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Figure 1: Faster multi-hit ray tracing in a BVH with node culling. We introduce node culling multi-hit BVH traversal, which significantly
improves multi-hit performance in a BVH when users request fewer-than-all hits. Here, heatmap visualizations depicting the number of valid
ray/primitive intersections identified for each ray before correctly satisfying the multi-hit query reveal that far fewer intersections must be
identified when using our node culling algorithm compared to using naive multi-hit traversal in a BVH.

Abstract

We introduce node culling multi-hit BVH traversal to enable faster multi-hit ray tracing in a bounding volume hierarchy (BVH).
Existing, widely used ray tracing engines expose API features that enable implementation of multi-hit traversal without modi-
fying their underlying—and highly optimized—BVH construction and traversal routines; however, this approach requires naive
multi-hit traversal to guarantee correctness. We evaluate two low-overhead, minimally invasive, and flexible APl mechanisms
that enable node culling implementation entirely with user-level code, thereby leveraging existing BVH construction and traver-
sal routines. Results show that node culling offers potentially significant improvement in multi-hit performance in a BVH for

cases in which users request fewer-than-all hits.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.7]: Three-Dimensional Graphics and
Realism—Raytracing; Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—Visible line/surface algorithms

1. Introduction

Multi-hit ray traversal is a class of ray traversal algorithms that
finds one or more, and possibly all, primitives intersected by a
ray ordered by point of intersection. Gribble et al. [GNK14] in-
troduce two algorithms for multi-hit traversal in acceleration struc-
tures based on spatial subdivision: a naive algorithm, which essen-
tially implements all-hit traversal but returns (at most) the N closest
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hit points, and a buffered algorithm with early-exit, which exploits
ordered traversal to terminate after (at least) the N closest hit points
have been found.

With acceleration structures based on spatial subdivision, leaf
nodes do not overlap, so ordered traversal is straightforward. How-
ever, ordered traversal in a structure based on object partitioning,
such as a bounding volume hierarchy (BVH), is not achieved so
easily: though at any level primitives belong to only one node, the
nodes themselves may overlap, so strict front-to-back traversal can-
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not be resolved easily. This characteristic is at odds with the ordered
traversal guarantee exploited by buffered multi-hit ray traversal.

Recently, Amstutz et al. [AGGW15] evaluate the use of inter-
section callbacks (ICBs) to implement multi-hit traversal in Em-
bree [WWB™*14] and OptiX [PBD*10], while leveraging these en-
gines’ existing, highly optimized BVH construction and traversal
algorithms. Their work demonstrates that with careful attention to
performance concerns and characteristics of the underlying hard-
ware architecture, ICBs enable correct implementation of multi-
hit ray tracing in a BVH, despite the apparent conflict between or-
dered hit points and overlapping nodes. Moreover, this ICB-based
approach integrates multi-hit traversal into these engines using only
user-level code; this characteristic is important for maintainability,
particularly in production environments.

Unfortunately, use of ICBs in Embree and OptiX requires naive
multi-hit traversal to guarantee correctness: lack of strict front-to-
back traversal in a BVH requires traversal of all nodes with which
a ray interacts before the multi-hit query can be answered, as de-
picted in the middle panel of Figure 1. Though simple and effec-
tive, naive multi-hit traversal is potentially very slow, particularly
for cases in which users request fewer-than-all hits.

We introduce node culling multi-hit BVH traversal to enable
faster multi-hit ray tracing in a BVH, and we evaluate two low-
overhead, minimally invasive, and flexible API mechanisms that
enable node culling implementation entirely with user-level code,
thereby leveraging existing BVH construction and traversal rou-
tines. Results demonstrate that node culling offers potentially sig-
nificant improvement in multi-hit performance in a BVH for cases
in which users request fewer-than-all hits, as shown in the right
panel of Figure 1.

2. Node Culling Multi-Hit BVH Traversal

As noted above and discussed in detail by Am-
stutz et al. [AGGW15], the problem of multi-hit ray traversal
in a BVH is compounded by overlapping nodes: correctness
requires either naive multi-hit traversal, which is potentially slow,
or modification of BVH construction or traversal routines, which
imposes potentially significant development and maintenance
burden in production environments.

