DCE) Magnetic Resonance
Imaging (MRI). DCE-MRI data is acquired and modeled using pharmacokinetic modeling, to derive per voxel
a set of parameters, indicative of tissue properties. Different pharmacokinetic modeling approaches make differ-
ent assumptions, resulting in parameters with different distributions. A priori, it is not known whether there are
significant differences between modeling assumptions and which assumption is best to apply. Therefore, clinical
researchers need to know at least how different choices in modeling affect the resulting pharmacokinetic parame-
ters and also where parameter variations appear. In this paper, we introduce iCoCooN: a visualization application
for the exploration and analysis of model-induced variations in pharmacokinetic parameters. We designed a visual
representation, the Cocoon, by integrating perpendicularly Parallel Coordinate Plots (PCPs) with Cobweb Charts
(CCs). PCPs display the variations in each parameter between modeling choices, while CCs present the relations
in a whole parameter set for each modeling choice. The Cocoon is equipped with interactive features to support
the exploration of all data aspects in a single combined view. Additionally, interactive brushing allows to link the
observations from the Cocoon to the anatomy. We conducted evaluations with experts and also general users. The
clinical experts judged that the Cocoon in combination with its features facilitates the exploration of all significant
information and, especially, enables them to find anatomical correspondences. The results of the evaluation with
general users indicate that the Cocoon produces more accurate results compared to independent multiples.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

Applications; J.3 [Computer Applications]: Life and Medical Sciences—Life and Medical Sciences

1. Introduction

In cancer treatment, the efficacy of radiotherapy is hypothe-

sized to depend on the specific characteristics of tumorous

tissues. Tumor characterization requires the use of differ-

ent imaging modalities, among which Dynamic Contrast En-

hanced (DCE) Magnetic Resonance Imaging (MRI). These

are time series of three-dimensional image volumes, i.e. 4D

data, which reflect the absorption of a contrast agent by tis-

sues. After DCE-MRI data acquisition, clinical practice uses

one of the established models to derive per voxel a set of

output parameters, which are indicative of tissue character-

istics. However, different modeling approaches require dif-

ferent assumptions or choices. Depending on these choices,

the resulting parameters might present different values.

It is difficult to decide beforehand whether different as-

sumptions or choices lead to significant parameter differ-

ences and which assumption leads to better results. There-

fore, it is valuable for clinical researchers to explore the

variability in the parameter values, as given by the different

alternatives. In this way, they can identify which anatomi-

cal regions are affected more by the modeling choices and

whether this has an impact on the final clinical decision and

treatment. Apart from exploring variations in the parameters

independently, it is also important to know how the relation-

ships between parameters change. Still, these relationships

c© The Eurographics Association 2014.

DOI: 10.2312/vcbm.20141178

R. G. Raidou1, M. Breeuwer1,2, A. Vilanova1,3, U. A. van der Heide4 and P. J. van Houdt4
1TU Eindhoven, The Netherlands

2Philips Healthcare Best, The Netherlands
3TU Delft, The Netherlands

4Netherlands Cancer Institute, The Netherlands

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vcbm.20141178


R.G.Raidou et al. / The iCoCooN

are complex and the effect of different choices on DCE-MRI

modeling is difficult to predict. To the best of our knowledge,

there is no tool that allows this kind of inspection.

In this paper, we introduce a new application: the iCo-

CooN (Integrated Cobweb Charts and Parallel Coordinate

Plots for Visual ANalysis of DCE-MRI Modeling Varia-

tions). It is a visualization tool for the exploration and anal-

ysis of variability in the parameter values that result from

different choices during DCE-MRI modeling. Within iCo-

CooN, we designed a representation, called Cocoon. For

this, we integrated Parallel Coordinate Plots (PCPs) with

Cobweb Charts (CCs - also called Star or Spider Plots, Radar

Charts or Kiviats in literature), to simultaneously show dif-

ferent significant aspects of the data and to provide a more

effective exploration. The interactive features of iCoCooN

facilitate data exploration and improve anatomical interpre-

tation.After the design, we conducted an evaluation of iCo-

CooN with clinical experts, where we performed two real-

patient case studies. Due to the limited amount of field ex-

perts, we conducted an additional usability study with non-

experts, to increase the statistical power of our evaluation.

Our work presents the following contributions:

• The iCoCooN is a new interactive application that en-

ables the visual analysis of DCE-MRI modeling variations

and, especially, the association of the observations from the

parameter space to the patient anatomy.

• The Cocoon is a visual representation within the iCo-

CooN, which results from the integration of PCPs with CCs.

It enables the exploration and analysis of the DCE-MRI

modeling information in a single combined view.

• The evaluations demonstrate the potential of the iCo-

CooN for the analysis of DCE-MRI modeling variations.

