
Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2015)
J. Lehtinen and D. Nowrouzezahrai (Editors)

MBVH Child Node Sorting for Fast Occlusion Test

Shinji Ogaki and Alexandre Derouet-Jourdan

OLM Digital, Inc. / JST, CREST

Figure 1: Semi-outdoor scene containing1.2 million triangles. The heat views show the summed number of traversed nodes and
primitive intersection tests for shadow rays of our algorithm (middle) and SATO (Surface Area Traversal Order) (right).

Abstract
Optimal BVH layout differs among ray types. To accelerate shadow rays, the use of a specialized traversal order,
optionally with an additional data structure has been proposed. In this paper we show how sorting child nodes
of MBVH (Multi Bounding Volume Hierarchy) improves the performance of occlusion test without changing the
topology of the data structure. We introduce a cost metric suitable for MBVH which takes into account the distribu-
tion of representative rays, and prove that the cost can be minimized by sorting child nodes based on a very simple
criterion. Our method is very easy to implement and requires only small amounts of storage and preprocessing
time for sorting. We also demonstrate how rendering performance can be improved by up to 10% in conjunction
with various algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Occlusion test plays an important role in ray-based render-
ing for realistic image synthesis. Closest-hit tests are per-
formed for radiance rays and any-hit tests for occlusion rays.
The purpose of the former is to find the closest intersection
point from a ray origin whereas the purpose of the latter is to
check if there is any object in a given direction within a given
length. Therefore, the topology of acceleration data structure
and traversal order should be determined using different cost
metrics for both ray types. They also should vary depend-
ing on a scene to be rendered. More than one BVHs thus
needed to achieve the best rendering performance. However,
it is preferable to avoid having multiple data structures to
store more geometry, textures, etc. It is also very important

to minimize the BVH construction cost because interactive
feedback is crucial for artists. Optimizing a single BVH for
shadow rays ends up degrading the performance of closest-
hit test.

We overcome this problem with a very simple idea: sort-
ing child nodes of MBVH using the distribution of repre-
sentative shadow rays. We only change the order of child
nodes and the topological structure of MBVH remains in-
tact. Therefore, the performance of closest-hit test is not af-
fected as the SAH (Surface Area Heuristic) is not changed.
Utilizing the dead space of an MBVH node, which is used
for cache line alignment, no extra memory is required.

c© The Eurographics Association 2015.

DOI: 10.2312/sre.20151167

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sre.20151167

Shinji Ogaki and Alexandre Derouet-JourdanOLM Digital, Inc. / JST, CREST / MBVH Child Node Sorting for Fast Occlusion Test

RTSAH SRDH SATO Ours
BBVH 3 3 3 3

MBVH non-trivial non-trivial 3 3

Ray distribution 7 3 7 3

Table 1: Our method works for BBVH and MBVH, and also
takes into account the distribution of shadow rays. On the
other hand, the state of the art techniques RTSAH [IH11],
SRDH [FLF12], and SATO [NM14] have limitations.

2. Related Work

Traversal order has a huge impact on rendering performance.
The most common approach for closest-hit test is depth-first
traversal order. When a ray hits n child nodes of an MBVH
node, their indices (or pointers) are pushed onto a stack.
Then the top n elements on the stack are sorted [Áfr13]
[WFWB13]. This approach provides a desirable front-to-
back traversal order when SBVH [SFD09] is used. When
splitting is not used, the closest node can be found by sort-
ing all intersected nodes using minimum heap. This ap-
proach is very helpful for heavy ray-primitive intersection
tests such as ray-parametric surface intersection test because
the numbers of node traversal steps and primitive intersec-
tion tests are reduced. For triangle meshes, sorting all inter-
sected nodes exhibits a poor performance and the previous
approach is hence preferred. In general sorting takes a large
part of closest-hit tests which becomes more noticeable as
the SIMD width increases [Áfr13].

Regarding occlusion rays, a better performance can be
achieved by using a different traversal order with a spe-
cialized data structure. RDH (Ray Distribution Heuristics)
[BH09] uses representative rays and builds BVH based on
their distribution to accelerate general ray traversal. This
method only gives a subtle speedup. The idea is later adopted
by SRDH (Shadow Ray Distribution Heuristic) [FLF12] to
improve the performance of occlusion test by limiting the
use of representative rays to shadow rays. After recording
their distribution, another BVH tailored for shadow rays is
created based on the SRDH cost metric. The performance
gain is relatively large but it comes at the cost of extra mem-
ory and BVH construction time. OSAH [VHS12] is some-
what similar to SRDH. This metric takes into account visi-
bility. Exploiting approximated visibility of triangles, a BVH
optimized for visibility test is constructed. Ize et al. intro-
duced a cost metric called RTSAH (Ray Termination SAH)
[IH11] suitable for occlusion ray traversal. This method does
not use representative rays and no additional data structure
is built. The traversal order of shadow rays is stored in each
node as a boolean flag. SATO (Surface Area Traversal Or-
der) [NM14] also does not require representative rays and
simply uses the surface area of the bounding box of each
child node to determine which to traverse first. The prepro-
cessing time for NodeSATO is rather fast. However, as re-
ported in the paper it does not necessarily accelerate occlu-

sion tests because the distribution of occlusion rays is not
taken into account. The comparison among the state of the
art techniques is given in Table 1.

