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Abstract
The Screen Space Approximate Gaussian Hull method presented in this paper is based on an output sensitive, adaptive ap-
proach, which addresses the challenge of high quality rendering even for high resolution displays and large numbers of light
sources or indirect lighting. Our approach uses dynamically sparse sampling of the light information on a low-resolution mesh
approximated from screen space and applying these samples in a deferred shading stage to the full resolution image. This
preserves geometric detail unlike common approaches using lower resolution rendering combined with upsampling strategies.
The light samples are expressed by spherical Gaussian distribution functions, for which we found a more precise closed form
integration compared to existing approaches. Thus, our method does not exhibit the quality degradation shown by previously
proposed approaches and we show that the implementation is very efficient. Moreover, being an output sensitive approach, it
can be used for massive scene rendering without additional cost.

CCS Concepts
•Computing methodologies → Rasterization; Reflectance modeling; Virtual reality; Image processing;

1. Introduction

High-quality lighting is still a significant challenge in interactive
rasterization applications, even more so with screen resolutions
moving to 4k and beyond. In VR applications this requirement is
exacerbated further by high frame rates demanded. But even for
consoles and mobile platforms resolution and frame rate demands
are steadily growing. A common shortcut we have seen thus far is
to carry out some or all per-pixel work on lower resolutions than
the true target and using upscaling or splatting, sometimes combi-
ned with interpolation or extrapolation to give the impression of the
higher target resolution. These approaches can however lose geo-
metric detail which should be visible at the target resolution.

In this paper we present an experimental method and implemen-
tation using new means of approximation to allow resolution inde-
pendency for hemispherical light gathering. Our method does not
rely on precalculations or additional a priori information and pu-
rely works like a deferred shading approach on a G-Buffer. The ba-
sic idea is to approximate the screen space as a low-detail triangle
mesh, only gathering light by means of mathematical distributions
at the mesh’s vertex positions and integrate over these distributions
after rasterization of this mesh. In detail, our contributions include

• a fast image segmentation approximation based on connected
components
• a quick depth based tessellation of the screen space
• a novel closed form approximation convolving a spherical Gaus-

sian with a cosine factor.

We first cover related work in section 2, while the rest of this pa-
per is organized as follows: In section 3 we detail our screen space
tessellation while section 4 concentrates on our work with and ap-
plication of spherical Gaussians. Finally section 5 gives some em-
pirical data and section 6 concludes this paper.

2. Related Work

Screen space lighting. The method we discuss in this paper does
not shade in screen space directly, but uses geometric simplifica-
tions of the screen space as part of shading cost reduction. With
similar ideas, Nichols et al. proposed a recursive subdivision of
the screen space combined with splatting to reduce high rendering
costs of many virtual point lights (VPLs) [NW09, NW10]. As in-
herent to splatting approaches, surface details get lost in the pro-
cess, which they hide by manipulating the output in dependence of
the surface normal. Ritschel et al. extend the popular screen space
ambient occlusion method by lighting propagation to approximate
global illumination in screen space [RGS09]. As an extension to the
single layered conventional screen space, Nalbach et al. introduce
the concept of deep screen space [NRS14] as a collection of micro-
surfaces generated on-the-fly from visible geometry and splat cal-
culated surfel lighting via an approach similar to aforementioned
method of Nichols et al.

Tessellating the image space. Image space tessellation like the one
we use and further explain in section 3 has mostly seen applicati-
ons in depth based reprojection or Depth-Image-Based-Rendering
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(DIBR) as it is called by the stereoscopic and free viewpoint synt-
hesis community [Feh03]. One of the earliest work using image
space triangle meshes can be traced back to Mark et al., who sim-
ply used a full-resolution regular tessellation of the image space
[MMB97]. Later works have entered the realm of interactive pro-
cessing speeds, with Didyk et al. generating pseudo-stereoscopic
image pairs by hierarchically subdividing the image space in a
multi-pass geometry shader implementation using a measure of
pixel displacement and reprojecting each resulting quad [DRE∗10].
In contrast, Meder et al. employ single pass hardware tessellation to
subdivide an initially coarse mesh in regions of large depth variance
to build impostor geometry, allowing for interactive reprojection to
arbitrary views [MB16]. Outside the use case of reprojection, Lik-
tor et al. use a regular triangle mesh placed onto objects in light
image space and reflected in the local reflection direction to cre-
ate volumetric caustics [LD10]. Müller et al. apply triangulation to
animated fluid point clouds by creating Marching Squares based
tessellations over image space renderings of these point clouds to
yield a conventionally renderable fluid surface [MSD07].

