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Figure 1: Diffuse irradiance reconstructed using (left to right): 2nd order Spherical Harmonics, 3rd order Spherical Harmonics Ambient
Dice (our method) using the RBF variant, Ambient Dice (our method) using the YCoCg variant, importance sampling (reference)

Abstract
We present a family of basis functions designed to accurately and efficiently represent illumination signals on the unit sphere.
The bases are built of locally supported functions, needing three to six basis functions in a given direction. This minimizes the
number of memory transactions and bandwidth requirements needed for reconstruction.
There are three variations of our basis. All are based on storing coefficients at the 12 vertices of an icosahedron. The first
one stores the values directly, together with their directional derivatives and hybrid Bézier patches are used for interpolation.
This allows one to achieve quality comparable to 3rd-5th order spherical harmonics while still requiring 27 coefficients for the
reconstruction. The second variation encodes the signal in YCoCg space and uses a reduced quality, linear reconstruction for
the chromaticity components - requiring only 15 coefficients while marginally reducing the quality. The third option exploits the
partition of unity formed by cos2 and cos4 restricted to a hemisphere oriented along the directions of the icosahedron vertices.
It uses 18 coefficients for the reconstruction, but trades the additional bandwidth requirements for simpler calculations. The
quality of that version is still comparable to 3rd order spherical harmonics (SH).
We name the basis Ambient Dice as a reference to both: the Ambient Cube basis - as ours is an extension of some of its properties
- and the 20-sided dice commonly used in pen-and-paper role-playing games, which is an icosahedron.

1. Introduction

Modern games typically require some way of representing indi-
rect illumination. For diffuse lighting the most common solution
is to store irradiance in a volumetric data structure, either regu-
lar [GSHG98, McT04] or irregular [Cup12]. The data must be rep-
resented in some directional form for the lighting to respond to
normal variation. The two most popular solutions are the Ambient
Cube (AC) [McT04] which stores the irradiance projected onto six
cos2 hemispherical lobes oriented along the cardinal axes, or low
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order spherical harmonics (SH), where the irradiance is stored as a
set of coefficients for mutually orthogonal basis functions defined
over a unit sphere [RH01].

Both solutions come with limitations. The AC basis is formed of
wide lobes covering whole hemispheres with little overlap, which
makes it poorly reproduce irradiance signals. It is, however, simple
and efficient at runtime - for any direction only three of the six basis
functions are non-zero and need to be brought from memory.

Spherical harmonics offer much greater precision. The SH basis
functions cover the whole sphere, evaluating in any direction all of
the coefficients are used. For 3rd order SH it’s 9 coefficients for
each of the three color channels, 27 total, which is expensive and

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/sre.20171191

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sre.20171191


M. Iwanicki & P. Sloan / Ambient Dice

X

Y

Z

(a) Base octahedron

X

Y

Z

(b) Intermediate stage

X

Y

Z

(c) Resulting icosahedron

Figure 2: Construction of an icosahedron from an octahedron

games often revert to 2nd order SH (4 coefficients for each chan-
nel), which has lower quality. Additionally, SH can exhibit artifacts
typical for the truncated-spectrum-type solutions - discontinuities
in the input signal cause ringing and extra processing of the coeffi-
cients [Slo08] needs to be performed to eliminate it.

Recently, some developers began using a sets of 9-12 Spherical
Gaussian lobes (SGs) [TS06] as a representation of the radiance
signal, that’s later convolved with the cosine lobe to form irradiance
[NP15] and while those bases show fewer ringing artifacts, the SGs
also have global support over the unit sphere, so all the coefficients
are needed during evaluation.

Our aim was to design an alternative to those bases. On modern
GPUs, bringing excessive amounts of data from memory to com-
pute units can pose performance problems. We wanted to combine
the local support of the functions that make up the basis - so that the
evaluation would only need a handful of coefficients, limiting both
bandwidth and register needs - with the quality of reconstruction
typical for more complex bases. We assumed that overall memory
consumed by the representation is less of a concern, and seek a
better balance between bandwidth and computation.