If we dismiss naive traversal as too slow, we must seek an ap-
proach that performs well but that also minimizes the engine-level
code specific to multi-hit traversal. To improve multi-hit perfor-
mance, we focus on an algorithm that exploits knowledge of the
currently valid ray interval throughout traversal to cull subtrees cor-
responding to interior nodes or to avoid ray/primitive intersection
tests arising in leaf nodes. To minimize development and mainte-
nance burden, we highlight two callback-based approaches that im-
plement the node culling algorithm without engine-level traversal
routines specific to multi-hit ray tracing.

2.1. Algorithm

First-hit BVH traversal algorithms typically consider the currently
valid interval along a ray, [€, tyear], to cull nodes based on tyear,
the distance to the nearest valid intersection found so far. If during

traversal a ray enters a node at fenrer > thear, the node is skipped:
traversing the node cannot possibly produce a valid intersection
closer to the ray origin than the one already identified.

We would like to apply a similar optimization during multi-
hit ray traversal in a BVH, but such an approach imposes additional
traversal constraints:

e We can cull nodes only after we have collected at least N >
Nguery hits; we must therefore count the number of valid
ray/primitive intersections encountered so far.

e We can cull nodes using only the distance to the farthest valid hit
point among the N > Nyyery collected so far; we must therefore
track this value, say #y,,, throughout traversal.

e We can cull nodes for which teprer > 174, Only after N > Nyuery
hit points have been gathered; we must therefore update the ray
interval only after finding N > Nguery hits.

Algorithm 1 provides pseudocode for multi-hit BVH traversal that
includes the node culling optimization.

1: function TRAVERSE(root, ray)
2 INITIALIZE(travStack, hitList)
3 PUsH(travStack, root)
4: while !EMPTY (travStack) do
5: node < POP(travStack)
6: if INTERSECT(node, ray) then
7 continue
8 if ISLEAF(node) then
9: for primitive in node do
10: if INTERSECT(primitive, ray) then
11: hitData < (t, u, v, tID, ...)
12: INSERT(hitList, hitData)
13: if S1ZE(hitList) > Nguery then
14: UPDATEINTERVAL(? 74,)
15: continue
16: far <— FARCHILD(node)
17: near < NEARCHILD(node)
18: PUSH(¢travStack, far)
19: PusH(travStack, near)
20: return hitList

Algorithm 1: Node culling multi-hit BVH traversal. This algo-
rithm, which is very similar to standard stack-based BVH traver-
sal, accepts/rejects node intersections based on the currently valid
ray interval (line 6), counts the number of valid ray/primitive in-
tersections and tracks the distance to the farthest valid hit point,
trar (line 12), and updates the currently valid ray interval (lines 13—
14), to begin culling nodes for which tepter > tfar once N > Nauery
hit points have been gathered.

Importantly, node culling multi-hit BVH traversal is very simi-
lar to standard stack-based BVH traversal, which suggests that an
implementation with only user-level code is feasible: appropriate
callback mechanisms need only be exposed to implement this algo-
rithm; all other traversal-related operations remain the same. Like-
wise, node culling multi-hit BVH traversal exposes opportunities
for early-exit despite lack of ordered traversal in a BVH. Early-exit
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is a key feature of first-hit BVH traversal and of buffered multi-
hit traversal in acceleration structures based on spatial subdivision;
we thus expect significant performance impact for multi-hit traver-
sal in a BVH for cases in which users request fewer-than-all hits.

2.2. Implementation

We now require a means to implement Algorithm 1. We dismiss
direct implementation in a traversal routine specific to multi-hit, as
this approach runs counter to our primary goal: to support high per-
formance multi-hit ray traversal in a BVH with low development
and maintenance costs. This restriction is important in produc-
tion environments, where minimizing the effort required to design,
implement, and, ultimately, maintain performance- and memory-
efficient BVH data structures is critical: we simply cannot afford
to increase the already-large maintenance burden imposed by pro-
duction ray tracing engines. We thus highlight two callback-based
mechanisms to implement node culling multi-hit BVH traversal:
intersection and traversal callbacks (TCBs).

In addition to reducing development and maintenance burden,
callback-based implementations promote flexibility: mechanisms
supporting node culling multi-hit BVH traversal can also be lever-
aged for other rendering tasks. Widely used ray tracing engines
such as Embree and OptiX already support a form of ICBs that
are used for purposes other than multi-hit ray tracing, and we ex-
pect TCBs to provide a similarly flexible API feature beyond the
node culling algorithm.