Spherical Gaussian based methods. Spherical Gaussians have
been used by Green et al. to approximate the transport function as a
weighted mix [GKMD06]. In other variants, Wang et al. use them
as approximations of complex normal distributions [WRG∗09] and
Xu et al. represent the whole sphere of environmental light during
interactive hair rendering [XMR∗11] with these distributions. Si-
milar to VPLs, virtual spherical Gaussian lights (VSGLs) are anot-
her form of light approximation, which Yan et al. investigate to
render translucent objects accurately and efficiently [YZXW12]
in their presence. Tokuyoshi converted Reflective Shadow Maps
(RSMs) [DS05] to a small set of VSGLs and used them to in-
teractively render convincing diffuse and glossy reflections, even
supporting caustics [Tok15]. This work was later extended for more
meaningful filtering of the RSM via adaptive kernels [Tok16]. As
a near-interactive approach, Xu et al. use spherical Gaussians as
representations of bi-directional reflectance distribution functions
(BRDFs) paired with a triangle based light integration to model
all-frequency interreflections between geometry [XCM∗14].

Lighting integration cost reduction. There are numerous ways to
reduce the cost of shading in real time computer graphics of which
we will focus on two main areas, the first being optimizations at
the light level. Advanced culling of lights is explored by Olsson et
al. with their propositions on clustered shading [OBA12, OPB15].
Another option is importance sampling, for example used by Da-
chsbacher et al. in their indirect illumination splatting [DS06] and
Ritschel et al. with their bidirectional RSM [REH∗11]. Other met-
hods use clustering of present lights like RSM clustering by Prutkin
et al. [PKD12] or the work of Nichols et al. with a similar, hierar-
chical image space clustering [NSW09]. Using a voxel grid as a
scene approximation, Crassin et al. first accumulate present scene
lighting into this structure and use voxel cone tracing on it with a
constant number of cones to compute final lighting [CNS∗11]. A
comparable voxel based approach is used by Sans et al. [SR13].

In contrast, lighting can also be approximated at the geometry
level, with Lensing et al. gathering the light at specific precom-
puted points on the object geometry in their Lightskin framework
[LB13]. They then compute proxy point lights from the gathered

shading and interpolate them over the geometry, yielding plausible
diffuse but only low-frequency specular lighting in fully dynamic
scenes. Jendersie et al. also use such a cache based approach but
assume a mostly static scene allowing the precomputation of radi-
osity values and surface interdependence regarding interreflections
for these scene parts [JKG16]. This allows for much faster dynamic
lighting of the static scene, but has severe limitations for dynamic
objects. Our algorithm mainly fits into this last category of lighting
approximation at the geometry level and, like Lensing et al., assu-
mes a fully dynamic scene. Still, combinations with aforementio-
ned complexity reductions at the light level are possible because we
make no assumptions on the form of scene light representations.

3. Screen space approximate hulls

Approx. MeshOrig. Geometry

Light DistributionLight Source

Figure 1: We approximate scene geometry using a low-detail
mesh, where incident lighting from scene lights is only captured
at this mesh’s vertices by distribution functions.

As outlined in section 1 we want to model the screen space as
a low-poly mesh and only gather hemispherical lighting at this
mesh’s vertices (see figure 1). No assumptions about the under-
lying nature of the lighting situation is made and thus our method
can be used in conjunction with both direct and indirect lighting.
This section will mostly cover the approximate hull construction
while the next section 4 will treat the theoretical basis for building
and applying the spherical Gaussian distributions we use.