We call the proposed basis Ambient Dice (AD) - as a reference to
both Ambient Cube and the 20-sided dice commonly used in pen-
and-paper role-playing games. Of the variations described in the
paper, we think two are promising: Spherical Radial Basis Func-
tions (SRBFs) with 12 hemisphere lobes, and the other uses the
YCoCg color space and Bézier patches, requiring 18 and 15 coef-
ficients respectively to reconstruct irradiance for a given normal.

2. Ambient Dice

2.1. Description

The AD basis stores values at the vertices of a regular icosahe-
dron, inscribed into a unit sphere. An icosahedron is composed of
12 vertices and 20 equilateral triangles. All the vertices lie on the
surface of a sphere and projections of the triangles onto the sphere
form 20 identical spherical triangles. Evaluation of the function in
any direction requires data from the three vertices at the corners

of the spherical triangle that contains the direction. Subdivision of
a sphere is often used in meteorological modeling, where the unit
sphere represents the Earth. The projection from an icosahedron to
the surface of a sphere has low distortion and many operations can
be performed directly on the flat triangles making up the icosahe-
dron, rather than on spherical triangles, without sacrificing quality.

2.2. Indexing an icosahedron

To use icosahedron as a basic building block, an efficient way of
indexing it is needed. One option is to determine the triangle that
a given direction points to one could iterate over icosaheron trian-
gles, or use some form of spatial hierarchy to make the search more
efficient. This results in complicated code, with a lot of branching,
which doesn’t execute efficiently on modern GPUs. To simplify the
indexing we rely on a construction of an icosahedron from a regular
octahedron described in [Ban96].

An octahedron is placed in the origin of the coordinate system,
with the vertices placed on the major axes (see figure 2a). The ver-
tices are next split, to create 12 additional triangles, while simulta-
neously shrinking and rotating the initial octahedron faces (figure
2b). As the vertices are split further, we reach a point where all the
triangles are equilateral and the 3d shape is an icosahedron (figure
2c). We will refer to the triangles formed from the initial octahe-
dron faces as base triangles and the triangles created during the
vertex splitting process as side triangles.

All icosahedron vertices are in one of the following three forms:

• group A: (±1.0,±Φ,0.0)
• group B: (0.0,±1.0,±Φ)
• group C: (±Φ,0.0,±1.0)

where Φ is the reciprocal of the golden ratio φ. The vertices
formed this way are not on the surface of a unit sphere, but all
have the same length

√
1+Φ2.

Given three distinct groups of vertices, with 4 members each we
can index them using the sign bits of their coordinates and the group
they belong to. Vertices from group A are indexed 0-3, vertices
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Figure 3: Icosahedron triangles intersecting a single octant of the
coordinate system. The triangle that contains a given direction vec-
tor can be determined by choosing one vertex from each one of the
pairs (A,C′), (B,A′), (C,B′) based on the relation between direc-
tion and the plane passing through the opposite edge and (0,0,0)

from groups B and C, 4-7 and 8-11 respectively. Two sign bits of
the two non-zero coordinates form an index relative to the start of
the group, with the first sign being the low order bit. For instance,
a vertex with coordinates (−Φ,0,1) has the index 9 (group C, sign
bits 1 and 0). For base triangles each vertex comes from a different
group, for side triangles, two vertices come from the same group
(with the sign on one of the axis flipped).

To get the vertices making up the spherical triangle that intersects
the given direction, we extract the sign bits of the direction coor-
dinates and apply them to the three patterns of icosahedron vertex
groups, in the same way we specified indexing. This way we get the
coordinates of the 3 vertices (and their indices in the icosahedron)
making up the base triangle that is entirely contained within the
octant of the coordinate system pointed to by the direction. Given
the octant, the direction can either be pointing to the base triangle
or one of the three side triangles. Each of the side triangles shares
two vertices with the base triangle and the remaining vertex can be
obtained by changing the group of the third vertex of the base tri-
angle according to the following rules: A→C, B→ A, C→ B and
flipping the sign of the coordinate with value Φ. To check which
triangle should be used one needs to simply check what side of the
planes spanned by the pairs of base triangle vertices the direction
is. This check can be performed in the (+,+,+) octant, to benefit
from computing dot products with fixed vectors. For this, the ab-
solute value of direction coordinates need to be computed, but on
recent GPUs this is a free operation.