Intersection callbacks. ICBs are an obvious choice: Algorithm 1
suggests a combination of per-intersection operations (for counting
hit points and tracking #,,, line 12) and per-leaf operations (for
updating ray intervals, lines 13—14), but implementation with only
per-intersection operations would suffice if we accept the overhead
of executing ray interval update operations more often than strictly
necessary in favor of a straightforward, already-supported imple-
mentation mechanism.

However, in an ICB-based multi-hit implementa-
tion [AGGW15], the interval over which intersections are
considered valid is [€, thear = tmax], Where tinax > teyi, the distance
at which the ray exits the root-level bounding volume. This interval
is required to ensure that all nodes are visited during traversal and,
as a result, that all hit points are gathered.

Once initialized, this interval does not—and cannot—change
during traversal due to restrictions on ICBs imposed by current ray
tracing APIs. For example, the multi-hit traversal ICB for Embree
simply saves data corresponding to each valid hit point in a per-
ray data structure and rejects the intersection to continue traversal.
In this reject-intersection case, the original value of #,.q-—that is,
tmax—Tis restored by a post-ICB routine automatically invoked by
Embree and inaccessible to the client.

As aresult, Algorithm 1 cannot be implemented entirely in user-
level code with currently available ICB mechanisms; either ICB
restrictions must change or another mechanism must be exposed to
accomplish the task at hand. Thus, in Section 3, we evaluate both
an unconstrained ICB (uICB) mechanism that permits ray interval
updates from within the callback itself and TCBs as possible im-
plementation alternatives.
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Traversal callbacks. As noted, Algorithm 1 suggests a combina-
tion of per-intersection and per-leaf operations. Together with cur-
rently available ICB mechanisms, the addition of TCBs represents
an alternative approach to enable node culling implementation with
only user-level code.

Just as ICBs enable client applications to inject arbitrary logic
to be executed whenever a valid ray/primitive intersection is found,
TCBs enable clients to inject arbitrary logic to be executed on a
per-node basis during traversal of an acceleration structure.

Two concerns arise immediately with the introduction of this
mechanism: First, what is the performance impact of introducing
per-node operations when the corresponding feature is unused?
That is, how much does exposing this API feature degrade per-
formance in typical rendering scenarios relative to performance in
these scenarios without support for TCBs? Second, what is the
maintenance impact of introducing per-node operations? That is,
how much effort is required to develop and maintain the API mech-
anism by which user-defined per-node operations are exposed?

Answers to both questions depend on the combination of pro-
gramming language, compiler, and existing feature set of any ray
tracing API in which TCBs are ultimately exposed. However, our
experience with the experimental reference implementation high-
lighted in Section 3 shows that TCBs can be exposed with no addi-
tional performance overhead in cases where the feature is unused.
Users assume responsibility for performance of operations injected
during traversal via TCBs, but this situation is no different than the
responsibility assumed for operations injected during primitive in-
tersection via ICBs. From a performance perspective, then, TCBs
are in no way fundamentally different than ICBs.

Likewise, introduction of TCBs impacts only BVH traversal,
not construction. This point, though obvious, is important in
practice: the significant effort required to develop and maintain
performance- and memory-efficient BVH data structures remains
intact. In this respect, too, TCBs are not fundamentally different
than ICBs, and therefore offer a compelling implementation alter-
native for the node culling algorithm.

In either case, clients need simply define appropriate user-level
callbacks and invoke the engine-level BVH traversal function to
implement multi-hit BVH traversal with node culling. Importantly,
these approaches implement the node culling algorithm without
any code specific to multi-hit in the engine-level traversal func-
tion. Specifically, support for unconstrained per-intersection ICBs
or per-node TCBs is sufficient to implement multi-hit ray traver-
sal using a standard—and possibly architecture-specific or other-
wise optimized—BVH traversal function. Intersection and traver-
sal callbacks thus offer low-overhead, minimally invasive, and—
ultimately—flexible API mechanisms to implement node culling
multi-hit BVH traversal.

3. Results

To understand the potential impact of node culling multi-hit BVH
traversal, we investigate performance in an experimental reference
implementation using eight scenes of varying geometric and depth
complexity rendered from the viewpoints depicted in Figure 2.
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Figure 2: Scenes used for performance evaluation. Eight scenes of varying geometric and depth complexity are used to evaluate the perfor-
mance of node culling multi-hit BVH traversal. First-hit visible surfaces hide significant internal complexity in many of these scenes, making

them particularly useful in tests of multi-hit traversal performance.