Among others, Lensing et al. [LB13] and Jendersie et al.
[JKG16] already established the viability of sparsely computing
lighting at discrete caches on the scene geometry with subsequent
interpolation. While they placed these caches statically on the ob-
ject level, we will dynamically place them using the currently vi-
sible screen space. We therefore do not need to precalculate and
store these caches with the geometry and can use the complete ca-
che budget in the visible space, allowing more detailed light cap-
ture. This is particularly important in the use case of massive scene
rendering, where precomputations in object space may not be ap-
plicable due to time or storage space constraints. Also in contrast
to the approach of Lensing et al., we do not use virtual lights as
a representation of gathered light but rather mathematical approxi-
mations of the incident radiance Li(ω) (see equation (6) in section
4), more akin to the method of Jendersie et al.. The main algorithm
has three distinct steps:

1. Render a G-Buffer of the scene and downsample screen space
depth to 1024x1024
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(a) (b) (c) (d) (e)

Figure 2: (a) Our starting tessellation superimposed on the scene depth image. (b) This tessellation leads to wrong shading at depth
boundaries (observe dragon muzzle, horns). (c) We identify local depth segments and approximate them by bounding rectangles which can
overlap (red: enlarged section). (d) This tessellation allows shading comparable to the (e) ground truth.

2. Segment the downsampled depth into different regions of simi-
lar surfaces separated by depth edges

3. For each segment of the downsampled depth draw an xy-
bounding rectangle for light gathering and integration

We will explain the reasoning behind these steps in the following
sections in detail.

Approximating the screen space mesh. Our algorithm starts with
a low-detail mesh of 32x32 quads of which the vertices are placed
regularly in x-y direction of the screen space. For lighting its ver-
tices are assigned a world space position read from the G-Buffer
at the corresponding x-y position. As Figure 2b shows this does
not suffice to create plausible lighting. Positions inside the triang-
les and G-Buffer pixel positions can differ substantially in depth
edge regions. This is a similar problem Liktor et al. report [LD10].
Their solution however to simply exclude these triangles from ren-
dering is not applicable here, as we want to cover every G-Buffer
pixel with a fitting triangle. We therefore opt for mesh subdivision.

We experimented with different subdivision and triangulation
strategies. Using the hardware tessellation based depth subdivision
of Meder et al. [MB16] yielded good performance in terms of the
tessellation itself but unfortunately creates too many vertices in
depth edge regions which in turn induce a large overhead for the
light gathering. Trying a Delaunay triangulation over depth edge
points on the GPU remedied this problem but unfortunately was too
slow on our target hardware. We also investigated the approaches of
Müller et al. [MSD07] and Didyk et al. [DRE∗10] but finally came
to the conclusion that we actually don’t need the exact triangula-
tions these methods provide: only a mesh covering each G-Buffer
pixel, with the respective triangles residing closely to the pixels’
surfaces, is needed. The individual mesh parts may even overlap as
long as we can choose the correct surface for each G-Buffer pixel
in the end.

Local depth segmentation. With this knowledge, we do not really
subdivide the individual 32x32 quads. Instead, we use a compute
shader to apply local image segmentation to each quad’s correspon-
ding depth region of the downsampled depth and create a new quad
for each identified segment (see figure 2c). Corresponding to the
local pixel count we use 32x32 as the work group size. As a base
for the segmentation we use the connected component labeling pro-

Algorithm 1 Local region segmentation of one thread

function SWAPLABEL(x,y,dc, l, t,depth, label)
dn← depth(x,y)
if |dc−dn|> t(1−dc) then

l← label(x,y)
else

label(x,y)← l
end if
dc← dn

end function

function PROPAGATE(xs,ys,xe,ye, t,depth, label)
dc← depth(xs,ys)
l← label(xs,ys)
for x′ = xs...xe,y′ = ys...ye do

swapLabel(x′,y′,dc, l, t,depth, label)
end for

end function

function SEGMENT(x,y, t,depth, label)
propagate(0,y,31,y, t,depth, label)
propagate(x,0,x,31, t,depth, label)
propagate(31,y,0,y, t,depth, label)
propagate(x,31,x,0, t,depth, label)