Indexing triangles is also straightforward. We index the base tri-
angles with the three sign bits of the octant they are placed in (for
instance base triangle from (+x,−y,−z) octant has an index 6).
The remaining 12 side triangles are classified based on the coordi-
nate system plane they intersect. Side triangles intersecting plane
Y Z are marked red on the figures, triangles intersecting XZ plane
are green and ones intersecting XY plane are blue - we will refer to
those groups of triangles by the color with which they are marked.
Triangles in the red group use indices 8-11, triangles from the green
and blue groups use indices 12-15 and 16-19 respectively. There

are 4 side triangles intersecting each plane, each one belonging to
a different quadrant of that plane, the sign bits of the coordinates in
that plane are used to index within the group. Triangles from group
red use signs of the (y,z) coordinates of the quadrant for indexing
and groups green and blue use (x,z) and (x,y) respectively. Flip-
ping across edge (B,C) (choosing between vertex C′ instead of A)
picks the triangle from red group, flipping across edge (A,C) picks
triangle from green group and across edge (A,B) one from blue
group.

The pseudocode in listing 1 illustrates the indexing process.

kT = 0 .618034 f ;
kT2 = kT ∗ kT ;

o c t a n t S i g n = { d i r . x < 0 . 0 f ? −1.0 f : 1 . 0 f ,
d i r . y < 0 . 0 f ? −1.0 f : 1 . 0 f ,
d i r . z < 0 . 0 f ? −1.0 f : 1 . 0 f } ;

o c t a n t B i t = { d i r . x < 0 . 0 f ? 1 : 0 ,
d i r . y < 0 . 0 f ? 1 : 0 ,
d i r . z < 0 . 0 f ? 1 : 0 } ;

o c t a n t B i t F l i p p e d = 1 − o c t a n t B i t ;

/ / v e r t e x c o o r d i n a t e s
ve r tA = { 1 . 0 f , kT , 0 . 0 f } ∗ o c t a n t S i g n ;
v e r t B = { 0 . 0 f , 1 . 0 f , kT } ∗ o c t a n t S i g n ;
v e r t C = { kT , 0 . 0 f , 1 . 0 f } ∗ o c t a n t S i g n ;

v e r t A f l i p p e d = { −kT , 0 . 0 f , 1 . 0 f } ∗ o c t a n t S i g n ;
v e r t B f l i p p e d = { 1 . 0 f , −kT , 0 . 0 f } ∗ o c t a n t S i g n ;
v e r t C f l i p p e d = { 0 . 0 f , 1 . 0 f , −kT } ∗ o c t a n t S i g n ;

/ / v e r t e x i n d i c e s
indexA = o c t a n t B i t . y ∗ 2 + o c t a n t B i t . x + 0 ;
indexB = o c t a n t B i t . z ∗ 2 + o c t a n t B i t . y + 4 ;
indexC = o c t a n t B i t . z ∗ 2 + o c t a n t B i t . x + 8 ;

i n d e x A f l i p p e d = o c t a n t B i t . z ∗ 2 + o c t a n t B i t F l i p p e d . x + 8 ;
i n d e x B f l i p p e d = o c t a n t B i t F l i p p e d . y ∗ 2 + o c t a n t B i t . x + 0 ;
i n d e x C f l i p p e d = o c t a n t B i t F l i p p e d . z ∗ 2 + o c t a n t B i t . y + 4 ;

/ / t r i a n g l e i n d i c e s
t = o c t a n t B i t . x + o c t a n t B i t . y ∗ 2 + o c t a n t B i t . z ∗ 4 ;
tRed = 8 + o c t a n t B i t . y + o c t a n t B i t . z ∗ 2 ;
t Gr ee n = 12 + o c t a n t B i t . x + o c t a n t B i t . z ∗ 2 ;
t B l u e = 16 + o c t a n t B i t . x + o c t a n t B i t . y ∗ 2 ;