3. Child Node Sorting

Similar to SRDH [FLF12], our method consists of two
stages. The first stage is to cast representative shadow rays
and record which nodes occlude them. Instead of determin-
ing the traversal order at run time, N child nodes in all
MBVH nodes are sorted so that the number of traversal steps
is reduced. After sorting, we continue rendering with the
modified MBVH (the second stage). Note that we assume
that nodes are traversed in a depth-first order. In the follow-
ing subsections we elaborate our algorithm.

3.1. Surface Area Heuristic

Before casting representative rays, we build an MBVH. This
is done using the SAH cost metric [MB90] given as

CSAH(node) = Ct +C1P1 +C2P2 + · · ·+CNPN ,

CSAH(lea f) = Ct +NpCp,

where Ci is the cost of the i-th child node, Np the number
of primitives in a leaf node, Cp the cost of ray-primitive
intersection test, and Ct the cost of node traversal. We set
Ct = Cp = 1.0. By letting Anode and Ai be the surface areas
of a node and its i-th child node, the probability of rays inter-
secting the i-th child node Pi is approximated by Ai/Anode.
In our rendering system a binary BVH is first built with-
out splitting primitives and then collapsed as in [DHK08]
[WBB08].

3.2. Logging

Once an MBVH is constructed, representative shadow rays
are cast. When a representative ray hits a leaf node, we in-
crement the counter associated with it. We use the structure
given below for an MBVH node as in [Áfr13]. The variable
padding is added for cache line alignment and left unused.
Therefore, the numbers of visits by representative shadow
rays are stored in padding to effectively use this dead space.
If there is no such space, a 4×N byte array should be allo-
cated per node.

template <int N>
struct Node {

float minBound[3][N];
float maxBound[3][N];
int ids[N];
int padding[N];

};

In our practical implementation, a counter of leaf node is
only incremented to reduce the number of atomic operations.
The value of each counter is later propagated to its parent

c© The Eurographics Association 2015.

58

Shinji Ogaki and Alexandre Derouet-JourdanOLM Digital, Inc. / JST, CREST / MBVH Child Node Sorting for Fast Occlusion Test

Algorithm 1 Sorting MBVH child nodes
input: N-ary tree with Qi at each node.
output: Optimized cost of the tree. The tree is sorted.
if tree is a leaf then

return CSORT (lea f).
else

for each child do
Cchild ← recursive call for child

end for
Sort the children so that Pchild

Cchild
is decreasing.

return CSORT (node).
end if

node. The resulting performance slightly changes depend-
ing on the traversal order used in the logging phase. Unless
specified otherwise, we use SATO (NodeSATO).

3.3. Sorting

Child nodes are sorted so that the cost of occlusion tests
becomes minimal (see Algorithm 1). Letting Qi be the prob-
ability of a ray being occluded by the i-th child node, the
cost of occlusion tests is recursively determined by

CSORT (node) =Ct

+
N

∑
i=1

(
i

∑
j=1

Cj

)
Qi

i−1

∏
k=1

(1−Qk)

+

(
N

∑
i=1

Ci

)
N

∏
i=1

(1−Qi),

CSORT (lea f) =Ct +CpNp

(1)

as illustrated Figure 2, where Ci is the expected cost of the
i-th child node. We model it as

Ci = Pi×CSORT (i-th child node), (2)

where Pi is the probability of intersecting the bounding box
of the i-th child node. We do not record precisely this prob-
ability to minimize the memory footprint and the number
of atomic operations. Instead, we approximate it by either
Pi = Ai/Anode or by the worst case scenario Pi = 1. We re-
port the comparison of the two models in the next section.