end function

posed by He et al. [HCS08]. Connected components are identified
using a simple depth difference compared to an adaptive threshold
(comparison in function "swapLabel" in algorithm 1). The union
find structure necessary for label equivalency resolves presented
us with problems concerning thread contention and control flow
which is why we currently omit this step. We instead propagate the
component labels as given with function "segment" in algorithm
1 in right-down-left-up direction over the 32x32 pixel region each
using 32 threads running line-wise or column-wise without con-
tention. Of course, this heuristic potentially creates more segments
than the original algorithm, which apart from generating additional
light gathering overhead does not pose any problems, and we found
it to work well in practice.
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Finally, the screen space axis aligned bounding box of each iden-
tified segment is calculated: Each of the 32x32 threads takes the
final label of its corresponding local pixel as an index in the local
bounding box list and applies minimum/maximum atomic operati-
ons between its (x, y, z) screen space coordinates and this bounding
box’s minimum/maximum corners. Due to a limitation of atomic
operations the coordinates have to be converted to integer, so we
use integer image coordinates for x and y while for the pixel depth
we simply use a direct bit conversion. Comparisons will still work
under the IEEE 754 floating point definition, assuming all depth va-
lues being positive. The resulting bounding boxes are written back
to GPU memory for rendering in the final lighting pass. Figure 2d
shows a result of this approach.

Light gathering, interpolation and integration. The created
mesh is subsequently rendered into the full viewport using the stan-
dard rasterization pipeline. Light gathering occurs in the vertex
stage, where we accumulate the contributions of all present lights
into a spherical Gaussian distribution to approximate the incident
radiance Li(ω) (see section 4). How the individual light radiance
values and directions are obtained depends on the type of light. For
the polygonal area lights we use in section 5 we use the radiant
exitance of the polygon times its projected area on the unit sphere
around the vertex’s world position and accumulate all normalized
directions from the world position to the polygon’s vertices to si-
mulate the directional distribution in the spherical Gaussian.

Additionally in the vertex stage, we fetch the actual world space
position of a quad vertex from the G-Buffer at the vertex’s x-y posi-
tion, project it to screen space and compare the result to the quad’s
screen space bounding box. If it lies outside, meaning the vertex
overlaps into another depth region, we correct the world position:
we take the intersections of the camera’s view direction with the
quad’s segment bounding box planes and use their mean repro-
jected to world space.

Perspective-correct interpolation of the distributions’ parameters
automatically occurs during rasterization of the mesh yielding a
distribution per quad fragment. Green et al. already showed such an
interpolation of the distribution’s parameters over object geometry
to be sensible [GKMD06]. Final lighting is calculated by integra-
ting the distribution (see section 4) with respect to the original vie-
wport pixel’s surface hemisphere and parameters in the G-Buffer.
To avoid applying fragments residing on a quad overlapping from
another depth region we again use a test of the G-Buffer pixel’s
depth against the region bounds of the current fragment, discarding
all fragments failing the test.

4. Gaussian lighting integration

Spherical Gaussians. Generally, spherical Gaussians are defined
for all normalized directions ω in the whole sphere Ω as

G(µ,λ,φ,ω) = µeλ(φ◦ω−1), (1)

with µ being its mean coefficient, λ its sharpness and φ its main
direction. We use ◦ as the dot product in this paper. This distribution
has a simple analytical integral over Ω [Tok16]:

A(µ,λ) =
∫

Ω

G(µ,λ,φ,ω)dω = µ
2π

λ
(1− e−2λ). (2)

In section 4 we rely on the multiplication of two spherical Gaussi-
ans G(µ1,λ1,φ1,ω) and G(µ2,λ2,φ2,ω) which yields a new spher-
ical Gaussian G(µ3,λ3,φ3,ω) with [XCM∗14]

λ3 = ‖λ1φ1 +λ2φ2‖

φ3 =
λ1φ1 +λ2φ2

λ3

µ3 = µ1µ2eλ3−λ2−λ1 .