/ / s e l e c t i o n
v e r t A s e l e c t = d o t ( abs ( d i r ) , { 1 . 0 f , kT2 , −kT } ) > 0 . 0 f ;
v e r t B s e l e c t = d o t ( abs ( d i r ) , { −kT , 1 . 0 f , kT2 } ) > 0 . 0 f ;
v e r t C s e l e c t = d o t ( abs ( d i r ) , { kT2 , −kT , 1 . 0 f } ) > 0 . 0 f ;

v0 = v e r t A s e l e c t ? ve r tA : v e r t A f l i p p e d ;
v1 = v e r t B s e l e c t ? v e r t B : v e r t B f l i p p e d ;
v2 = v e r t C s e l e c t ? v e r t C : v e r t C f l i p p e d ;

i 0 = v e r t A s e l e c t ? indexA : i n d e x A f l i p p e d ;
i 1 = v e r t B s e l e c t ? indexB : i n d e x B f l i p p e d ;
i 2 = v e r t C s e l e c t ? indexC : i n d e x C f l i p p e d ;

t = v e r t A s e l e c t ? t : tRed ;
t = v e r t B s e l e c t ? t : tG re e n ;
t = v e r t C s e l e c t ? t : t B l u e

Listing 1: Pseudocode illustrating indexing the icosahedron

2.3. Evaluating function over the sphere

Given the indexing scheme, we specify how values stored at the
vertices are used to compute the function value over the sphere.

This is in fact a scattered data interpolation problem, that has
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Figure 4: Mach bands visibile when linear interpolation is used
between icosahedron vertices

been extensively studied for applications in different fields, most
notably in geophysics [FS].

While the most efficient solution would be to use linear interpo-
lation across the spherical triangles to compute the values at any
point on the unit sphere, the quality of such solution is insufficient
for our purposes. For instance, when used for encoding diffuse ir-
radiance signal, the rapid change of the derivative across the edges
of the triangulation creates Mach bands visible on smooth surfaces
(see figure 4)

We propose the following alternatives as solutions, with varying
performance characteristics:

• Hybrid cubic Bézier patch for individual color channels. In this
version we store color (an RGB triple) and its derivatives in two
perpendicular directions, tangent to sphere surface (two RGB
triples) for each vertex of the icosahedron (27 values needed for
reconstruction of the RGB signal).

• Hybrid cubic Bézier patch for luminosity component combined
with linear interpolation for chromaticity components. In this
version we store color (a YCoCg triple) and the derivatives of
the luminosity component (two scalar values) for each vertex of
the icosahedron (15 values needed for the reconstruction of the
RGB signal).

• SRBFs (mixture of cos2 and cos4 lobes with hemispherical sup-
port) oriented along the directions defined by icosahedron ver-
tices. In this version we store a color (an RGB triple) for each
vertex of the icosahedron (18 values needed for the reconstruc-
tion of the RGB signal).

2.3.1. Hybrid cubic Bézier patch for individual color channels

We chose to use spherical hybrid cubic Bézier patch [ANS96b] to
perform interpolation between the vertices. The hybrid spherical
cubic patch is a convex combination of three spherical cubic Bézier
patches with different center coefficients (c111 coefficient - see fig-
ure 5 for configuration of control points of a cubic Bézier patch).

Each of the three base patches chooses the center coefficient to

c300

c030

c003

c210

c120

c201

c102

c021
c012

c111

v0

v1

v2

Figure 5: Configuration of control points of a cubic Bézier patch

ensure C1 continuity of the reconstruction across one of the trian-
gle edges. The patches are blended in such a way that, near each
edge, only the component that provided the continuity across that
edge is blended in. There are other ways to compute the center co-
efficient [LS96], we use the method described for the planar case
[GS91, LS96]. It forces the cross derivative of the reconstructed
signal to change in linear fashion along the edges. The results ob-
tained this way are not as smooth as if the cross derivative changed
quadratically, but this approach does not need to store any addi-
tional data (and the difference in smoothness was not noticeable in
our tests).

Since all three of the base patches differ only by one coefficient,
the evaluation code first determines the value of that one coeffi-
cients and then proceeds with a single evaluation of a Bézier patch,
instead of doing three evaluations and combining the results.

We evaluate the Bézier patch using spherical barycentric coordi-
nates [ANS96a]. All spherical triangles defined by the icosahedron
are identical, so computations of spherical barycentric coordinates
of a given direction simplify to computing three dot products.

Given the barycentrics coordinates of a lookup point, we con-
struct the coefficients of the Bézier patch based on the values stored
on the icosahedron vertices.