3.1. Reference Implementation

We are primarily interested in multi-hit performance using node
culling relative to naive multi-hit ray traversal, so we evaluate these
algorithms in a reference implementation that supports both ICBs
and TCBs.

Specifically, we use C++11 lambdas to implement the per-
intersection operations (Algorithm 1, line 12) and the per-leaf oper-
ations (Algorithm 1, lines 13—14) required by multi-hit BVH traver-
sal with node culling. As noted, these callback-based approaches
implement the node culling multi-hit algorithm without any code
specific to multi-hit in the engine-level traversal function.

We opt for clarity and simplicity in the reference implementa-
tion rather than aggressive optimization to maximize absolute per-
formance on the test platform. As such, the renderer is both scalar
and single-threaded.

Likewise, we implement the progressive insertion sort variant of
multi-hit traversal [AGGW15] using std: :multiset asthe un-
derlying data structure for collecting per-ray hit point data—here,
too, we opt for clarity and simplicity rather than aggressive opti-
mization.

Finally, node culling multi-hit traversal does not impact (and is
not impacted by) BVH construction, so we use a readily available
surface area heuristic construction algorithm [WBS07]; however,
relative performance with and without node culling translates di-
rectly to BVH data structures resulting from other construction al-
gorithms.

In the following experiments, ICB-based node culling uses the
ulCB mechanism described above. As noted, such an implemen-
tation is not possible with the current ICB mechanisms exposed
by Embree and OptiX, but represents an alternative to TCB-based
node culling for multi-hit traversal in engines that employ BVHs.

Similarly, we evaluate two TCB-based node culling alternatives:

o Every-node TCBs (eTCBs), which are applied to every node
processed during traversal; in this context, a node is processed if
it is popped from the traversal stack.

e Leaf-node TCBs (ITCBs), which are applied only to leaf nodes
processed during traversal; here, a leaf node is processed if it is
successfully intersected during traversal.

With eTCB-based node culling, only every-node TCBs implement
per-leaf operations required by Algorithm 1, whereas ITCB-based
node culling uses only leaf-node TCBs for these operations. In both
TCB-based implementations, ICBs implement the per-intersection
operations required by Algorithm 1.

3.2. Multi-Hit Ray Tracing Performance

We now consider the impact of node culling on multi-hit perfor-
mance in several scenarios representative of those for which multi-
hit traversal might be used in production. Specifically, we consider
the values of Nyuery outlined in Table 1 across various combinations
of node culling implementations and our test scenes.

For each test, we render a series of 5 warm-up frames followed
by 50 benchmark frames at 1024 X768 pixel resolution using vis-
ibility rays from a pinhole camera and a single sample per pixel.
Results are averaged over the 50 benchmark frames.

Find-first-intersection. First, we measure the impact of node
culling when specializing multi-hit ray traversal to first-hit traver-
sal. Figure 3 compares performance in seconds per frame of finding
the nearest hit using a standard first-hit traversal implementation
against finding the nearest hit using both naive multi-hit traver-
sal and multi-hit traversal with ITCB-based node culling (with
Nguery = 1). The advantage of node culling is clearly evident in
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max Nquery
scene | #hits | 10% 30% 70%
sibe 22 2 7 15
fair 26 3 8 18
conf 21 2 6 15
truck 86 9 26 60
tank 38 4 11 27
hball 170 17 51 119
sanm 113 11 34 79
pplant 139 14 42 97

Table 1: Ray/primitive intersection characteristics for our test
scenes. Here, the table reports the maximum number of valid
ray/primitive intersections encountered along any one ray, as well
as the number of requested hit points that comprise 10%, 30%, and
70% of the corresponding maximum. Scenes clearly vary not only
in geometric complexity, but in depth complexity as well.
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Figure 3: Performance of standard first-hit and multi-hit variants
for find-first-intersection. Here, the graph compares performance
in seconds per frame (spf) among standard first-hit traversal, naive
multi-hit, and ITCB-based node culling when Ngyery = 1. On aver-
age, node culling improves rendering performance to within about
20% of first-hit performance, whereas naive multi-hit requires more
than a factor of 2.5 of first-hit performance.

this case: frame time with node culling multi-hit BVH traversal ap-
proaches that of standard first-hit traversal (to within about 20%,
on average), whereas frame time with naive multi-hit traversal is
more than a factor of 2.5 greater than that with first-hit traversal
(on average) for our test scenes.