2. Clinical Background

Dynamic-Contrast Enhanced (DCE) Imaging is a commonly

used MRI technique in cancer diagnosis. DCE-MRI data are

4D data, i.e. 3D volume+time data, which depict the absorp-

tion and washout of a contrast agent (CA) in tissue over of

time. This technique is based on the idea that tumorous and

healthy tissues have different CA uptake properties. Tumors

tend to develop new, disorganized and permeable vessels,

which have thinner and weaker walls [TTP∗10]. Thus, they

absorb and wash out CAs faster than healthy tissue.

A quantitative way of measuring tissue properties from

DCE-MRI data is to use one of the established pharma-

cokinetic (PK) models [TBB∗99, KVBH12, SB13]. These

models are employed to derive per voxel an output set of

PK parameters, which describe the distribution of the con-

trast agent inside the tissue and are indicative of tissue char-

acteristics [SB13]. Each PK model considers a number

of assumptions or crisp choices [PB05, TTP∗10, CFY∗11,

KBO∗11], depending on which, the values of the obtained

parameters may differ (Figure 1). Clinical researchers do

DCE-MRI data PK modeling 

N Assumptions 

N PK parameter sets 
Figure 1: DCE-MRI data (orange) undergo pharmacoki-
netic (PK) modeling (blue: the extended Tofts model [PB05,
Tof10]) using a number of input assumptions to derive per
voxel the PK parameter sets (purple; also bold in model).
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Figure 2: Standard layout for the inspection of PK parame-
ter maps (columns) of a tumor, modeled using three different
PK models (rows). Some parameters of the 2CXM are not
involved in the TM and ETM models [SB13].

not know a-priori whether there are significant differences

among models or their modeling assumptions and which

choice is the optimal to apply. Therefore, it is valuable for

them to investigate how the derived PK parameters behave

with different modeling choices. In this way, they can ex-

plore the impact of these choices on the precision of the

treatment outcome.

Currently, clinical practice uses a slice-based technique,

where the values of each PK parameter from the different

assumptions are mapped to a colormap (Figure 2). Analysis

using these so-called PK parameter maps is time consuming

and does not provide the necessary insight, as clinical users

need to manually inspect all slices of the different maps and

to mentally perform the relationships, i.e. spatially and be-

tween assumptions. More specifically, in a real-world anal-

ysis, clinical researchers are required to explore at a voxel

level the following data aspects:

1. Identification of Variability - The variations in each one

of the PK parameters for different choices in modeling.

2. Identification of Relations - The relations inside each

one of the PK parameter sets as a whole.
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3. Comparison of Behaviors - The variations in the PK

parameter set relations for different choices in modeling.

4. Detection of Patterns - The effect of different choices in

modeling on patterns in the data.

5. Exploration and Anatomical Reference - The anatom-

ical location of specific interesting behaviors or features.

To the best of our knowledge, there is no integrated tool

with this complete functionality. For this reason, we de-

signed the iCoCooN, with respect to the previously men-

tioned requirements, as defined by the users.

3. Related Work

There are numerous ways of visualizing multivariate data

[Kei02]. In this section, we present the most relevant work

related to the iCoCooN. Preim et al. [POM∗09] presented

a survey on applications for the exploration and analysis of

perfusion parameters that characterize the shape of the DCE-

derived enhancement curves and their correlation with the

data. Yet, model-induced variability of PK parameters has

not been addressed by any of these applications. The visu-

alization of Nguyen et al. [NBYR12] focuses on the mini-

mization of uncertainty in kinetic PET modeling parameters.

This application allows the exploration of variabilities in the

parameters, but the capabilities to show relations between

parameters and the effect of variability on these are limited.

Although our tool was designed specifically for deal-

ing with DCE-MRI modeling variations, the general idea

of combining PCPs with CCs is not new. In Temporal

Stars [NF02], discrete multiples of radial graphs, with each

axis representing a variable, are set along a central time axis

to describe variation with time. This representation is useful

for comparing different star glyphs or for monitoring time

evolution of the variables. As an extension, the 3D Kiviat

[TAS05] combines variable axes circularly arranged to a

central time axis and a surface rendering around the 2D Kivi-

ats for each time step to show time evolution of the variables,

i.e., the evolution of the 2D Kiviats in time. In this way, 3D

Kiviats show correlations between attributes, while preserv-

ing the focus on time evolution. The visualization proposed

by Fanea et al. [FCI05] employs a combination of PCPs and

Star Glyphs in a single configuration, to address clutter in

the former. Each Star results from PCP polylines unfolding

around the central axis and depicts a data item or a data di-

mension, thus, maintaining the total number of dimensions.

The PCPs of this visualization do not provide additional di-

mensions with additional information or insight in data rela-

tions or patterns. Finally, in VisLink [CC07], interrelation-

ships between multiple visualizations can be interactively

explored, with the form of multiple 2D layouts positioned

in space and linked together to show data associations.