(3)

Tokuyoshi proposed to use Toksvig’s filtering [Tok05] to approx-
imate a spherical Gaussian’s parameters [Tok15]. Due to the inex-
pensive operations needed we also use this method to accumulate
a set of incoming light rays L with light directions ωl and color
intensity values µl at a screen space mesh’s vertices during hemisp-
herical sampling (see section 3). Direction φ and sharpness λ of the
spherical Gaussian are estimated as follows:

φ
′ =

∑l∈L µlωl

∑l∈L µl
,

φ =
φ
′

‖φ′‖ ,

λ =
‖φ′‖

1−‖φ′‖ .

(4)

We use separate distributions for each color channel so µl deno-
tes the respective channel value and followingly the corresponding
mean coefficient µ is calculated for each channel as

µ =
∑l∈L µl

A(λ)
, (5)

i.e. normalizing the spherical integral (2) by A(λ) = 2π

λ
(1− e−2λ).

The rendering equation. When the approximate mesh of section
3 is rasterized, the spherical Gaussian distributions associated with
its vertices will be automatically interpolated by the GPU to yield
a single distribution per generated pixel. We now want to use these
to calculate the final lighting of each pixel. In general, to calculate
the reflected light of a surface point the rendering equation [Kaj86]
has to be solved:

Lo(x,ωo) = Le(x,ωo)+
∫

Ω+
n

Li(ω) fr(x,ω,ωo)(ω◦n)dω (6)

Ignoring self-emittance Le for the sake of simplicity, we denote the
hemisphere above pixel surface point x in direction of the surface
normal n, i.e. where (ω◦n) is positive, as Ω

+
n . Thus far, we approx-

imated Li(ω) which is given by the spherical Gaussian distribution.
For the bidirectional reflectance distribution function (BRDF) fr,
we assume, that we can approximate it as another spherical Gaus-
sian, which enables usage of the well-defined multiplication. We
can omit this step for the commonly used Lambert diffuse BRDF,
as this BRDF is just a constant c

π
, c being the surface’s albedo. For

other BRDFs meaningful spherical Gaussian approximations have
been proposed for Phong distributions and well-known microfacet
BRDFs by Wang et al. [WRG∗09]. We will not focus any further
on this topic as it exceeds the scope of this paper.

Cosine convolution. The remaining problem is to convolve the
combined spherical Gaussian with the cosine factor ω◦n. We found
two solutions for this in literature, one of which assumes the cosine
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(a) (b)

Figure 3: (a) Assuming the cosine factor of the rendering integral
to be constant leads to noticeably wrong shading compared to (b)
the ground truth when this assumption is violated.

factor to be quasi-constant, which allows its extraction from the
integral [Tok16, XCM∗14, YZXW12]:∫

Ω+
n

G(µ,λ,φ,ω)(ω◦n)dω

≈max(0,φ◦n)
∫

Ω

G(µ,λ,φ,ω)dω

=max(0,φ◦n)A(µ,λ)

(7)

By its underlying assumption, this solution only works for spher-
ical Gaussians of sufficient sharpness. In other words, the spheri-
cal Gaussian is interpreted as a directional light with direction φ

and flux A(µ,λ). A failure case we quickly encountered was the
representation of broad area lights which yields noticeably wrong
shading when using equation (7) as figure 3 shows.

0 0.25π 0.5π 0.75π π
0

0.2
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β

max(0, cos(β)) 
λ = 1
λ = 1.3
λ = 1.7
λ = 2.5

(a)

(b) (c)

Figure 4: (a) Accurately approximating a clamped cosine is diffi-
cult with a standard spherical Gaussian. (b) The resulting shading
has longer tails compared to the (c) ground truth.

The other solution we encountered is to approximate the cosine

factor itself as a spherical Gaussian, which allows to use both the
spherical Gaussian multiplication (3) and analytical integral (2):∫

Ω+
n

G(µ,λ,φ,ω)(ω◦n)dω

≈
∫

Ω

G(µ,λ,φ,ω)G(1,2,n,ω)dω

=
∫

Ω

G(µ′,λ′,φ′,ω)dω = A(µ′,λ′)

(8)

Tokuyoshi uses this solution to calculate diffuse lighting under a
Lambert BRDF [Tok16]. However, it is impossible to completely
reflect the distribution of a clamped cosine factor using approxima-
tion (8). As Figure 4 illustrates, trade-offs have to be made leading
to overly bright or dark shading depending on the surface normal.
Because of these shortcomings, we investigated new ways of cal-
culating the convolution directly.