Find-all-intersections. Next, we measure the impact of node
culling using multi-hit ray traversal to implement all-hit traversal
(Nguery = 00). Figure 4 compares performance in seconds per frame
when using each multi-hit variant to gather all hit points along a
ray. Not surprisingly, node culling offers no significant advantage
in this case, and differences in performance are within the expected
variability among trials.

Find-some-intersections. Finally, we measure multi-hit perfor-
mance for the values of Nguery enumerated in Table 1. The find-
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Figure 4: Performance of multi-hit variants for find-all-
intersections. Here, the graph compares multi-hit performance in
seconds per frame (spf) between naive multi-hit and node culling
when Nguery = 00. Differences in performance are within the ex-
pected variability among trials for the find-all-intersections case.
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Figure 5: Multi-hit performance in the truck scene. Here, the graph
compares multi-hit performance in seconds per frame (spf) among
multi-hit implementations for various values of Nguery. For this
scene, node culling improves rendering performance by just less
than 40% (on average) relative to naive multi-hit.

some-intersections case is perhaps the most interesting, given that
multi-hit traversal cannot be specialized to either first-hit or all-
hit algorithms in this case. For brevity, we examine only results for
the truck scene here; however, we present multi-hit performance
(in average seconds per frame), as well as the number of ray/node
intersection tests, node traversal operations, and ray/primitive in-
tersection tests, for each test scene in the supplemental data accom-
panying this paper. Generally speaking, we observe trends present
in results for the fruck scene in results for the other scenes as well.

The impact of node culling varies directly with the number
of requested intersections. In particular, Figure 5 shows that as
Nguery — 00, the impact of node culling on performance improve-
ment relative to naive multi-hit decreases from nearly a factor of
3x when Ngyery = 1 to effectively zero when Ngyery = 00. The rela-
tive advantage of node culling is clearly evident when users request
fewer-than-all hits: fewer requested hits lead to greater performance
gains.
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Figure 6: Efficiency visualization. Heatmap visualizations us-
ing the color scale depicted in Figure 1 reveal that far less
work must be done per-ray when using node culling (right) com-
pared to using naive multi-hit traversal (left). From top-to-bottom:
number of ray/node intersection tests, node traversal operations,
ray/primitive intersection tests, and valid ray/primitive intersec-
tions identified before satisfying the multi-hit query (Nquery =9).

3.3. Discussion

Results show that node culling multi-hit traversal significantly im-
proves performance relative to naive multi-hit in cases when users
request fewer-than-all hits. The factors leading to improved per-
formance are crystallized when viewing the heatmap visualizations
in Figure 6: node culling reduces the number of ray/node intersec-
tion tests, node traversal operations, ray/primitive intersection tests,
and valid primitive intersections found before correctly satisfying
multi-hit queries. Significantly less works translates directly to sig-
nificantly better performance.

We also observe that, when averaged across values of Nguery,
node culling using 1ITCBs offers a slight but measurable advan-
tage over the other node culling implementations. When comparing
these approaches, the only source of difference is per-intersection

execution of per-leaf operations (Algorithm 1, lines 13-14) with
ulCBs, and per-node execution of these operations with eTCBs.
The operations themselves are just not costly enough to impose
significant overhead, even when executed more often than strictly
necessary. This result suggests a certain degree of flexibility in the
choice of mechanism—ulCBs, eTCBs, or ITCBs—an engine could
expose to support multi-hit BVH traversal with node culling.

The current limitation inherent to our results is lack of support
for vectorized traversal in the experimental reference implemen-
tation. BVHs are well-suited to vector processing via packet trac-
ing [WBWSO01, WBS07]. Although results demonstrating the sig-
nificant performance differences between node culling and naive
multi-hit BVH traversal are not tightly coupled to the underly-
ing BVH data structure, complexities introduced by packet-based
traversal may affect results in an unintuitive way. Thorough inves-
tigation of packet-based node culling multi-hit BVH traversal thus
represents an interesting avenue of future work.

4. Conclusion

We explore faster multi-hit ray traversal in a BVH using a new
node culling multi-hit BVH traversal algorithm. We evaluate the
potential impact of our algorithm in an experimental reference im-
plementation with support for intersection and traversal callbacks.
These callback mechanisms permit implementation of node culling
multi-hit BVH traversal entirely with user-level code, which is an
important characteristic in production environments. Results show
that node culling multi-hit BVH traversal offers potentially signifi-
cantly improvement in performance relative to naive multi-hit in a
BVH for cases in which users request fewer-than-all hits.
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