Py-Method for Multiple Scattering in
Participating Media

Supplemental Material

David Koerner! Jamie Portsmouth? Wenzel Jakob?

"University of Stuttgart 2Solid Angle 3Ecole polytechnique fédérale de Lausanne (EPFL)

This document contains the detailed derivations of the complex-valued and real-valued Py-

equations, referred to by the article for better readability.
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1 Isotropic Radiative Transfer Equation

The Py-equations are derived from the radiative transfer equation (RTE), which expresses the change of the
radiance field L, with respect to an infinitesimal change of position into direction w at point -

(V- w) L(#w) = =0y (7) L (T, w)
+ o (f)/ﬂp(w/ “w) L (Z,w) du'’

+Q (Z,w)

The left hand side (LHS) is the transport term, and we refer to the terms on the right hand side (RHS)
as collision, scattering, and source term, respectively. The symbols oy, 05, p, and @ refer to the extinction
coefficient, scattering coefficient, phase function and emission term.

The derivation is done in two steps: First, the directional-dependent quantities are replaced by their SH-
projected counterparts. For example the radiance field L, is replaced by its SH projection. This way the
quantities are expressed in spherical harmonics, but still depend on direction w. This is why in a second step,
the RTE is projected into spherical harmonics, which is done by multiplying each term with the conjugate
complex of the SH basis functions.

The SH basis functions are complex, which produces complex coefficients and complex Py-equations. How-
ever, there are also real SH basis functions, which are defined in terms of the complex SH basis functions
and which produce real coefficients and reconstructions. Since the radiance field L is real, the real SH basis
functions is used in our article.

In the next section, the complex Py-equations are derived. In order to give the derivation a better structure,
the two steps mentioned above are applied to each term individually in a seperate subsection. The section
concludes by putting all derived terms together. In Section 3 we derive the real Py-equations which are used
in the article.

2 Derivation of the complex-valued Py-equations

Deriving the Pn-equations consists of two main steps. First, all angular dependent quantities in the RTE
are expressed in terms of spherical harmonics (SH) basis functions. After this, the RTE still depends on
the angular variable. Therefore, the second step projects each term of the RTE by multiplying with the
conjugate complex of the SH basis functions, followed by integration over solid angle to integrate out the
angular variable. This gives an equation for each spherical harmonics coefficient.

Spherical Harmonics are a set of very popular and well known functions on the sphere. The complex-valued
SH basis functions are given by

(—1)m 2L (ieime P (cos (6)) - for m = 0 "

Y w) =Yg e =4 Vo
(=D Y (0, 9), form <0

where P5™ are the associated Legendre-Polynomials. The (—1)™ factor is called the Condon-Shortley phase
and is not part of the associated Legendre Polynomial like in other definitions.



2.1 Projecting Radiative Transfer Quantities
2.1.1 Radiance Field L and Emission Field )

Radiative transfer quantities, which depend on position & and angle w are projected into spatially dependent
SH coefficients for each SH basis function:

L™ (z) = / L (%,w) Y™ dw
Q

Q@ = | Q@w) Ve dw

The function is completely reconstructed by using all SH basis functions up to infinite order. The Py-equations
introduce a truncation error by only using SH basis functions up to order N for the reconstruction L and

Q:

N l
L(Ew) = L@w) =30 30 I (@Y™ (@) = 3 1™ (@) Ve (@)
=0 m=-1 I,m
N l
QW) = Q@ w) =Y Y QY (@)Y (W) =D Q" (D) Y™ () )
=0 m=—1 I.m

2.1.2 Phase Function

Throughout our article, we assume an isotropic phase function, which only depends on the angle between
incident and outgoing vector w; and w, (note that in the graphics literature, these would often be called
anisotropic). We will see later in section 2.2.3, that this allows us to fix the outgoing vector w, at the pole
axis €3 and compute the phase function SH coefficients by just varying the incident vector w;.

pl,m = / p(wz . gg)Yé’m (wz) dw;
Q

The expansion of the phase function can be further simplified, because the phase function is rotationally sym-
metric around the pole axis €3. Consider the definition of the spherical harmonics basis function Y(é’m:

Y20, ¢) = CH™e™? P (cos(6))

Now we apply a rotation R(«) of « degrees around the pole axis. In spherical harmonics, this is expressed
as:

l,m —imao l,m
pR(a)(Y(C )=e Ye

If the phase function is rotationally symmetric around the pole axis, we have:

PR(a)(P) =D

and in spherical harmonics this would be:



DT Y™ (w) = DY (w0)
Im

lm

By equating coefficients we get:

Im __  lm_—im«a

pr=pre

Since e~ = 1 for all & only when m = 0, we can conclude that p™ = 0 for all m # 0. This means
that for a function, which is rotationally symmetric around the pole axis, only the m = 0 coefficients will be
valid. Therefore, our phase function reconstruction for a fixed outgoing vector (w, = €3) only requires SH

coefficients with m = 0:
plwi) =Y POV (wi)
l

2.2 Projecting Terms of the RTE
2.2.1 Transport Term

The transport term of the RTE is given as

Replacing L with its expansion gives:

(- V)| DL @) Y (w)

lm

Next we multiply with Yé'm' and integrate over solid angle:

/ Y (w - V) Y LM (@) Y™ (w) dw
Q

Lm

We can pull the spatial derivative out of the integral to get:

v - / WY N LR (8) Y™ (w) dw
Q l,m

We apply the following recursive relation for the spherical harmonics basis functions:

lel,mfly(é—l-,m—l _ dl+1’m71Y(é+l’m_1 _ 6171,m+1y(é—17m+1 + fl+1,m+1y(é+17m+1

1
2 -1 41
9 (alfl,my(c* m +bl+1,mYC+ ,m>

i (_Cl—l,m—1YCl—1,m—1 + dl+1,m—1y(cl+1,m—1 _ el_l’m+1YCl_1’m+1 + fl+1,m+1y(é+17m+1>
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with

b _ A=mADAmt+l) g, [ (=m) ((+m) tm _ (U+m+1)(+m+2)
“ T @2l +1) (20— 1) Q+n@-1) ° 20 +3) (20 + 1)
(

(
(
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Note that the signs for the - and y- component depend on the handedness of the coordinate system in which
the SH basis functions are defined. Using this in equation 4 gives