The coefficients for the Bézier patch are constructed as follows:

• c300, c030 and c003 coefficients are simply values of the function
at the vertices, f (vi).
• c210, c120, c201, c102, c021 and c012 can be computed using signal

values and its directional derivatives at the vertices. Computing
the derivatives of the Bézier patch w.r.t. barycentric coordinates
and using the chain rule to compute the directional derivative
along the triangle edges, the edge coefficients are of the form :
cxyz =

1
α

(
−β f (vi)+

1
3 Fi j(vi)

)
,

where Fi j(vi) is a directional derivative of the function at vertex
vi along the edge vi→ v j (which is computed by projecting the
derivative stored on the vertices onto the edge i j) and (β,α,0) is
a unit vector tangent to the sphere, along the edge vi → v j, ex-
pressed in spherical barycentric coordinates of the triangle used
for interpolation. Since all the triangles of the icosahedron are

identical, α and β are constant and equal to 1
2

√
1
2 (5+

√
5) and

− 1
2

√
1

10 (5+
√

5) respectively.
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• To ensure C1 continuity across the edges of the triangles, the
cross derivative of the signal in the middle of the edge needs to
be equal to the average of the cross derivatives of the signal on
the ends of the edge. This condition makes the cross derivative
change linearly along the edge as opposed to quadratically. Since
the cross derivatives on the vertices are given, this guarantees
that triangles on both sides of shared edge will have the same
value of the cross derivative along the whole edge, giving C1
continuity.
Computing the cross derivatives as described, one can see that to
ensure the above constrains along the edge opposite vertex 0, the
center coefficient needs to be equal to:

c0
111 = a0c030 +a1c021 +a1c012 +a0c003 +a2c120 +a2c102

where:

a0 =

√
5−5
40

a1 =
11
√

5−15
40

a2 =

√
5

10

and for remaining two edges:

c1
111 = a0c003 +a1c102 +a1c201 +a0c300 +a2c012 +a2c210

c2
111 = a0c300 +a1c210 +a1c120 +a0c030 +a2c201 +a2c021

The final coefficient is a convex combination of the above:

c111 = w0c0
111 +w1c1

111 +w2c2
111

where:

w0 =
b1b2

b1b2 +b0b2 +b0b1

w1 =
b0b2

b1b2 +b0b2 +b0b1

w2 =
b0b1

b1b2 +b0b2 +b0b1

where b0, b1 and b2 are the spherical barycentric coordinates of
the evaluation point. The above formula has singularities when
any two of the barycentric coordinates are equal to zero (at the
vertices). In those cases a value of one should be used instead
as the weight for the component associated with the vertex the
value is evaluated at and zero for the two remaining weights.

To construct the coefficients we need:

• Function values at the vertices, f (vi).
• Directional derivatives of the function at the vertices, in two or-

thogonal directions, tangent to the surface of the unit sphere.
Computing the derivatives along the edges, needed for the con-
struction of the Bézier patch coefficients is simply projecting the
gradient onto an axis along the edge, tangent to the surface of the
unit sphere.

Cubic Berenstein polynomials in spherical barycentric coordi-
nates do not have the property of constant reproduction which
means that constant functions cannot be accurately represented.
Since constant signals are not encountered often when dealing with
precomputed lighting, this was not a problem in our tests (it also
means that the change of the cross derivatives on the shared trian-
gle edges is not actually purely linear, only close to being linear -
but since it is the same on both sides of the edge, it does not pose
any issues). If constant reproduction is required, regular barycen-
tric interpolation on the planar triangles of the icosahedron can be
performed. This poses the problem of transfoming the gradient in-
formation from a space tangent to the unit sphere to the surface of
the triangles. Our experiments showed that the most visually pleas-
ing way of doing this is simply using tangent space gradients as if
they were defined in the plane of the triangle used for interpola-
tion. Due to the angle deficit at every vertex, we can no longer en-
sure that the cross derivatives on the neighboring triangles is iden-
tical across the edge, but the loss of quality created is acceptable
in many cases. Another alternative would be to compute the edge
coefficients using spherical barycentric weights and use them for
linear interpolation - but doing that not only loses the constant re-
production property but also lacks the quality, even though the cross
derivatives match.