Direct integration. One observation when trying to solve equation
(6) is the necessity to integrate in Ω

+
n rather than Ω. The previous

solutions circumvented this by either clamping the cosine factor or
using a cosine-like distribution which always yields positive values.
Approaching the cosine convolution directly, we need a formaliza-
tion for the hemispherical convolution of a spherical Gaussian with
a cosine in the cosine’s domain of positive values.

We found that two specific hemispherical integrals have easy
analytical solutions when integrating in spherical coordinates: the
integral in the upper hemisphere, i.e. when n equals φ is given by

Au(λ) =
∫ 2π

0

∫ π

2

0
G(λ,n,ω)cos(θ)sin(θ)dθdϕ

=
2π

λ2 (e
−λ−1+λ),

(9)

and the lower hemispherical integral when φ equals -n

Ab(λ) =
∫ 2π

0

∫ π

2

0
G(λ,−n,ω)cos(θ)sin(θ)dθdϕ

=
2π

λ2 e−2λ(eλ−1−λ).

(10)

where ω =
(
sin(θ)cos(ϕ),sin(θ)sin(ϕ),cos(θ)

)T . Proof can be
found in appendix A. We leave out µ as it is a constant which can
be pulled out of the integral. We express the general form of these
integrals, when the angle β = arccos(n◦φ) is between 0 and π, by
rotating the input direction ω away from the original upper hemis-
phere by this angle. As spherical Gaussians are isotropic we can
w.l.o.g. assume a rotation around the local x-axis and thus use a
standard rotation matrix

M(β) =

1 0 0
0 cos(β) sin(β)
0 −sin(β) cos(β)

 . (11)

Assuming further w.l.o.g. that locally φ is the z-axis (0,0,1)T lea-
ves us with the integral

Ah(λ,β) =
∫ 2π

0

∫ π

2

0
G(λ,(0,0,1)T ,Mω)cos(θ)sin(θ)dθdϕ

=
∫ 2π

0

∫ π

2

0
eλ(cos(β)cos(θ)−sin(β) sin(φ) sin(θ)−1) cos(θ)sin(θ)dθdϕ.

(12)
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Unfortunately, we did not find an analytical solution for Ah and pre-
vious work suggests that indeed none exists [XMR∗11]. We there-
fore investigated the integral numerically.
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Figure 5: (a) Normalized curves of Ah for λ∈ [10−5;700] progres-
sively change from 0.5cos(β)+ 0.5 to max(0,cos(β)). (b) Curves
s(λ,β) directly calculated from numerically integrated Ah.

Inspecting the absolute values depending on β for different
sharpnesses yielded no valuable hints for us at first, but a quite
different picture presented itself when normalizing the curves to
an image of [0;1]. Observing the curve shapes in 5a, the function
becomes equivalent to the normalized cosine

ĉos(β) = 0.5cos(β)+0.5 (13)

when λ approaches zero and progressively turns into the clamped
cosine

〈cos(β)〉= max(0,cos(β)) (14)

for λ approaching infinity. Given the known analytical values
Ah(λ,0) = Au(λ) and Ah(λ,π) = Ab(λ) we approximate Ah gene-
rally using a basic interpolation of the form

Ah(λ,β)≈ c(λ,β)Au(λ)+(1− c(λ,β))Ab(λ) (15)

with c being the appropriate normalized curve dependent on λ as
seen in figure 5a. For a closed form of c, from our observations we
can again use an interpolation, this time of the known cosine curves

c(λ,β)≈ s(λ,β)ĉos(β)+(1− s(λ,β))〈cos(β)〉. (16)

Because we actually know the precise curves we can solve (16) for
s(λ,β) using the numerical ground truth of c. Some examples are
given in figure 5b.