Our approach combines specific attributes of the previous

work with new ones, to accommodate all the requirements

of our application, as mentioned in Section 2. We keep the

Star Glyphs for the exploration of relations and behaviors

in each parameter set [NF02, FCI05, TAS05], but we pro-

vide additional dimensions with PCPs for the exploration

of trends and relations in each one of the parameters across

these different choices. In this way, the PCPs provide addi-

tional information and are not restricted to time representa-

tion [NF02, TAS05] or to linking multiple representations

[CC07]. Finally, we incorporate functionality to link obser-

vations from the parameter space to the anatomical space,

which is not provided in any previously mentioned work.

4. The design of iCoCooN

After DCE-MRI acquisition, different output parameters are

derived per voxel during PK modeling, using one or more of

the established models and/or a number of assumption alter-

natives. In order to visualize all data aspects, as described in

Section 2, we employ the workflow proposed in Figure 3.

For the visualization of each one of the PK parameters

across the different choices, we decided to employ PCPs
[Ins85] (Figures 3 and 4). This representation allows the user

to visualize multiple data dimensions in limited space and to

detect trends and patterns. In our case, each line in the PCPs

corresponds to a location in the medical volume and each di-

mension to a PK parameter value for the different modeling

choices. It is a suitable choice for the identification of model-

induced variability in each of the PK parameters. For the vi-

sualization of each modeling choice, we decided to employ
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Figure 3: Workflow considered for designing iCoCooN.
With dark green, we denote the five requirements discussed
in Section 2, for the visualization and exploration of the re-
quired data aspects.
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Figure 4: Configuration of Cocoon from perpendicular in-
tegration of PCPs (cyan) and CCs (magenta). Here, we con-
sider four PK parameters for three assumptions (choices).

c© The Eurographics Association 2014.

13



R.G.Raidou et al. / The iCoCooN

Figure 5: An implementation of the Cocoon for four PK parameters (Ktrans, ve, vplasma and kep) and three assumptions (IndAIF,
PopAIF and ParAIF). Zoomed view: using the density colormap for better line visibility (red: very low density or outliers;
yellow: low density; white: high density).

CCs [CCKT83] (Figures 3 and 4). This compact iconogra-

phy representation combines the advantages of PCPs with

glyphs for the easy detection of patterns among different

plots [Kei02], based on the human perceptual ability to eas-

ily discern shape differences. In our case, each line in the

CCs corresponds to a location in the medical volume and

each dimension to a PK parameter value derived from one

modeling choice. It is a proper choice for comparing quali-

tatively a whole PK parameter set against another, or for lo-

cating relations, similar and dissimilar behaviors or outliers

in a parameter set.

Using a single PCP with each axis reflecting the PK pa-

rameter values and an additional discrete axis reflecting the

different modeling choices is not an appropriate option. This

solution adds clutter in the PCP due to an increasing num-

ber of overlapping lines from the different modeling choices.

Furthermore, it can only provide an overview on global shifts

in the parameters, while it disregards spatial relationships

between parameter sets and does not satisfy all the require-

ments of Section 2. Therefore, for visualizing and linking

both intra- and inter-model information, both PCPs and CCs

are needed. However, if many variables are involved in the

exploration, independent multiple PCPs and CCs might be

visually cumbersome, due to the amount of windows.

For these reasons, we decided to create a new represen-

tation, the Cocoon, from the perpendicular integration of

PCPs and CCs in a single 3D view with orthographic projec-

tion [Mun09]. With the 3D Cocoon, we improve exploration

by conveying different views of the data in an equal context.

This is also one of our main differences with respect to previ-

ous work [NF02,FCI05,TAS05,CC07,POM∗09,NBYR12]:

the PCPs of the Cocoon are not linking multiple CC repre-

sentations, but they show additional dimensions of the data.

In this way, we facilitate linking between parameters and

modeling choices in a compact view, without forcing the

user to use his memory during tasks, as in the case of the

independent multiples. Figure 4 depicts the concept behind

the configuration of the Cocoon, when we have four param-

eters to compare across three assumptions. For our applica-

tion, we need to show a limited number of different model-

ing choices and a maximum of six independent parameters

[SB13]. The optimal number of parameters is four, but for

more than four parameters in the CCs, the user can selec-

tively switch on and off axes in the representation. There-

fore, the scalability of the Cocoon is adequate for this con-

crete application and we consider out of the scope of this

paper to study higher dimensionality. Figure 5 shows an im-

plementation of the Cocoon for the concept of Figure 4.