For evaluating full RGB color in any direction, one needs 27 co-
efficients - which is the same as for the 3rd order spherical harmon-
ics. For the quality comparison between the two, see the Results
section.

2.3.2. Hybrid cubic Bézier patch for luminance with linear
interpolation for chrominance

For some applications, the cost of the above solution might be too
high. To reduce both bandwidth and ALU cost we propose the
following alternative: the input RGB signal is first converted to
YCoCg space. As the human visual system is more sensitive to
changes in brightness than it is to changes in color, we store the Y
component (luminance) together with its directional derivatives and
reconstruct using the above scheme, while the Co and Cg compo-
nents (chrominance) are stored without derivatives and interpolated
linearly. This can create slight discoloration artifacts, but due to the
local character of the interpolation, they have very limited angular
extents and are barely noticable. This way one needs to only store 5
coefficients for each icosahedron vertex. It is worth noting that sim-
ilar trick does not work when working with spherical harmonics -
storing Y and Co/Cg as different order SH tends to create fairly
visible artifacts covering large portions of spherical domain.

2.3.3. SRBF oriented along the directions formed by
icosahedron vertices

For certain applications, even the simplified scheme might be too
costly in terms of ALU. We propose yet another variation of the ba-
sis that trades some extra bandwidth for inexpensive reconstruction.
One can notice that a set of cos2 lobes clamped to a hemisphere,
scaled by 0.5, oriented along the directions formed by icosahedron
vertices form a partition of unity over the unit sphere. This is a sur-
prising property, as in many domains RBFs cannot form a partition
of unity.
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Even more interestingly, the clamped cos4 lobes scaled by 5
6

have the same property. As a result, any linear combination of the
cos2 and cos4 lobes will form partition of unity over the unit sphere.
After a number of experiments, we determined that combining the
lobes with weights of 0.7 for the cos2 lobe and 0.3 for the cos4 lobe
gives the best reconstruction of the irradiance over a wide variety of
input signals, both visually as well as in terms of the mean square
error.

Reconstruction finds the lobes that are nonzero for a given di-
rection. Each of the A, B, C groups consists of a pair of antipodal
points, the sign of the 6 dot products determines the relative index,
and evaluating the basis function requires the dot products squared
and squared again.

3. Projection

Given an illumination signal l(s) on the sphere, approximation with
a function space f (s) = ∑i ci fi(s) can be posed as a least squares
problem, minimizing the error function:

∫
Ω

( f (s)− l(s))2 ds (1)

The coefficients c that minimize the above expression are com-
puted by differentiating and solving for zero. The partial with re-
spect to ck is:

2
∫

Ω

( f (s)− l(s)) fk(s)ds (2)

Exploiting the linearity of integration, this equals:

2

(
∑

i
ci

∫
Ω

fi(s) fk(s)ds−
∫

Ω

l(s) fk(s)ds

)
(3)

Each partial corresponds to a row of the linear equation Gc =
b. The matrix Gc is referred to as the Gramm matrix, where each
entry Gi j is simply the inner product of a pairs of basis functions∫

fi(s) f j(s) and the right hand side are the raw moments of the
lighting environment

∫
l(s) fk(s). The inverse of the Gramm matrix

G−1 has the coefficients for the duals f̃i of the basis functions.
These are functions that have the property that

∫
fi(s) f̃ j(s)ds =

δi j and are of the form: f̃i = ∑ j G−1
i j f j(s). If the function space is

orthogonal, the Gramm matrix is an identity and the duals are just
the primal functions.

For our various basis functions, we generated the Gramm ma-
trices by evaluating with coefficient vectors that were zero for
all degrees of freedom but one, and integrated the products over
the sphere using numerical integration. Least squares projection is
done by computing the moments from the lighting signal and mul-
tiplying by the Gramm matrix. If the lighting exists in another basis
g(s) = ∑ j g jg j(s), you can precompute operators that project it into
a specific basis, in that case you have the error function:

∫
Ω

( f (s)−g(s))2 ds (4)

Differentiating this with respect to ck you get:

2
∫

Ω

( f (s)−g(s)) fk(s)ds, (5)

which simplifies to:

2

(
∑

i
ci

∫
Ω

fi(s) fk(s)ds−∑
j

g j

∫
Ω

g j(s) fk(s)ds

)
(6)

This results in a linear system Gc = Bg, where B is a matrix
that generates the raw moments of a signal in g for the basis f
and Bi j =

∫
fi(s)g j(s). Moving from spherical harmonics, ambient

cubes, spherical gaussians with fixed parameters or any other linear
basis is easy to do.