Now we need a closed form solution for s. We experimented with
a range of distributions and came to the conclusion that s could
be related to |cos(β)|. Additionally, Wang et al. suggested a close
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Figure 6: Values for steepness t(λ) for the used logistic curve.
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Figure 7: Our closed form convolution approximation generally
shows good results compared to existing methods. The assumption
of a constant cosine yields RMSE values up to 4 (curve cropped).

relation between the general hemispherical integral of a spherical
Gaussian and sigmoid-shaped functions [WRG∗09]. We therefore
tried a logistic curve [GQ38] of the form

s(λ,β) =
u(λ)

e|cos(β)|t(λ)+1
. (17)

Using non-linear automatic curve fitting via Matlab this function
allowed good fits to the numerical ground truths for s, with root-
mean-square errors (RMSEs) ranging from 4.38 · 10−11 to 3.8 ·
10−3. As for the remaining values of u and t, we first noticed we
can use 1

u ≈ 0.2958t +0.5033. Secondly, the values of t in figure 6
imply some variant of a square root over λ, and we ultimately used

t(λ) = 2.1007
√

λ
λ

λ+4.4653
, (18)

with the numerical constants obtained from non-linear curve-fitting
via Matlab. With this, we can now closely approximate the hemis-
pherical convolution of a cosine factor with a spherical Gaussian
and indeed, compared to the other two methods we discussed in the
previous section, our method shows significantly better error values
(see figure 7). Also, our new approximation is not necessarily more
expensive, as it does not need a spherical Gaussian multiplication,
mainly uses linear interpolations and integrals Au and Ab, largely
consisting of the same factors, can be optimized to avoid unneces-
sary exponentials and divisions.
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Table 1: Frame rate averages

Scene Resolution
width 1280 1920 2560 3840
height 720 1080 1600 2400

Bunny/Sphere/Dragon
Ground Truth 30.45 11.37 6.27 2.71
Ours 179.34 172.51 130.16 80.48

Crytek Sponza
Ground Truth 28.38 10.59 6.10 2.44
Ours 142.26 100.36 72.71 40.98

Conference Room
Ground Truth 28.55 10.67 6.22 2.52
Ours 170.42 145.11 103.10 63.23

5. Evaluation

Setup. To create a use case of complex hemispherical lighting we
employ gathering from a 16x16 Reflective Shadow Map (RSM)
[DS05]. Each RSM pixel is interpreted as a triangular surface and
the polygon-to-point form factor [BRW89] is used for shading. The
ground truth shades each G-Buffer pixel using all 256 lights di-
rectly while our algorithm applies the same approach to the screen
space mesh, with subsequent per-pixel integration. We implemen-
ted both renderers using the Vulkan API and run them on an Intel
Core i7 860 CPU and a Nvidia GeForce GTX 970 GPU. Frame ra-
tes are given in table 1 and rendering examples in figure 8. Supple-
mental videos show the method running on the respective scenes.

Frame rate. Following the results in table 1 we see good speedups
compared to the full resolution gathering. True high frame rate 4k
is in reach under such workload. Further Optimizations are pos-
sible using existing techniques like bidirectional RSM [REH∗11],
RSM clustering [PKD12], combinations with Tokuyoshi’s VSGL
methods [Tok15, Tok16] or clustered shading [OBA12].

Temporal coherence. We obtain mostly stable lighting results un-
der animation, camera and light movement for diffuse lighting.
Using the same distributions for specular BRDFs, we obtain results
comparable to Lightskin [LB13], i.e. temporally coherent but only
low frequency reflections due to the single, broad spherical Gaus-
sian. Using a separate narrow specular spherical Gaussian allowed
for sharper reflections than Lightskin due to our more fine grained
cache placement. However, this can induce strong temporal flicke-
ring on surfaces with high normal variance. Finally, typical depth
inaccuracies negatively impacting the position correction are visi-
ble as varying lighting, for example on the Sponza scene’s curtains.

Energy conservation. Because we ignore pixel positions for the
final lighting integration, we will not see a problem that Lensing
et al. faced with their method [LB13], where light interpolation
could cause the proxy-light to get too close to the surface and
thus wrongly create brighter lighting. This means we have to ascer-
tain that G-Buffer pixel positions reside closely to the approximate
mesh’s triangles, which is implied by our depth segmentation.