We needed to address three main issues concerning the

Cocoon: (1) complexity of interaction, (2) perception con-

straints due to limited short term memory [PW06] and (3)

clutter [Mun09,DCK12,HW12]. For the first issue, we facil-

itate interaction by reducing the degrees of freedom. Not

all orientations of the Cocoon are sensible, so the user can

rotate the Cocoon only around two axes (longitudinal and

latitudinal) to adapt the view. For the second issue, the spe-

cific tasks in our application field do not require to rely on

short term memory. In an opposite case, the user can still

selectively show the independent multiple PCPs and CCs to

clarify information from the Cocoon, since all components

are linked [War01, Mun09]. For the last issue, we increase

the visibility of the polylines of the Cocoon using low alpha
values, but also a colormap based on the lines density (Fig-

ure 5). The density colormap enables better discernibility of

overlapping bundles, giving an impression of texture and an

idea of the variability of the data; for example, high density

lines that highly vary throughout the assumptions may in-

dicate that the assumptions have a strong impact on parame-
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Figure 6: Two features: (a) - Band coloring on the axis with the red arrow for the identification of trends in the data. The zero
values of Vplasma for the first AIF (brown lines), correspond to the values of Ktrans in the red box. The legend shows the employed
colormap. (b) - Brushing the Cocoon. (1) - Cyan brush in PCPs and magenta in CCs to reduce occlusion due to overlapping
polylines and glyphs. (2) - Visualization of the brushed bundles only. (3) - Linking to 2D anatomy and (4) - to 3D model.

ters, while very low density lines that highly vary throughout

the assumptions may indicate outliers.

Clinical researchers usually look at specific combinations

of PK parameters, which we offer as the default view in the

axes configuration. To improve the view and to increase visi-

bility further, we use a number of interaction features. Axes
reordering often affects positively the view and the ability

to see relations and trends in the data [WPWR03], while

scaling allows to pull apart dense parts of the representation

for better discernibility. Although automatic algorithms for

axes reordering can be helpful, given the dimensionality of

our application, they were not considered further. Band col-
oring allows the user to extend a primitive clustering from

the values of one dimension of the Cocoon to all. We employ

a divergent colorblind safe colormap from ColorBrewer, in

order to differentiate between low, medium and high param-

eter values. Figure 6-a shows how band coloring aids rough

detection of trends in the data, visualized as color bands.

Brushing allows the users to explore, analyze and detect in-

teresting trends and relations by selecting areas or values of

specific interest in the Cocoon [War94, Kei02] (Figure 6-

b:1,2). Finally, linking the brushed observations to the med-

ical data, by highlighting the corresponding regions in a 2D

slice viewer and a 3D model (Figure 6-b:3,4), establishes

correspondence to the patient anatomy.

We implemented iCoCooN in Python as a DeVIDE mod-

ule [BP08], employing the Visualization Toolkit (VTK).

5. Evaluation Results

In order to assess the value of the iCoCooN, we conducted an

evaluation, inspired by the article of Lam et al. [LBI∗12]. It

consists of two parts: (1) an evaluation of the iCoCooN with

clinical researchers and (2) a general evaluation to test the

usability and effectiveness of the Cocoon and to increase the

statistical power of the evaluation, given the limited avail-

ability of field experts. For the second part, we abstracted

the tasks from the clinical field to a more general domain, so

that they could also be performed by non-experts.

5.1. Evaluation with Clinical Researchers

In order to evaluate whether the designed visualization meets

its requirements, we conducted individual evaluations with

intended users: four field experts from different institutions,

representing two types of clinical researchers, i.e. two clin-

ical physicists and two biomedical engineers. As a proof

of concept, we used two cases: (1) a prostate tumor case,

where clinical researchers want to explore and analyze the

effect of different clinically established choices of arterial

input function (AIF) [PRM∗06, CFY∗11, KBO∗11] within

the same model on the PK parameters and their in-between

relationships; and (2) a cervical tumor case, where clinical

researchers want to explore and analyze how the parame-

ters and their in-between relationships vary when derived us-

ing three different established models [TBB∗99, KVBH12,

SB13]. These datasets were provided by the clinical re-

searchers themselves and are described in Table 1.

The evaluation consisted of four phases. One of the

phases, i.e. the third, was task-specific, while the others were

general and aimed at clarifying three broader aspects:

• Does the proposed Cocoon offer new understanding in

the data, in comparison to current practice and also the in-

dependent multiple PCPs and CCs? If yes, how? If no, why?

• Do the features of the Cocoon contribute to the visual-

ization and facilitate cognition? If yes, how? If no, why?

• Does brushing and linking contribute to the exploration

and interpretation of the data? If yes, how? If no, why?

In the first phase of the evaluation, we simulated the vi-

sual environment for the exploration of the PK parameter

space in prostate and cervical data. In this phase, we were

interested in a first opinion on the individual features of iC-

oCooN. This part was also used as training, so the tool was

initially operated by the first author, while the test subject

first observed a demonstration and then explored the func-

tionality. We asked the test subjects with a questionnaire

to comment on the clarity and potential usefulness of each

one of these features, but also to quantify their value using
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Table 1: Description of the datasets used in the evaluation with clinical researchers. We work on the whole prostate region, but
only on the specific tumor region in the cervix, due to the high anatomical variability of the organ between individuals.