! !’ r__ r__ !’ !’ ’ ! __ ! !’ ! __ ! 2 !’ ’ !
o —1m —1y(é 1m/'—1 gi'+1m —1Yé +1m/ -1 el —1m +1Y(é 1,m’+1 + fl +1,m +1Yé +1,m/+1
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a" ™Y, +o MY

> OLY (@) YE™ (w) dw

l,m

Integrating the vector term over solid angle can be expressed as seperate solid angle integrals over each
component. These integrals over a sum of terms are split into seperate integrals. We arrive at:

— m — ,m _' W l’
30, = tm S L (@) [ ;(w) Yo' (w) dw
%;y | L -mi—1 th Lhm fﬂﬂ -1 (w) Yé’m (w) dw +
z al'=tm’ Zl,m Lhm () fsz thl/_Lm/ (w) Yncl’m (w) dw  +

Applying the orthogonality property to the solid angle integrals will will select specific [, m in each term:

la lel,mflLlfl,mfl _ dl+1,m71Ll+1,mfl _ 6lfl,m+1Ll71,m+1 4 fl+1,m+1Ll+1,m+1
%63; . 7cl71,m71Ll71,m71 4 dl+1,m71Ll+1,m71 _ elfl,m+1Ll71,m+1 + fl+1,m+1Ll+1,m+1
az al—l,le—l,m 4 bl+1,le+1,m

Which gives the final moment equation for the transport term:
1
:§8$ (cl—l,m—lLl—l,m—l _ dl+1,m—1Ll+1,m—1 _ el—l,m+1Ll—1,m+1 + fl+1,7n+1Ll+1,m+1) 4
1 _ _ _ _
7ay( l—1,m— lLl 1,m—1 dl+1,m lLl+1,m 1 el 1,m+1Ll 1,m+1 + fl+1,m+1Ll+1,m+1) +

82 (al 1 le—l,m + bl+1,le+1,m)

1, 4. _ P 1 _ _ 1 ,_ _ 1
_icl 1,m 1axLl 1,m 1_7dl+1,m 163;Ll+1’m 1—§€l 1,m+16xLl 1,m+1+7fl+1,m+18xLl+1,m+l+

T g PR 1 _ _ o _ )
*Cl 1,m layLl 1,m 1+§dl+l,m 18yLl+1’m 1—§6l 1,m+layLl 1,m+1+§fl+1,m+1ayLl+1,m+l+

alfl,malefl,m + bl+1,male+1,m

2.2.2 Collision Term

The collision term of the RTE is given as:

—0¢ () L (Z,w)



We first replace the radiance field L with its spherical harmonics expansion:

—oy () Y LV (@) Y (w)

l,m

Multiplying with Y™ and integrating over solid angle gives after pulling some factors out of the inte-
gral:

— o (f)%;ﬂm (Z) /Q YE™ (W) Y™ (W) dw

= —0¢ (f) Z Ll’m (f) 5ll/5mm’

l,m

= —0y (f) Ll’m (.’f)

2.2.3 Scattering Term

The scattering term in the RTE is given as:
Js(f)/p(f, W w)L(F, W) dw’
Q

The phase function used in isotropic scattering medium only depends on the angle between incident and
outgoing direction and therefore is rotationally symmetric around the pole defining axis. This property allows
us to define a rotation R(w), which rotates the phase function, such that the pole axis aligns with direction
vector w. The rotated phase function is defined as:

PR(w)(P)

where p is the rotation operator, which can be implemented by applying the inverse rotation R(w)~! to the
arguments of p. With this rotated phase function, we now can express the integral of the scattering operator
as a convolution denoted with the symbol o:

/ p(#, W' - w)L(Z, W) dw' = Lo pr.)(p)
Q

= [ L@ n ))&
= <LapR(w)(p)> (6)

As we evaluate the inner product integral of the convolution, the phase function rotates along with the
argument w.

We now use the spherical harmonics expansions of L (equation (2)) and p (equation (14)) in the definition
for the inner product of our convolution (equation (6)):

(L, pr(w)(p)) = <Z LY™E)YE™, prw) (Zploch) >

lm l

Due to linearity of the inner product operator, we can pull out the non-angular dependent parts of the
expansions:

<L7 PR(w) (p)> = Z Ll’m(f) <Y(é7m? PR(w) (Zployé0> >
l

lm



and further:

(L, pr(w)(p ZZPZ OLb™ () < Ye™, PR(w) (Ycllo)>

The rotation pp(.) of a function with frequency [ gives a function of frequency [ again. In addition the
spherical harmonics basis functions Y(é’m are orthogonal. We therefore have:

<Yé"m,pR(w) (Yé’m’» —0  forall 141

which further simplifies our inner product integral to:

<L pR(w) ZplOle < (C 7pR(w) (Y(Clo)>

What remains to be resolved is the inner product. We use the fact, that the spherical harmonics basis functions
Y(Cl’m are eigenfunctions of the inner product integral operator in the equation above:

(Y™ pr) (Y)) = Mye™

with
4
N =
: 20+ 1
Replacing the inner product gives:
<L PR(w Z )\lploLl m Yl m

This allows us to express the scattering term using SH expansions of phase function p and radiance field
L:

Us(f)/gp(f’ w' - W)L(f7wl) dw' = Us(foapR(w)(p»

= 0,(#) Y Np L (@)Y
Im

However, we haven't done a spherical harmonics expansion of the term itsself. It is still a scalar function
which depends on direction w. We project the scattering term into spherical harmonics, by multiplying with
Y™ and integrating over solid angle w. We further pull out all factors, which do not depend on w and apply
the SH orthogonality property to arrive at the scattering term of the complex-valued Px-equations:

/ Y(C/m/ Us Z )\lploLl m Yl m ( )dw
=N (Z)p'° L™ (% / Y (w)YE™ (w) dw

—)\10 i: lOLl m, 2 5”/ _—

=\os(Z)pOLb™(Z) (7)



2.2.4 Emission Term
The emission term of the RTE is given as:

Q(%,w) (8)
The derivation of the SH projected term is equal to the derivation of the projected collision term. After

replacing the emission field with its SH projection and multiplying the term with the conjugate complex of
Yc results after applying the orthogonality property in:

Q"™ (T, w) (9)

2.3 Final Equation

We arrive at the complex-valued Py-equations after putting all the projected terms together:

1, .. PR 1 _ _ 1, _ 1
5Cl 1,m 18ILl 1,m 1_7dl+17m laxLl+1,m 1—761 1,m+18ILl l,m+1+§fl+1,m+lale+l7m+l+

7

—1m— m— 1 _ _ T _ 1
2Cl 1,m 18yLl 1,m 1+§dl+1,7n 1ayLl+1,m 1—*€l 1,m+1ayLl 1,m+1+§fl+1,m+1ayLl+1,m+1+

a' Tbmo, LI 4 Y LN — —oy (2) LY (E) 4 Nos (D) LY (@) + Q4™ (F,w)

3 Derivation of the real-valued Py-equations

The real-valued Py-equations are derived similar to their complex-valued counterpart. The key difference is,
that the real-valued SH basis functions Y are used, instead of the the complex-valued SH basis functions.
The real-valued SH basis functions are defined in terms of complex-valued SH basis functions:

i Im I,—m
5 (YC —(-1)"Yg ) , form <0
Yﬂé’m = Y(Cl’m, form=20 (10)
l,—m m~y-l,m
% (Yc - (=)"Y; ) , form >0

We use the subscript R and C do distinguish between real- and complex-valued SH basis functions respec-
tively.

3.1 Projecting Radiative Transfer Quantities
3.1.1 Radiance Field L and Emission Field )

As with the complex-valued case, the angular dependent quantities are projected into SH coefficients. Here,
those coefficients will be real-valued, since we use the real-valued SH basis.

L™ (7) = / L (7,0) V2™ du
Q

Q@) = [ Q)" do
Q



The reconstruction L and Q, is found by a truncated linear combination of SH basis functions weighted by
their respective coefficients:

L(Zw) =) L' (@Y™ (w) (11)
lm

QFw) =Y Q" (@) Y™ (w) (12)
l,m

We later will have to apply identities and properties for the complex-valued SH basis functions and therefore
need to expand the real-valued basis function in L. The real-valued basis function is different depending on
m and therefore gives different expansions for the sign of m:

K > tm Lhm () ﬁ (Yl’m — (=™ Y(Cl’_m) , form <0
L(Z,w) = Zl,m Lbm () Yé’m7 form=20
Zl m Lbm () % (Ycl’ " myl m) , form >0

> Zm_—l L™ (%) \}5 (Yém — (=™ Y(é’fm) , form <0

=q LY@ Yté % form=0

> Zin:l Lbm (Z) % (Ycl’_m - (=™ Yé’m) , form>0
N -1 o _ z

Lm oy [ ybmsy — ™y
§<m¥zL ()(ﬂYC RV A U)

+ LY (#) Y ()

m ﬁ. ,—m 1 mx,l,m
+ZLl (ﬁy (Hﬁ(_l) Ve (w)))

. N -1
(z > @) - 5 (X3 i conr)

=0 m=-1 =0 m=—
+ ZLW (#) Ve ()
1 N 1
(Z S @) YT w )) + — (Z >orhm@E) (- Yé””(éd)) (13)
=0 m=1 \/i =0 m=1

3.1.2 Phase Function

The real-valued spherical harmonics expansion of the phase function follows the the same derivation as the
complex-valued expansion from section 2.1.2. We first fix the outgoing direction vector w, to always align
with the z-axis (w, = €3). We compute the spherical harmonics projection over incident direction vector wj,
using the real-valued spherical harmonics basis functions:

pl,m = / p(wi : é’3)YHé’m (wl) dw;
Q

Phase functions, which only depend on the angle between incident and outgoing vectors are rotationally
symmetric around the pole axis. Like with the complex-values spherical harmonics basis functions, such a
rotation R of angle « around the pole axis is given by:

l,m —imao l,m
Pr(a) (YR™) =€ Yr



We formulate symmetry around the pole axis with the following constraint:

Z e—zma l mYl m Wz Zpl myl m wz
l,m
By comparing coefficients we get

l,m l,mefima

p =D

From this we can infer that p»™ = 0 for all m # 0, if the phase function is rotationally symmetric around
the pole axis. We therefore have the same property as we have with complex-valued expansions of functions,
which are symmetric about the pole axis: Only the m = 0 coefficients are needed for reconstruction. We
therefore have

= 3 ¥ wy) (14)
1
3.2 Projecting Terms of the RTE
3.2.1 Transport Term
The transport term of the RTE is given as
(W V)L(#,w) = w0, L (Z,w) + wy0y L (Z,w) + w,0, L (Z,w) (15)

To improve readability, we first project the term into SH by multiplying with the conjugate complex of the
Sh basis, and replace L by its Sh expansion afterwards. This order was reversed, when we derived the
complex-valued Py-equation in section 2.2.1.

We now multiply equation 15 with the real-valued SH basis and integrate over solid angle. However, the SH
basis is different for m’ < 0, m’ = 0 and m’ > 0, and therefore will give us different Py-equations depending
on m’. We will go through the derivation in detail for the m’ < 0 case and give the results for the other cases
at the end.

Multiplying the expanded transport term with the SH basis for m’ < 0 and integrating over solid angle
gives:
/ ( YUm (W) — \;—% (—1)7”/ yt,—m’ (w)) (WyO0z L (Z,w) + wyOy L (¥,w) + w,0, L (%, w)) dw

/ ,7Yy M (W)wp 0y L (Z,w) — %Y”»m'(w)wyﬁyL (T, w) — %Y“m/ (w)w0, L (7, w)

b )™ VT ()0, L (7, w) + % (=)™ YT (w)w, 0, L (7, w)
+ (—1)7”/ YV=m (0w, 0, L (%, w) dw

SR

10



After expanding the integrand and splitting the integral, we apply the recursive relation from equation 5 to
get:

I ’ ’ + —_ 'jr

\zf l—l,m —1/9:1:-[/(57 )yl’fl,m’fl(( 7)d(7— \[ dl 1,m’ 1/8 L fE UJ) Vt1,m’— 1( )d
;1 g A —1 o 1 + + YV+1,m/ +
\}» el 1,m’ 1/8Ll‘w))l/ 1,m! 1( )dw+\/»;fl 1m! 1/8wa) v+l 1( )d

i1 '—1,m’'—1 = r_ r_ '4+1,m'—1 - 7 T_
—— ’ O, L (Z,w)YV=Lm' =) dw + — d Oy L (Z,w) YV+Lm' —=1(1) dw

fg

) 2
g’ /8ZL (Z,w) YU+Lm' () dw

i U'—1,m / = U'—1,m’
- —a' T 0. L (Z,w)YV—1m (w)dw —
V2

l’ 1m+1/aL ww)yl’ 1m+1( )dw—l— fl+1m+1/aL xw)yl’Jrlerl( )d

(—)™ %fl'ﬂfm’ﬂ/ayL (#,w) YTFL=mH () dw

V2
1 / 1 ’ ’ —
—— (=)™ e 9L (7, w) YV L= 1 (w) dw
V2 2
i m 1 -
+ — (=" le* T 0L (Z,w) YV T (W) dw
V2
1 r1 —
F o (=1)™ Sl LA /&DL (F,w) YV-L=m'+1(y) dw
V2 2
1 1 ’ S —
— = (=)™ S [ 9L (7, w) YUAL =ML () dw
V2 2
'l: / ’I, ’ ’ e
+—= (=)™ T 9, L (7, w) YV =1 (W) dw
V2 2
i ) —
— — (=" dl+1— ‘1/8me)Yl’+1*m’ Hw) dw
V2
1 ry -
+— (=)™ =L [ g L(#,w) YU L (W) dw
NG Y
v
V2
i

b (=)™ al’*l’*m’/azL Tw) YU=1—-m" dw + — (—1)™ bl’“’*m’/azL Z,w) YUHL=m () dw
\/5( ) (Z,w) (w) ﬂ( ) (@,w) (w)

Before we further expand the radiance field L into its SH expansion, we will simplify coefficients by using the
following relations:

al,m _ al,fm’ bl,m —_ bl,7m7 Cl,m — 6l,7m dl,m _ fl,fm (16)

11



This allows us to rewrite the equation above as:
—iac/ayL (#,w) YT L1 () dw + (—1)™ iaC/GyL (Z,w) YU=1L=m"+1() dw
+iag / 0, L (%, w) YV T () dw — (—=1)™ iy / 0, L (Z,w) YT+ L-mF1 (1) dw
—iae/ayL (Z,w) YV=1m'+1 () dw + (—1)m/ iae/ayL (Z,w) YV=1=m"=1(4) dw
tiag / 0y L (7, 0) YT (1) dw — (—1)™ i / 0, L (7, 0) YT (1) d
. / 0,L (7, 0) YT T T () dw + (—1)™ @ / 0L (7, 0) YT T () duw
—a. / B L (7, w) YT —1m" 1 () dw — (—1)™ e / 0L (&, w) YU L= =1(1) dw
+af/3zL(f,w)m(w)dw+ (fl)m/af/amL(f,w) YUHL=m T (1) dw
—ad/BIL(f,w)W(w)dw— (—1)m'ad/axL(f, w) YV FL=m 1 (1) dw
—aa/[“)zL (Z,w) YV (W) dw + (—1)’"'%/821: (Z,w) YV=1=7 () dw

—ab/ﬁzL(f,w) yV+hm! () dw + (—1)m/ab/8ZL(f,w) Y7L = () dw

with
(R AR (I SR (R PR
O = —F=7C 7 Qe = —=—¢€ ’ , ag = ——d" ™
c \/52 ) e \/52 d \/52
i1 U+1,m'+1 i U'—1,m’' { I'+1,m’'
ap = —=— ’ , g = —a' ~ ™M ap = —=b" "
=2l "= NG

In the next step, we substitute the radiance field function L with its spherical harmonics expansion and arrive

12



at the following expression after further expansions and transformations:

—iae0y » LM (F) / Yo"V T T W) dw + (—

+iag0y Zle Z) /Yﬂé’mYC'H’m/*l(w) dw — (

l,m

—ia.d, ZLl () /Yﬂé’mYé/_l’m/H( ) dw + (—

+ZO[fa ZLZ m /Yl 7nYl/+1 m +1( )dw

l,m

+00. 0, ZL”” 7) /Y””Yl’*“”/ Yw) dw + (—

— 0y ZL“" ) /Yﬂg’”Yé’*l’m’“(w) dw —

+as0s YL @) [ VYT ) ek (-
l,m

— g0y ZLI ,m 3—7» /Yﬂé,myé/—&-l,m/—l(w) dw —

—a,0.y L' (Z /Y“”Yl’ B (w) dw + (—
Im

0. 3 L (7) / YEmYTFLA () des + (

)™ i Dy Zle i /Yﬂé’mYéLlﬁmlH(w) dw

(17)

)™ a0, Y L' (@) / YLy I F T () dy
. (18)

m 0Oy ZL”” (%) /Yé’mW(u}) dw
(19)

— ()™ a8, Y LM (@) / Yoyt ) dw
lm

(20)

™ 0oBs ZL”” 7) /Yﬂé’mW(w)dw
(21)

(—1)m'aeamZLl>m (:z)/yﬂg’"yg*l’*m’*l(w) dw
" (22)

af(“) Zle T) /YﬂémW(w) dw
(23)

1) agdy Y L (E /Y“"m( ) dw
. (24)
)™ g, Zle 7) / VI YT () dw (25)

™ 040, ZL”” 7) /Yé’mYé’“"m/(w)dw (26)

The real-valued Py-equation have an intricate structure which causes many terms to cancel out. We take the

first two terms (terms 17) of the Py-equations and

apply the following orthogonality property of SH:

7 (5,1;2522 - (=)™ 5mfff%m) , forms <0
/ Y]élyml Y(éz,m’z dw = 5%1:12 , for m; =0 (27)
o 1=msa
((511:712 + (- ) 6l1_12)7 for m; >0
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this way we get for the first two terms:

—ia0y Z Z L (z —2(5” o iy Z Z LY (%) 7'(—1)”15”111;/1“

=0 m=—1 =0 m=—1
— iOécay ZLI’O( \/7(51777? 11 ’La 6 Z Z Ll m (f 72(5"1771 11+1
=0 m=1
— 0, Z ZLl m(E) —= ( D)™ 6 s+ (—1)™ iaed, Z Z L™ (2) Tiémliﬂl
=0 m=1 =0 m=—1
N
— ()" it Z Z LY (#) 7“ D0 e + (2D iacayZLlO<f>75oi
=0 m=-—1 =0
o’ N l 1
)™ i ayz Z L™ (z —511 o () daedy Yy L (5)72(71)’“ § ey
=0 m=1 =0 m=1