Artifacts. Due to the depth downsampling, entire segments may
get lost in the process, noticeable as strong, mostly one pixel wide
differences in figure 8. Affected pixels mainly receive incorrect lig-
hting from their surrounding neighbors, but sometimes none at all.

In the latter case, all quad-fragments are discarded by the segment
bounds test in the fragment stage. Furthermore, screen space depth
inaccuracies can cause the vertex stage bounding test to fail, wrong-
fully applying position correction to non-overlapping vertices and
in turn causing suboptimal shading. This case is visible in figure 8
with small/medium differences plus noticeable difference edges.

Applicability. Any source providing hemispherical lighting may
be used to gather, such as global illumination focused approaches
beside RSM like voxel cone tracing [CNS∗11]. Accelerating direct
sources like image based lighting or discrete sets of analytical lig-
hts is also possible. Even ray tracing or approximations like screen
space reflections are imaginable for glossy lighting. Highly specu-
lar reflections pose a limitation of our approach. The screen space
mesh would need a tessellation to the G-Buffer pixel level in the
worst case. Depending on the respective application’s accuracy re-
quirements, more individual distributions are needed in general.

6. Conclusion and future work

In this paper, we have investigated a new variant of resolution de-
coupled deferred shading retaining the original resolution and have
found a higher quality use of spherical Gaussians. The technique
is well-suited for alleviating traditionally pixel-bound operations
without a priori knowledge of the scene and is applicable both to
direct and indirect lighting methods. Its output-sensitivity and non-
reliance on precalculations make it particularly suitable for massive
scene rendering. Our resulting experimental implementation shows
promising results concerning speed and quality.

To solve the artifacts of our segmentation heuristic we plan to
incorporate a more sophisticated depth downsampling, either pre-
serving all local segments or giving depth bounds approximations,
and to modify our segmentation heuristic to give a minimal local
segmentation. Moving the algorithm entirely to world space and
replacing the bounding box with a plane approximation promises
better accuracy. Observing the improvements when using available
RSM optimizations is also interesting. We further like to evaluate
our method with other techniques for light gathering.

Finding precise closed form solutions or approximations using
other BRDFs or replacing our distributions with anisotropic spher-
ical Gaussians [XSD∗13] present additional research opportunities.

Acknowledgments

Used scenes are courtesy of the Standford 3D Scanning Repo-
sitory (Bunny, Dragon, http:graphics.stanford.edu/data/
3Dscanrep/), Crytek (Sponza, http:crytek.com/cryengine/
cryengine3/downloads/) and A. Grynberg and G. Ward. (Confe-
rence Room, http:radsite.lbl.gov/radiance/pub/models/
conf.tar.Z). We thank the anonymous reviewers for their valu-
able feedback in improving this paper.

Appendix A: Hemispherical convolution

We start with expression (9) given in section 4 and can immediately
solve the outer integral and expand G:

Au(λ) = 2π

∫ π

2

0
eλ(cos(θ)−1) cos(θ)sin(θ)dθ (19)
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(a) (b) (c)

Figure 8: Rendering results for the Bunny/Sphere/Dragon, the Crytek Sponza and the Conference Room scene: (a) our results and (b) the
ground truth. (c) Differences artificially increased by a factor of 4 and plotted as false color images (green: low, red: high).

Substituting t = cos(θ) yields

Au(λ) = 2π

∫ π

2

0
−eλ(t−1)tdt. (20)

Pulling out 1
λ2 and expanding the sum by eλ(t−1)

λ gives

Au(λ) =
2π

λ2 (
∫ π

2

0
eλ(t−1)

λdt−
∫ π

2

0
eλ(t−1)

λ
2t+eλ(t−1)

λdt), (21)

of which we can integrate the first integral directly, the second via
the inverse product rule and finally resubstitute cos(θ):

Au(λ) =
2π

λ2 [e
λ(t−1)− eλ(t−1)

λt]
π

2
0

=
2π

λ2 [e
λ(cos(θ)−1)(1−λcos(θ))]

π

2
0 .

(22)

Thus, the integral value resolves to

Au(λ) =
2π

λ2 (e
−λ−1+λ) (23)

Ab from equation (10) can be integrated analogously.
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