DCE-MRI data (4D) Modeled data (3D)

Resolution Voxel size Time resolution ROI size Modeling choices PK maps PK maps resolution PK voxel size

(voxels) (mm3) (s) (voxels) (voxels) (mm3)

Prostate dataset 256 × 256 × 20 for

120 timepoints

1×1×3 2.5 80× 80× 20 (usual

prostate size)

3 AIF alternatives 4 3D maps per

choice

256 × 256 × 20 (as

in DCE-MRI)

1 × 1 × 3 (as in

DCE-MRI)

Cervix dataset 176 × 176 × 20 for

120 timepoints

2.273×2.273×3 2.5 33 × 33 × 18 (spe-

cific tumor size)

3 different models 3, 4 and 6 3D maps

per choice

176 × 176 × 20 (as

in DCE-MRI)

2.273 × 2.273 × 3

(as in DCE-MRI)

a grading scale (1-5). The second phase required from the

test subjects to grade (1-5) the ability to identify variations

and relationships in the data, but also to relate them to the

anatomy and pathology of the patient. The third phase re-

quired a more detailed hands-on exploration of the data, aim-

ing at evaluating the insight provided by iCoCooN. In this

phase, the test subjects operated the tool exclusively them-

selves and they were asked to explore the data in iCoCooN

and to analyze their observations, as they would do in a real

case, performing the tasks of Section 2. In the last phase,

they evaluated the tool as a whole, based on their experience,

commenting also on the strengths, limitations and missing

features of iCoCooN.

5.1.1. First Phase: the iCoCooN Features

In the first phase, the test subjects evaluated the features of

iCoCooN individually, following a questionnaire. The quan-

titative results from this evaluation are summarized in Ta-

ble 2, with a convention of 1 for negative to 5 for positive.

All features of iCoCooN received scores above 4, apart from

two cases with a neutral grade (3), where the subjects com-

mented that they needed to form a more concrete opinion by

performing an actual task.

Using a questionnaire, we also asked for general com-

ments on each one of the features. First of all, the Cocoon
was considered understandable and relatively easy to use.

The test subjects confirmed that it enables the identifica-

tion of variations, relations and trends in the multidimen-

sional data in a combined view, even for parameters that do

not seem to have an obvious association in the independent

multiple views. The restricted manipulation of the Co-
coon in space is according to the test subjects appropriate.

Yet, the Cocoon requires training for learning how to ob-

tain the most adequate view and to interpret the conveyed

information. They were inclined, though, to say that there is

no need to additionally inspect the independent multiples.

Table 2: Evaluation of the features of iCoCooN by clinical
researchers, using a grading scale (1=negative, 5=positive).

#1 #2 #3 #4

Cocoon 3 4 4 4

Cocoon Manipulation 5 4 5 4

Cocoon inst.of Ind.Mult. 5 3 4 4

Scaling/Reordering 4 5 5 4

Band/Density Coloring 4 4 5 4

Brushing/Linking 4 5 5 5

The independent multiples might be used selectively, only

for details-on-demand or for easier tasks that involve single

parameters. However, they stated that they needed to confirm

this impression with a more exploratory task. The advan-

tages of reordering and scaling the Cocoon axes are also

straightforward for data interpretation, while band coloring
provides a visual context of how the values of one parameter

behave in respect to the rest of the parameters and aids the

detection of basic patterns in the data. The application of the

density colormap was considered useful for distinguishing

overlapping lines and for deciding on the importance of the

variations, relations or trends. This feature requires training,

but was regarded as easy to learn. Finally, according to the

test subjects, there is no currently used tool with brushing
and linking functionality for their purposes. They described

it as potentially easy to learn and use; an appropriate and ap-

pealing feature for data exploration, especially for relating

observations from the Cocoon to the patient anatomy.

5.1.2. Second Phase: Information Identifiability

In the second phase, the test subjects had to grade (1-5) the

ability to identify specific information using the iCoCooN,

i.e. variability and relations or trends, and the ability to relate

findings from the iCoCooN to anatomy. The quantitative re-

sults from this evaluation are summarized in Table 3, with a

grading convention of 1 for easy to identify to 5 for difficult.

All but one gradings were below 2, indicating that the test

subjects considered the three tasks easy. In only one case,

the relation to the anatomy received a neutral grade (3), as

the test subject explained that he would need to interact with

the Cocoon more, to form a more concrete opinion.

Table 3: Evaluation of the identifiability of information
in iCoCooN by clinical researchers, using a grading scale
(1=easy, 5=difficult).