We apply the delta function for the sums which run over the variable I:

N b ’
SN L = 3 1o (28)

=0 m=a

We get for the first two terms of the transport term of the Py-equation (term 17):

—1 —1

’ 1 ’ ].
—ioedy Yy LUTV(E) —zid, e iy Y LTI (&) =i (1) 6,
m=—0U'"+1 \/§ m=—10"+1 \/é

-1 '—1

7 1 ’
— Dy L0 (& 1) 5., — 0D, ZLZ*W(*) =0, s — 00, ZLH”" (%)
\/ m’ ﬁ m=—m'+ =Yy

! 1 1
+ (_ m 70( Z Ll —1,m ﬂ 77(5 - (7 m . Z LZ —1,m ? i(*l)m 5’”7’”/ ]
m,71/+1 \[ m—fl/+l \/i

1
. _1 m 6”’:”’,71
7 (=1)™6,.-..

-1
1
+ (=)™ iaed, LV 10 —6,,. + ()™ daedy 3 LT (@) b
(1" iDL (@) b 2 ) 7
-1
)™ ety S L () (cym
> ) G5 )"

m=1

The variables I’ and m’ specify a particular equation within the given set of Py-equations. We remember
that m’ originated from multiplying the transport term with the real-valued SH basis function Yg for the
projection. The real-valued basis function is different for the sign of m’ and we derived the transport term
of the Py-equations under the assumption of m’ < 0 (different equations have to be derived for m’ = 0
and m’ > 0). We are able to greatly simplify the terms above when considering the parity of m’ and that
m' <0.

The blue terms in the equation above all vanish, since the sums run over all negative (or positive) m, up to —1
(or 1), while the Kronecker deltas in the blue terms only become non-zero for values m > 0 (or m < 0). This
is because we derived these terms by multiplying with the real-valued SH basis function for m’ < 0.

Consider the seventh and 10th term from the equation above. Due to §,,=m/—1 Of d;=—m’41, an even m
is selected if m’ is odd and vice versa. Therefore, we have (—1)™(—1)"™ = —1. This causes term one and
seven (red) to vanish and term four and ten (black) to collapse into one term.
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Therefore, the first two terms in the expansion (terms 17), simplify to:

—iozcayZLl’m /Yl YL W) dw + (- m 100y Zle )/Yﬂé’mYé_l’_m/H(w) dw

2 , ,
——ia.0, LN ThTm L ()

V2

2~le—1 —1 U—1,—m/+1 (=
= z—f m=lg prhmmil
_ %Cl’fl,m 7layLl'717fm'+1 (f)

The terms in equation 18 are derived in the same way with the difference, that the signs are reversed and
that we have I’ 4+ 1 instead of I’ — 1. However, this does not affect the simplification:

Z'adayZLl,m /Yl mYC/+1m 71( )d(JJ— _ m ZOZC Zle )/Yﬂé’my(é,+l,7m/+1(w) d(JJ

2 / ,
= —ﬁladaylzl —L-m+l (f)

9 .
_ 777dl+1mflaLl+lfm+1()
_ §dl +1,m’ —18yLl/+1,—m’+1 (f)

Carrying out the same simplifications for the remaining terms, results in the following real-valued Py-equations
for m’ < 0:

1 1 ’ ’ ’ ’ 1 ’ ’ ! ’ ’
l —1,m’'—1 U'—1,—m/+1 U'+1,m'—1 U'+1,—m'4+1 _ — pm/ I'=1,m'+1 I'—1,—m’'—1
0,L +=d ,L B™e d,L

2
;ﬂm fl +1,m +1a LVHL-m/ =1 %Cl’fl,m'flale’fl,m’fl
%5 el'fl,m'JrlaxLl'fl,m'nLl + lém%]fl’+1,m’+1axLl’+1,m’+1 _ %dl'Jrl,m’flaxLl’%»l,m’fl
+ al —1,m’ ale/—l,m/ + bz’+1,m’asz’+1,m’
with
g7 = { %, for |z| =1 (29)
1,  forlz|#1

We now carry out the same derivation for the assumption of m’ > 0. We multiply equation 2.2.1 with the
definition of the real-valued SH basis for m’ > 0 and get:

1 o 1 m' me o " ~
/ (\/iYCl T (w) + 7 (-1) Y(Cl i (w)) (Wy0z L (Z,w) + wyOy L (¥,w) + w,0,L (Z,w)) dw

We expand the integrand and split the integral. Then we apply the recursive relation from equation 5 and
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get:
1 1 ’
l*l* 71/9[ ]rl —1, 1( )]

VD)

_111’—1— _1/6L
o ]‘ Zllflfmjtl/aL

+ %al —L—m’ /8ZL(f7w) YC b () dw +
1 /1 ’

(=1 l—1m—1/8L
I
1

V2

_i_ ’11’1m+1/
\/5(1) 5 0. L (Z

i U4+1,m'+1
+ s o /aL
(_l)m/ [ l'flmfl/a L

+

(™ L ”‘“"“/a L(z
( ) fl+1m+1/8L

( l'flm\/aL

+
&\H&\HE\HE\HE\H

+

1 L l—l—m“/aL (Z,w) YT ) dw 4+ —

Yl/ 1,—m +1(W)d

(_l)m/ ldl +1,m'—1 /81L (f

(71)m/ Edl +1,m’ 71/ayL (f

Yl/—lm/( )dw—|—

\[
l' 1,m’— l(w)dw

W) YA () dw

Yl 71m+1( )dw
Yl+1m+1( )dw

Yl/ 1,m!— 1(w)dw

Lw) VIR () dw

chlerl( )dw

Yl/+1 m +1( )dw

f

16

dl+17'1/aL

f2

A—1,—m/—1 —m’— =
Y L 1(W)dw + ﬁidl +1 ! /6@/[/ (Z‘

\f2
Ly /@,L(f,w)Yé LY dw

(-1

fl+1—m+1/8L

fl+17m+1/aL

bl+1m /6L

Yl/+1 —m/— l(w)dw

Yl’-‘rl —-m +1( )dw

T

Yl/+1 —m +1( )d(.(.)