3.1. Other operators

There are some other linear operators that can be constructed. For
example if you have raw radiance moments, and want to gener-
ate irradiance, this can be achieved by projecting the radiance sig-
nal into spherical harmonics, doing the convolution and projecting
back. Mathematically the operator is:

G−1BshCdi f f BT
sh, (7)

where C is a diagonal matrix that convolves with the normal-
ized cosine kernel. In practice we use a high order SH expansion to
generate this operator.

You can also window in any basis by factoring the above matrix:

(
G−1Bsh

)
Cdi f f BT

sh (8)

The term in the parentheses can be precomputed, allowing the
convolution matrix to be efficiently changed. For very fine func-
tions this is somewhat impractical, since a very high order SH ex-
pansion would have to be used, but for deringing least squares pro-
jection of irradiance signals this turns out to be useful.

3.1.1. Relationship with Spherical Harmonics

One question that can be asked is how well can a given spherical ba-
sis reproduce certain classes of functions? If Bsh is the matrix that
generates raw moments from spherical harmonics, you can project
SH into the f basis and then back. Analyzing the structure of these
operators tells you how well the given basis reproduces the various
bands of spherical harmonics. The operator defined below projects
lighting coefficients in the f basis into the orthogonal spherical har-
monic basis†, the closer the block sub-matrix for a given order is

† If the rhs basis is not orthonormal, you would project into it so you would
have G−1

b f BT
b f G−1Bb f .
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Figure 6: Primal (top row) and Dual (bottom row) basis function images. Bezier vertex value, u derivative, v derivative, cos2+cos4

Figure 7: AD using spherical Bézier patch before and after win-
dowing.

to an identity, the better the corresponding basis functions can be
approximated.

BT
shG−1Bsh (9)

If there are some SH that are in the null-space of the basis, you
would have a zero row. Below is a table of the Frobenius norm of
I−BT

shG−1Bsh for various basis functions:

Basis SH2 SH3 SH4 SH5
Ambient Cube 0.10825 1.73543 3.16228 4.3589
AD Linear 3.543e-3 0.18454 2.01751 4.13203
AD cos2 cos4 3.971e-4 1.427e-2 2.0001 4.12316
AD cos2 2.229e-3 3.153e-3 2.0001 4.12316
AD Flat 2.806e-4 3.103e-3 2.804e-2 0.19754
AD Spherical 3.857e-4 1.539e-3 2.777e-2 0.17101

The ambient cube basis poorly reproduces the quadratic spher-

ical harmonics (SH3), where 3 of the 5 quadratic basis functions
are in the null-space of the basis. The Bézier patch variant of the
ambient dice basis is fairly accurate through the cubics, and the er-
ror in the quartics is low, and shoots up at the quintic polynomials.
The SRBF version reproduces constants, and if it was just cos2 also
reproduces the quadratic band. In practice, the blending of the ba-
sis functions improves the approximation of the linear band, which
lowers overall reconstruction error on the lighting environments we
have tested.

4. Results

When comparing images any numerical metric can be misleading
and cannot be fully relied on. To provide some quantitative values
for different spherical bases, we decided to simply use root mean
square error, averaged over the three color channels. To give a better
intuition for how the error changes over the domain we also provide
visualizations of the error itself.

Figure 9 shows different irradiance signals projected onto differ-
ent bases. The first column shows an example with a large gradi-
ent in the signal. All representations exhibit some form of ringing
(more global in case of SH and more localized for AD), this can
be reduced as shown in Figure 7. The other columns show lighting
that is more typical of indoor lighting.

Table 8 compares the root mean square error for the same ex-
amples. Ambient Dice basis, even in the cheapest variants - with
SRBF reconstruction or when only Y component is evaluated with
full precision, is numerically comparable to 3rd order SH (and the
second variant oftentimes to even 5th order SH), despite requiring
fewer coefficients for evaluation. It is worth repeating that numeri-
cal comparison of the error values is not really the best way of eval-
uating the results, as for instance the flat version of Ambient Dice
shows lower error, but in certain situations the tessellation artifacts
generated by unmatched cross derivatives between neighboring tri-
angles can become noticeable.