#1 #2 #3 #4

Variability identifiability 2 2 1 2

Relations identifiability 2 1 2 2

Relation to anatomy 2 1 2 3

5.1.3. Third Phase: Case Studies

In this phase, the test subjects used iCoCooN for the ex-

ploration and analysis of a prostate dataset and a cervical

dataset, as they would do in a real case, executing the tasks

of Section 2. The patient-specific findings presented below

are observations of the clinical researchers.
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Figure 7: Exploration and visual analysis of a prostate tu-
mor case with iCoCooN during the third phase of the evalu-
ation with clinical researchers.

Case study: Prostate The test subjects were interested in

exploring how the four PK parameters of the extended Tofts

model (Ktrans, ve, vplasma and kep) [TBB∗99], vary across

three different AIF choices (Individual, Population-based

and Parker-based AIF) [PRM∗06, CFY∗11, KBO∗11]. The

AIF is used as an input assumption to the model and there

are different options for its precise shape [KBO∗11]. The be-

havior of the parameters for the different AIF choices, pre-

sented these major patient-specific findings:

1. Identification of Variability - The Ktrans parameter,

which relates to the tissue permeability, remains highly un-

altered throughout the different AIF choices (Figure 7-a:1).

Minor changes in the distributions are reflected by changes

in the density colors. Also, the vplasma, which relates to

the blood plasma volume, presents significant variations

throughout the AIF choices (Figure 7-a:2).

2. Identification of Relations - Lower and slightly decreas-

ing ve, which relates to the volume of the extracellular ex-

travascular space, is associated to slightly increasing kep and

lower values of Ktrans(Figure 7-a:3).

3. Comparison of Behaviors - Although the general behav-

ior of the parameter sets seems stable across the AIF choices,

the differences in the density colors of the CCs reflect slight

changes in Ktrans, vplasma and kep(Figure 7-a).

4. Detection of Patterns - The highest values of Ktrans are

related to high values of kep and ve in all three AIF choices

(Figure 7-b:1); and to values of vplasma that are highly vari-

able between the AIF choices (Figure 7-b:2).

5. Exploration and Anatomical Reference - Low ve and

low Ktrans regions reflect the necrotic core of the tumor and

some outliers at the border of the prostate (Figure 7-a:3,4).
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Figure 8: Exploration and visual analysis of a cervical tu-
mor case with iCoCooN during the third phase of the evalu-
ation with clinical researchers.

Case study: Cervix The test subjects explored how the

application of different models (Tofts model: TM, Ex-

tended Tofts model: ETM and Two-Compartmental Ex-

change model: 2CXM) [SB13] affects the behavior of the

respectively derived PK parameters in the tumor. The first

model results in two parameters (Ktrans and ve); the second,

in three (Ktrans, ve and vp); and the third in five (Ktrans, ve,

vp, Fp and PS) [SB13]. An opposite Akaike information cri-

terion (AICc) that relates to the relative quality of fit of each

model, i.e. high values of AICc mean high relative quality, is

additionally included to each PK set. The test subjects iden-

tified the following major patient-specific findings:

1. Identification of Variability - The Ktrans parameter does

not present significant changes despite the application of dif-

ferent models, apart from slight decreases between the ETM

and the 2CXM (Figure 8-a:1). This, together with high and

stable AICc in the TM and ETM models (Figure 8-a:2), is an

indication that these models had a reasonable fit.

2. Identification of Relations - In the 2CXM, high AICc is

highly correlated with high flow Fp and permeability-surface

area product PS (Figure 8-b:1).

3. Comparison of Behaviors - Regions with lower Ktrans

and lower ve present lower vp (Figure 8-a:3, brushed) in

the ETM and 2CXM. In the ETM model, vp presents a big

spread; bigger than in the 2CXM (Figure 8-a:4). This vari-

ability in the vp values of the 2CXM is related to the slight

variability in Ktrans values (Figure 8-a:5).

4. Detection of Patterns - In regions, where the Ktrans and

the ve values are low, the AICc values do not present sig-

nificant changes across the three models (Figure 8-a:2&3,

brushed), meaning that clinical researchers expect that they

will all give similar classifications.
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Table 4: Translation of clinical tasks to tasks with the synthetic datasets, for the controlled study.

Clinical Study (with experts) Controlled Study (with general users)

Data Dimensions A number of PK parameters for different modeling as-
sumptions.

A number of parameters from different measurements.

Identification of Variability Identify which of the PK parameters remains un-

altered/presents variability throughout the different

modeling assumptions.

Identify which of the parameters remains unal-

tered/presents variability throughout the different

measurements.

Identification of Relations Find a relationship or trend between two or more pa-

rameters throughout the different modeling assump-

tions.

Find a relationship between two or more specific pa-

rameters throughout the measurements.

Comparison of Behaviors In which of the assumptions do we encounter a spe-

cific behavior of two or more parameters?

In which of the measurements do we encounter a spe-

cific behavior of two or more parameters?

Detection of Patterns Find a specific pattern in the parameter behaviors.

How does it change throughout the assumptions?