We simplify these using the identities from equation 16:
e / 0. L (%,w) Y 5™ " Hw)dw — (=1)™ a, / 9, L (%,w) Y~ (w)dw
—ad/amL(f,w)W(w)dw—i— (—1)™ ad/azL(iw)W(w)dw
— ae/azL (7,w) W(w)dw + (—1)m/ ae/axL (f,w)W(w)dw
+af/awL(f,w)W<w)dw—(—1)’"’ af/ach(f,w)W(w)dw
~ia, / 9,L (#,0) Y2 " L (w)dw — (=1)™ ia, / 9, L (#,w) Y2 "L (o) dw
+md/a L(#w) Y (w)dw + (—1)™ iad/@/L(f,w)W(w)dw
- me/a L(#w) YY" (w)dw — (—1)™ z’ae/@yL(f, W) Y () dw
+iaf/8yL (f,w)W(w)dw—i—(—l)m, iaf/ayL (f,w)W(w)dw
/aL W) Y () dw + (— /aL W) Y5 () dw

+ab/8L W) Y (0)dw + (— mab/aL W) VI () dw

with
11 l/—1 —m/—1 11 U'—1,—m/+1 11 U+1,—m’'—1
— > - = > —__d + m
ac \/>2 I ae \/526 ’ ad \/>2
a 1 1fl +1, —m’+1 o = 1 allfl,fm' ap = 1 bl'+1,7m'
RVCP G ’ NG

We substitute the radiance field function L with its spherical harmonics expansion and arrive at the following
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expression after further expansions and transformations:
aca$ ZLl,m/Yﬂé7mYé/71’7m/71(UJ)dw _ (_1)m' Oécam ZLl,m/Yﬂé,mYélfl,m/+1(w)dw
l,m L,m
- adamZLlam/Yﬂgmy(é’“’*m’*l( ydw + (=)™ agds ZLZW/Yﬂé’mYé'“’m/“(w)dw
l,m

—aeachlem/Yﬂémeé"lﬁ‘m’“( Ydw + (—1)™ D, Zle/Yﬁé’mYé'_l’m'_l(w)dw

l,m

+ afam ZLl,m/Yﬂé,myé’-‘rl,—m’-l-l(w)dw _ (_1)m’ Oéfaw ZLl,m/YHémYé’-‘er’—l(w)dw

l,m

— Zac(‘?y ZLl,m/Yﬂé,my(é/_l,—m/_l(w)dw _ (_1)m/ 7;Oécﬁyz:ljlﬂn/}/]lé,'m,}/(é/_1,7)7,/-‘1-1(u‘})(iu‘}
Im l,m

+iadayZLl,m/Yﬂé,my(clhl»l,fm’fl( )dw+ m ZO[da Zle/Yﬂé,mYé/+l,m/+l(w)dw

lm

_ iaeay ZLl,m/Yﬂé,mYélfl,fm/+l(w)dw _ (_1)717,/ iaeay ZLl,m/Yﬂé,mYélfl,mlfl(w)dw

+iafayZlem/Yﬂngé’“f’"’“( Ydw + (=1)™ iy, Zle/Yﬂngé’“’m’*l(w)dw

l,m

—&-aa@ZZLl’m/Yﬂé’mYé'_l’_ (W)dw + (=1)™ a0- Zle/Yﬁg’mYé’—l”"’(w)dw

Im L,m

—&-ab@zZLl’m/Yﬂé’mYé'“’_ (w)dw + (— m . Zle/Yz mYl'+1 m (w)dw
Again we apply the identity given in equation 27. For the first two terms we for example get:

—1 . —1 .
Ll’*l,m z Ld,,,,,,,,,,l 704(»817 Ll/,l,m 7 L —_1)™ 577;—7,741
> (@) b DS (5) 5 (-1

m=—1"+1 m=—1"+1
1 -1 -1 1
00, L0 (B) =0+ el Y LY TI(D) =6, + ey Y LTI (8) — (=1)™ 6,
0, ()ﬂ mzl ( )f mzl ()\@( )
_1 )
/ ’ 7 2 ,
— (=) @y Y, L'TN(@) =0+ (1) Z LV (@) — (=1)™ 6,
m=—1'+1 \/> 777—7]/+l f
, 1 -1
(=)™ @0, LN N0 (7)) —=5 ., — LV=tm (@) —5
(-1) (%) 5o (-1 Z f
-1
— (1) b, ZLl “m () L (—1)m

As with the m’ < 0 case, the blue and red terms cancel each other out, leaving only the black terms. The
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first two terms of the real-valued Ppy-equations for the transport term therefore are:

-1 -1

’ 1 / ’ 1
@0y Y L' (E) —=6, v — (1) @0y Y LV TE(E) —= (=1)" 0,
2 2 1 5 / / /
aca Ll —1,m'+1 z e ( Cl —1,—m —1) ale —1,m'+1 z
=5 (@) = NACNG (7)
_ %Cl'fl,fm'flLl’fl,m’Jrl (f)

Following this through for the remaining terms gives us the real-valued Py-equations for m’ > 0:

1 / / ’ ’ 1 ’ ’ / ’ 1 Y ’ ’ ’

2 l —1,—m —lale —1,m'+1 (f) o 7dl +1,—m —1axLl +1,m'+1 (:f) . 7ﬂm 6l —1,m —laILl —1,m'—1 (f)
1 ]_ ! ! 7 ’7 1 !’ 7 ’ !’
26m fl +1,—m +18 Ll +1,m'— (f) 5cl —1,—m 718 Ll —1,—m'—1 (g—:,») o 5dl +1,—m 7layLl +1,—m'—1 (3—5»)
_ fl +1,—m +18 Ll +1,—m/+1 ( ) l'—l,—m,’ale’—l,m’ (f)

m;u

\]

215 €

2
bl/—i-l,—m'aZLl'—i-l,m' (.’f)

1 _ _ ’ /_ _ ’ R
5 -1, m+16yLl 1, m+1(x)

Finally the m’ = 0 case needs to be derived. The derivation starts very similar to the complex-valued Py-
equations as in this case, the real-valued SH basis function is identical to the complex-valued SH basis function.
We multiply equation 2.2.1 with the definition of the real-valued SH basis for m’ = 0 and get:

/ VI (@) (wa o L (7, 0) + w0, 0y L (7, ) + w0, L (&,w)) dw

Expanding the integrand and applying the recursion relation (equation 16) produces the following set of
terms:

1l'71m71/8L l’ 1,m’'— 1(w)dw—ll,1m+1/8L l’ 1m+1(w)dw
dl+1m71/aL l/+1m—1( )d + fl+1m+1/aL )Y(é+1,m+1(w)dw
7Zl'1m71/aL l’lm/ 1(w)dw72l71m+1/8L l’1m+1( )dw

§rd T / 0L (7,0) YT T T w)dw 4 L e / 8,L (7.0) YT (w)duw

1ol / YU ()0, L (7, w) dw + b+ / Y ()0, L (7, w) dw

Again we will replace the radiance field L with its real-valued SH projection and get:

1 z’—17 -1 1, lym~y ' —1,m/’—1 1 1—1 "+1 l, lym~y A/ —1,m’+1
S aIZLm Yy (w)dw — e b alZLm Yy (w)dw

dl +1m—18 Zle/Yl myl’-i-lm —1( )d + fl+1m+1a Zle/Ylel’-‘rlm-l-l( )dw

l,m l,m

{ llfl’mlfl lm ILm~yl'—1,m’'—1 { l—lm 1 lm Lym~yAl/—1,m’+1
- 5¢ 0, L /YR Ve (W)dw = Se o, > L /Y YE (w)dw

l,m

+ %dl'Jrl,m’flay ZLl,m /Yﬂé’nLYé/+l’m,_l(w)dw + %fl'+1,m’+lay ZLl,m/Y]é,myé’+1,m’+1(w)dw

lm lm

allfl,m'az ZLl,m/Yé’fl,m’ (W)Y]}é’mdw + bl'Jrl,m'az ZLl,m/YéUrl,m’(w)Yﬂé,mdw

lm
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These terms also have an intricate structure where many terms cancel out and simplify. This is seen once we
apply the SH orthogonality property (equationequation 27) and further consider that m’ = 0. We show this
for the first two terms, which expand to:

1 o L _ i
2([ —-1,—1 ( Z Ll l'm .'L O 1m>

m=—1'+1
Ly Z L (@) (<) 61
5 ;
m=—1"+1
-1
1 —1,—1 1 lflm
¢ T [ T @,
1 1 -1

l/71 —1 l’*lm, g m
fmpt s 7(9% L ’ x)(—1 0_ m
s % mZ::l (@) (1) 6,
7161'111' Z LY=tm (#)6

5 1,m

—U'+1
1 i -

-1, V=1,m (7 m
Loy, L0 () (1) 6,
2 \/i <m§;+1 |

1. /

_ 561 “Llg, (Ll —10 (z) 5170)
'—1

1 ]/_11 1 l—lm g

e (S @

1 -1

l/—11 l—lm %) m

—5e ZL (@) (—1)" 61,m

Again the blue terms vanish since the delta functions will never be non-zero under the sums. The red terms

cancel each other out since ¢! = eb! and —1™ = —1 for m = —1. The terms in black simplify to:
-1 -1

11’1711 lflm 11’111 lflm—» m

5 E L T)6_q 5¢ g L @) (=1)" 01,m
Lygal U—1,1 = Lypgad =11 (= 1

=—c T —=0, L' T (Z) — - T T —=0,L" T (Z) (-1
T @ -3¢ (@ (1)
L oy U—1,1 (=

=—c" "0, L T (X
V2 @

Similar simplifications apply to the remaining terms of the SH expansion of the transport term for m = 0,
resulting in the final expression:

1 ’ ’ 1 ’ ’

\/écl 71,718;8[/ —1,1 (f) _ \/Edl +1,716xLl +1,1 (f)

1 '—1,—1 U'—1,-1 /= 1 '4+1,—1 U'4+1,-1 (=
—c T, L T ) — —=d Ty, Lt T

al'fl,Oale'fl,O (f) + bl'+1,OaZLl'+1,0 (f)
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3.2.2 Collision Term

The collision term of the RTE is given as:

—0¢ () L (Z,w)

We first replace the radiance field L with its real-valued SH expansion:

—o ( ZL“” ) V™ (w)

In order to project the term into SH, we have to multiply with the real-valued SH basis function and integrate
over solid angle. Since the basis function is different, depending on m’ < 0, m = 0 or m > 0, we have to
derive seperate Py-equations for each case.

We first derive the SH projection of the collision term for the case when m’ < 0. Multiplying with the SH
basis and integrating over solid angle gives after some further transformations and application of the SH
orthogonality property:

1 7 ’
+ z) —= Ll m(Z 1 " (5m’ —-m
A5 X @y
7 /
— —=0¢ (&) L0 () 6,
\/ifft( ) L7 (Z) O 0

)
L 1 Ll ,m 6—m m
\/5( ) m—z—l’
7 ’ 1 -
~ Ve @ 5 3 L@ ()" e
m=—1'
)
(=)™ 7 Ll 0 o_
) @ 1@
%(—1 m Z Ll, f (S—rn ,—m
m=1

As for the transport term derivation. The blue terms vanish due to the delta function being always zero under
the sum. The red terms cancel each other out. The remaining term (black) determines the SH projection of
the collision term for m’ < 0:

o LV (30)

The derivation for the SH projection of the collision term for m > 0 follows the same structure and likewise
results in:

o LV (31)
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The real-values SH projection of the collision term for m = 0 also is:
o L (32)
3.2.3 Scattering Term

The scattering term is given as a convolution of the radiance field L with the phase function p using a rotation
R,:

as(f)/g/p(f,w’ ©w)L(F, W' )dw’
= 05(Z)(L © pr(w)(p)) ()
where the convolution can be also expressed as a inner product integral:
(Lo pr®) = [ LE o () ()
= (L, prw)(P))

We substitute L with its real-valued SH-expansion (equation 11) in the inner product intergal and perform
some further factorizations to get:

%zzzw 7 £ (Y™ @), oy (V) )

=0 I/ m=-I

oD D @) £ (T ) e (1))

1 v l ILm (= £1'0 l,—m 0
+72 ZZ Z L2 (@) f <Yc’ (W), PR(w) (Y(c >>
+— ZN:XN: (=)™ Ll (@) F10 (V™ (@), o) (YE°))

The spherial harmonics basis functions Y™ are orthogonal. We therefore have <Ylm,pR(w) (Yl/m/)> =0,
for all I # I’, which further simplifies our scattering operator to