Figure 11 shows the projection of a very peaked function into the
basis, and that function convolved with a cosine. The parametriza-
tion used has only vertical distortion, and the shape should be in-
variant when projected for two different directions. Linear interpo-
lation on the Ambient Dice shows a fairly pronounced "wobble" of
the projection, and mach bands are evident in the diffuse convolved
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Basis RMSE Ennis RMSE Wells RMSE Hallstatt Coeffs total Coeffs eval
2nd order SH 0.556209 0.0550163 0.0383354 12 12
3rd order SH 0.0950065 0.00753032 0.00757991 27 27
5th order SH 0.0310738 0.00426008 0.00564306 75 75
AD cos2 cos4 0.0914495 0.00641993 0.00606067 36 18
AD YCoCg spherical 0.0408273 0.00657454 0.0080691 60 15
AD RGB flat 0.0374315 0.00343113 0.00287001 108 27
AD RGB spherical 0.0392434 0.00505698 0.00480793 108 27

Figure 8: Comparison of the root mean squared error of projections of various lighting environment, total number of coefficients to encode
and number of coefficients required for point evaluation of the RGB signal for different bases

Figure 12: Scene from a commercial game engine used for perfro-
mance tests. Indirect lighting of the objects marked in green was
computed using the described methods to provide the timing mea-
surements.

result when not using spherical barycentric coordinates. There is
ringing in the irradiance function, but the magnitude of the ring is
at most 3% of the peak, so they are not visible in these images.

We ran the performance tests in a commercial game engine. The
test was running on Playstation 4 console, at 1920x1080 resolution.
Certain classes of objects are using local irradiance volumes (stored
in textures) as a source of indirect illumination. For those objects,
we tested encoding the lighting using the describes bases (the full
RGB Bézier patch was not included in the test, as after the initial
quality tests we decided that for such a constrained environment
we are willing to accept the reduced quality and utilize the memory
and performance savings elsewhere). We timed the rendering of the
main pass only, so the results do not include any of the shadowmap,
depth only rendering or image post-processing times. They do how-
ever include times to render objects that use other techniques to
compute the indirect lighting (most notably lightmaps).

Variant used Time
Constant ambient 5.08 ms
SH2 5.17 ms
SH3 5.31 ms
AD cos2 cos4 5.26 ms
AD YCoCg Spherical 5.36 ms

5. Limitations

The bases were designed for efficient evaluation in a given direction
such that only a small subset of all the coefficients that describe
the spherical signal are needed. In some applications, operations
other than a simple lookup might be needed - such as computing a
convolution with an arbitrary kernel. Those operations will require
access to more coefficients, possibly even all of them. In such cases,
other bases might be more performant or bandwidth efficient.

The basis is not rotationally invariant, but is reasonable at steer-
ing a tight light source.

6. Conclusions and Future work

We have investigated a family of basis functions that have attrac-
tive trade offs between performance and storage and are competi-
tive in quality to spherical harmonics. There are several basis func-
tions that did not pan out that are worth mentioning: Using linear or
Bezier interpolation over octahedrons and generalized barycentric
coordinates [LD89] over the pentagons on a dodecahedron as well
as using various other locally supported SRBFs.

We also think that it should be possible to find a similarly simple
indexing scheme that would allow to index a subdivided icosahe-
dron. Such a scheme could be used to construct a more detailed
version of the signal, similar to a higher MIP level in a texture.
This way a whole chain of lighting environments could be stored
and accessed, possibly storing signals convolved with a different
sized kernels. This is however an area of a future research.
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Figure 10: Visualization of the error of the reconstruction of the irradinace environment maps using different bases. top to bottom: 2nd
order SH, 3rd order SH, 5th order SH, Ambient Dice with mixture of cos2 and cos4 lobes, Ambient Dice with cubic Y and linear Co/Cg,
interpolated with spherical Bezier patches, Ambient Dice with cubic RGB interpolated with flat Bezier patches, Ambient Dice with cubic
RGB interpolated on spherical Bezier patches
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