Find a given pattern in the parameter behaviors. How

does it change throughout the measurements?

Exploration e.g. Which assumption do you trust more for each

zone of the tumor based on all the parameters?

e.g. Which measurement do you choose if you de-

mand specific characteristics?

5. Exploration and Anatomical Reference - A usual indi-

cation of malignancy is the combination of low ve and low

Ktrans. This is the necrotic core of the tumor (Figure 8-a:6)

and has the worst responses to treatment. In these parts, the

model that fits better is TM, which is confirmed by slightly

higher AICc values in the Cocoon (Figure 8-a:7).

With this data, we confirmed that iCoCooN fulfills all the

requirements of the intended users, as described in Section 2.

5.1.4. Fourth phase: the iCoCooN Overall

In the last phase of the evaluation, the test subjects com-

mented on iCoCooN overall and, mainly, on its strengths,

limitations and missing features. According to their expe-

rience, they positively judged the application as useful: the

Cocoon in combination with its features provides the nec-

essary information and the user requirements are met. They

were also asked to compare the tool to current clinical prac-

tice, i.e. the slice-based inspection of all alternative param-

eter maps. To that, they commented that current practice is

mainly manual and mental work, which makes hard the iden-

tification of variabilities and relations in the data, since it re-

quires from them to go through the multiple slices of all the

parameter maps. Instead, the Cocoon is versatile in showing

all the multiple dimensions in one view and in aiding their

investigation. Thus, it enables them to see the consequences

of each modeling choice, to perform and analyze selections

and see their exact relation to the anatomy.

Although the first results of the evaluation are promising,

they also exposed some limitations. The iCoCooN is a tool

that needs training and time to learn. This is also supported

by the statements of the test subjects in the previous phases

of the evaluation. They agreed that once the user becomes

familiar with the visual mapping of the dimensions, the ex-

ploration and analysis is faster and easier than with current

practice. In order to improve this further, semi-automation of

the data exploration and analysis would be required. More-

over, iCoCooN misses the functionality for the inspection

of the related enhancement curves, in order to quantitatively

see the absorption of the contrast agent in the tissue. This

would give additional information on the physical meaning

of the visualized data and their patterns.

5.2. Usability and Effectiveness Evaluation

Our application is built for a specific target group and we

are just able to conduct user studies with a limited amount

of experts. In order to strengthen our evaluation, we decided

to perform a controlled study with non-experts, specifically

for the usability and effectiveness of the Cocoon, compared

to independent multiples. For this, we translated the clinical

tasks of Section 2 to two domains more accessible to general

users, i.e. airlines and climate measurements. The tasks are

described in Table 4. As we are outside the clinical domain,

linking to the anatomy, which was already positively judged

by clinical researchers, is not tested here. For the other tasks,

we created two synthetic, but realistically sized datasets us-

ing the PCDC tool [BHvLF12]. Since we focus on evaluat-

ing the Cocoon for our concrete application, we use similar

dimensions to the ones of our case. Exploring the limits of

scalability of the representation is not expected to be of in-

terest in our application. Therefore, it was considered out of

the scope of this paper and was not tested further.

We had 15 test subjects: 8 females and 7 males, between

23 and 44 years old. All of them had normal vision, with

or without glasses and none of them was colorblind. Their

background included electrical engineering (4), computer

sciences (3), biomedical engineering (2), mechanical engi-

neering (2), chemistry (2), hydraulics engineering (1), and

mathematics (1). They described their computer expertise

as medium (9) to high (6). Only two test subjects had ex-

perience with PCPs and CCs. First, we gave them a small

introduction to explain the reasoning behind the study and

to present notions such as PCPs, CCs and the Cocoon. Sec-

ondly, we demonstrated basic functionality. Thirdly, we did

some first exercises, until the test subjects were confident

with the visualizations. Fourthly, we conducted two exper-
iments with the synthetic datasets. For each one of the ex-

periments, the test subjects needed to perform the five tasks

given in Table 4 as fast and accurate as possible, once using

only the independent multiples and once only the Cocoon.

We exchanged the order of the two representations both be-

tween the experiments and across users, to avoid bias. For

all tasks, we measured completion times and correctness of

answers, which were known to us. Finally, we asked the test
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Table 5: Evaluation results: (Left) Mean and standard deviation of completion times (s) and task correctness (0=wrong to
1=correct) for the two experiments. (Right) Mean and standard deviation of gradings (1-5) and the overall rankings (1-10)
for the two representations. Bold indicates lower time and higher correctness, while color relates to statistically significant
difference ( p<0.01 , p<0.05 , p>0.05 ).