%Z Z Lhm(z fl0< "), PR(w) (Yclo)> (33)

ol
-7 é;l (=)™ £ @) £ (YT (@), prioy (V7)) (34)
+§%L“’(*) 7O (Y8 @), prc) (V) (35)
+ imz L (@) £ (Y4 (@) oy (V) ) (36)
+ Iiml_ (=)™ L (@) £ (Y™ (@), ey (YE) ) (37)
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What remains to be resolved are the inner products. We use the fact, that the spherical harmonics basis
functions Yém are eigenfunctions of the inner product integral operator in the equation above:

(YE™, prewy (YE)) = MYE™ (38)
this results in:
P
NG ST L @) FONYE (W) (39)
=0 m=-1
P
7% > (=)™ LA™ (&) fONYE T (W) (40)
=0 m=-1
N
+3 T LM(@) fONYEO(w) (41)
1=0
| N l
+ﬁ SN (@) FONYE T (w) (42)
=0 m=1
A
+ﬁ DO LE (@) FONYE (w) (43)
=0 m=1

The next step is to project the scattering term into real-valued SH. Again we will have to use different terms
for m < 0, m = 0 and m > 0, due to the definition of the real-valued SH basis functions. Multiplying with
the real-valued SH basis function for m < 0 and after applying further transformations, we get:

i

V2

-1
oo (&) —=p" " @ N Y LT (@)
m=—1'
-1
1,0 (= m rl'.m /=
—=p " (T) A (=)™ L™ (&) Omr,—m
\/i m;l’ ’

oo (2) L0 () p'° (&) Ardymr 0

V2

i

8]

ﬁgs( )

1

l/

7pl'ﬁ0 (I) A\ Z Ll'nn (I) 5m’,77n

m=1

4

1,0 (f") M\ Z (_l)m Ll',m (f) 6m’,m

m=1

S

. -1
) Lo U'm (=
, —p" (D) A\ L () 6_prom

5 \/ép ()lm;l, () n’,m

i / i -
+—= (-1)" o (&) —=p" P @ N D (D)L (&) bt —m
m=—1'
i /

(=)™ o () L' (&) p" (&) M 0

V2
- ﬁ (—1)™ o, (2) %pl"” (7) A iﬁ LI () 8-t =
m=1
-5 (0 @ s @ S " @5
m=1
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Again, the blue terms vanish, because the delta functions will always be zero under the sum. The red terms
cancel each other out. The black terms reduce to:

—0s () \ep! 0 (@) L™ ()

The same happens for the derivation for m > 0 and m = 0 resulting in the same term.

3.2.4 Emission Term

The derivation of the real-valued SH projection of the emission term is exactly the same as for the collision
and scattering term.

After replacing the emission term @ with its real-valued SH expansion, we multiply by the real-valued SH
basis function for m < 0 and integrate over solid angle. After some transformations we arrive at the following
expression:

m=—1'
+ LL S Ql m (f)( 1)7715 ,
\@\/im__l, m/,—m
- \/» m/ OQl O( )
7
s QI o T "m ,—m
e
2 ]. l/ l',m — m
- EE;Q (@) (=1)" dmr,m
. —1
1 [ ’
+7(_1)m = Ql m(i) (Lm’m
\/g \[m:Zfl’
-1
? m’ 1 U'm (= m
—%( ) 7 szQ (@) (=1)" 6, —m
b )™ 6 0@ 0 (@)

form <0, m=0and m > 0.
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3.3 Final equation
Putting all projected terms from previous subsections together, we get for m < 0:

_ 16171.77L718yL171,7m+1 + 1dl+l,m—layLl+L—m+l _ lﬁmezqmﬂayszl.fmfl
2 2

2
1 ™M pi+1.m+1 I+1,-m—1 1 I—1,m—1 I—1,m—1
+ 75 f m ayL mmel g bt 8;,;[/ m
2 2
1 1 1
_ §6W¢ﬂel—17m+181L171,m+1 + 56”,#_1]“”1”“amLIH'mH _ idulquaxLIJrl,mq
+ al—l,male—l,m + bl+1,male+l.m + o.tLl,m _ G_S)\lpl.oLl.m — Ql,m (44)
for m = 0:
1, 1 1
AT [ e [ Ay [
Ve o V2 v
1

dl+l,—la LH»I,—la/l—L(]aZLl—l.() + bl+LOaZLl+l,0
V2 Y

+ O,tLl,m _ O-SAIPH)LL”L — Ql.m (45)

and for m > 0:

1 1 1
= al-l-m—1 . — Zdremt IL!+1,m+1 _ = m i-1m-1 $Lz—1.m—1
5 0 3 19) Qﬂ e 19)
1 1
+ iﬁmfl‘f’l,*m‘i’laxLH»l,m—l + icl—l.—m—layLl—l,—m—l
1 l4+1,—m—1 I+1,—m—1 1 1—1,—m+1 1—1,—m+1
— §d Oy L™ + 5,,,#56 OyL
1
_ 6"1#15fl+l.7m+layLl+Lfm+l + alfomalefl,m + bH»l.*maZLlJrl,m
+ O_tL[,m _ Us)\lprl‘m — Ql.m (46)
with
2 _
gr={ 7 for |z| =1 R . 1, forx#y
1, forlz|#1 0, forz=y
and
o JU=marmty o [—m) (+m)
N (20+1) (20— 1) SV @+1)20-1)

)
)
o [UmA ) tmt2) [ =m)(—m 1)
© = (20 +3) (20 + 1) “V@rn@E-1
o JU=m+1)(—m+2) o = (l+m)(l+m-1)
© = 20 +3) (2 +1) VT ern@-1
47
A=A 5T

The equations can be written in a more compact form by using + and F to write the equations for m < 0
and m > 0 as one. This is done in the paper.

25



	Isotropic Radiative Transfer Equation
	Derivation of the complex-valued PN-equations
	Projecting Radiative Transfer Quantities
	Radiance Field L and Emission Field Q
	Phase Function

	Projecting Terms of the RTE
	Transport Term
	Collision Term
	Scattering Term
	Emission Term

	Final Equation

	Derivation of the real-valued PN-equations
	Projecting Radiative Transfer Quantities
	Radiance Field L and Emission Field Q
	Phase Function

	Projecting Terms of the RTE
	Transport Term
	Collision Term
	Scattering Term
	Emission Term

	Final equation