Cocoon Independent Multiples

Airlines μ t σ t μcor σ cor μ t σ t μcor σ cor

Variability 55.67 31.35 1.00 0.00 31.47 26.26 0.97 0.13

Relations 46.80 30.9 1.00 0.00 46.87 30.01 1.00 0.00

Behaviors 61.60 25.04 0.87 0.35 56.00 35.99 0.40 0.51

Patterns 93.67 39.52 0.73 0.46 82.73 45.14 0.33 0.49

Exploration 66.47 26.95 0.97 0.13 79.27 36.59 0.73 0.32

Climates μ t σ t μcor σ cor μ t σ t μcor σ cor

Variability 24.60 9.92 1.00 0.00 23.60 9.68 0.80 0.17

Relations 46.87 27.22 0.93 0.26 38.60 30.67 0.93 0.26

Behaviors 41.60 14.21 1.00 0.00 45.20 25.51 0.73 0.46

Patterns 77.73 34.29 0.93 0.27 77.00 33.47 0.67 0.49

Exploration 38.53 17.18 1.00 0.00 44.40 27.49 0.87 0.23

Gradings Cocoon Indep. Multiples

Characteristics μgC σgC μgIM σgIM

Easy to Use 3.87 0.74 4.33 0.62

Easy to Understand 3.73 0.80 4.13 0.74

Useful 4.13 0.74 3.87 0.74

Suit. for Variability 4.13 0.83 4.20 0.68

Suit. for Relations 4.20 0.68 3.73 0.70

Suit. for Behaviors 4.47 0.74 3.87 0.99

Suit. for Patterns 4.27 0.70 3.53 0.83

Suit. for Explor. 4.73 0.59 2.73 1.03

Not Overloading 4.27 0.70 2.27 1.03

Overall Ranking 8.13 1.36 6.47 0.99

subjects to complete a small survey, consisting of a grading

scale (1-5), an overall ranking (1-10) and open questions.

5.2.1. Evaluation Results

The completion times and correctness for the five tasks of the

two experiments, as well as the gradings of the test subjects

are summarized in Table 5, together with their color-encoded

statistically significant difference, as it resulted from t-tests

analysis. For the more demanding tasks, i.e. comparison of

behaviors, detection of patterns and exploration, the obser-

vations from the Cocoon were more correct than the inde-

pendent multiples in both experiments (p<0.05). The time
difference was in favor of the independent multiples, but

not statistically significant between the two representations

(p>0.05), except for the variability task in the airlines ex-

periment. Additionally, there is a statistically significant dif-

ference between the gradings in the two representations in

favor of the Cocoon, which was judged more suitable for the

more demanding tasks and for the identification of relations

task (p<0.05). Also, it was considered less overloading than

the independent multiples (p�0.01). Both representations,

were considered comparably useful, easy to use and under-

stand (p>0.05). In the overall ranking, the Cocoon comes

first with a difference of 1.67 points (p=0.0012), while only

two test subjects ranked the independent multiples higher.

Nine test subjects commented that they would not need the

independent multiples at all, on top or instead of the Cocoon.

The rest commented that the independent multiples could be

useful and faster in certain instances; i.e. for simple tasks,

for comparison of few parameters or for beginners.

In their general comments, the test subjects stated that

when higher dimensionality is involved in the tasks, they

preferred the Cocoon, because they could check everything

in a single, compact view ("The Cocoon offers compact in-
formation giving a more intuitive understanding of complex
relations. With the independent multiples, I had to compile
all the information from multiple windows in my mind first").

They also stated that Cocoon made them more attentive, ef-

ficient and eventually more accurate ("I felt that I could be
faster with PCPs. However, I realized that I was jumping

easily to conclusions and making more mistakes, because I
was not paying attention to the multiple relations that af-
fected my observations"). Yet, choosing the most effective

view is time demanding and requires training ("I needed to
think and learn which was the most effective view. Getting
the correct view of the Cocoon takes time", "The Cocoon has
a higher learning curve, but can provide more information
at a glance with adequate training").

6. Conclusions and Future Work

In this paper, we presented iCoCooN: a visualization tool

that aids clinical researchers to explore and analyze how dif-

ferent choices in modeling affect the parameter space de-

rived from modeling DCE-MRI data. The contribution of our

work lies within the design of the Cocoon that allows users

to explore the required DCE-MRI data aspects in a single

combined view, while its interactive features facilitate the

exploration and interpretation of the data and, especially, the

correspondence to anatomy. The value of iCoCooN for our

application was confirmed by an evaluation with clinical ex-

perts. An additional evaluation with general users indicated

that the Cocoon produces more accurate results compared to

the independent PCPs and CCs, especially for more complex

tasks. At any case, adequate training of the users is essential.

The evaluations also provided feedback towards future work.

The tool can still improve by reducing interaction workload

and time for adjusting the view; also, by reducing clutter in

the Cocoon with lines illumination or bundling [HVW10].

Finally, although the tool can be extended to other similar

applications, scalability needs to be examined by additional

evaluations. First indications show that iCoCooN has good

potential of use for the easier exploration and analysis of

model-induced variations in DCE-MRI data.
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