This cost metric is inspired by SRDH [FLF12] and pro-
vides a fast way of reordering the child nodes of the
MBVH. Finding the order of child nodes that minimizes
CSORT (node) seems to be infeasible because there are N!
ways of ordering. However, it can be shown that sorting
in a descending order by Qi/Ci yields the lowest value of
CSORT (node) (Appendix A). The probability Qi is approx-
imated by |Ri|/|R| (0 < |R|), where |Ri| is the number of
representative rays occluded by the i-th child nodes and
|R| = ∑

N
i=1 |Ri|. If |R| = 0, we skip sorting. Setting a large

value for Ct favours shallow subtrees. However, the result-

Figure 2: Cost of occlusion test for one node. The proba-
bility to stop in the first child node (a) is Q1, with a cost
of C1, because we just test the first child node. Stopping in
the second child node (b) has a probability of (1−Q1)Q2,
with a cost of C1 +C2, because we visit the first and the sec-
ond child nodes. By extension, stopping in the third child
node (c) has a probability of (1−Q1)(1−Q2)Q3, with a
cost of C1 +C2 +C3 and stopping in the last child node (d)
has a probability of (1−Q1) . . .(1−QN−1)QN with a cost
of C1 + · · ·+CN. The probability of a negative occlusion test
(e) has a probability of (1−Q1) . . .(1−QN) and a cost of
C1 + · · ·+CN.

ing performance is not greatly affected by the value of Ct .
We hence omit this term in our implementation.

Note that sorting child nodes has no influence on closest-
hit test because we do not change the topology of MBVH.
Non-opaque materials can be handled by stochastically in-
crementing counter based on their opacity.

4. Results

We implemented the presented method in our rendering sys-
tem as well as in Embree 2.0 [WFWB13]. All measurements
are done on a dual Intel Xeon E5-2620 v2 system. The num-
ber of node visits, leaf node visits, and triangle intersection
tests are denoted by NB, NL, and NT , respectively.

We do not compare our method with SRDH or RTSAH
as they are originally developed for binary BVHs and ap-
plying them to MBVH is not straightforward. Also speedup
comes at the price for the additional memory and building
time of a specialized BVH for shadow rays. In production
rendering we often need to store a large amount of geome-
try data and textures, and thus want to avoid having multiple
BVHs. BVH construction time is also problematic because
users need interactive feedback. We hence choose SATO be-
cause of the following reasons: 1) it does not need an extra
memory; 2) it can be easily extended for MBVH; 3) its pre-
processing cost is almost negligible.

First we measured how the choice of Pi affects perfor-
mance (Table 2). Apart from the Crytek Sponza scene, ap-
proximating Pi by Ai/Anode performs better, although the
difference is subtle. For the rest of experiments we use Pi = 1
to optimize for the worst case scenario.

The comparison with FBTO (Front-to-Back Traversal Or-
der) and SATO (NodeSATO) with a different number of

c© The Eurographics Association 2015.

59

Shinji Ogaki and Alexandre Derouet-JourdanOLM Digital, Inc. / JST, CREST / MBVH Child Node Sorting for Fast Occlusion Test

Scene Pi Ai/Anode 1

H
ai

rb
al

l NB/ray
NL/ray
NT /ray

18.25
8.28

33.97

18.36
8.37

34.22

C
ry

te
k

Sp
on

za NB/ray
NL/ray
NT /ray

7.50
1.60
4.96

6.55
1.48
4.25

C
on

fe
re

nc
e

NB/ray
NL/ray
NT /ray

7.52
1.93
5.33

7.51
1.93
5.36

B
ed

ro
om NB/ray

NL/ray
NT /ray

3.60
1.60
2.75

3.61
1.63
2.78

Table 2: Number of node visits (NB), leaf node visits (NL),
and triangle intersection tests (NT) per shadow ray after
sorting with different bounding box intersection probability
approximations, Pi = Ai/Anode and Pi = 1. SATO is used for
the logging phase. The results show that the choice of Pi does
not have a great influence on the general performance.

child nodes in our rendering system is given in Table 5. For
this experiment about 5% of a total ray budget is used as
representative rays. Our method reduces the traversal steps
by up to 60% compared to SATO. Although it is very small,
a performance gain is still obtained for fine objects such as
hair strands as illustrated in Table 5. Our method is more ef-
fective when the number of child nodes is greater. The traver-
sal order used in the logging phase clearly affects the number
of node/leaf visits and triangle intersection tests. However, it
depends on scene and we could not conclude which one is
consistently better.

The results with Embree are shown in Table 7. We use
10% of total ray budget as representative rays. We obtain
around 10% speedup for the Crytek Sponza scene when ob-
ject splitting is used for MBVH construction. When using
spatial splitting, the performance gain is smaller. We believe
that this is a consequence of not accounting for children’s
bounding box misses in the cost model. We made the as-
sumption that a ray entering a node will intersect all the
children’s bounding boxes (Pi = 1). The result shows that
this assumption is reasonable for object splitting but not ac-
curate enough for spatial splitting where the bounding boxes
are tighter.

The atomic operations used in the logging phase have a
slight overhead. We therefore implemented two occlusion
test kernels: one for representative rays and the other for nor-
mal occlusion rays. Our sorting is slower compared to the
preprocessing time of SATO but runs at a reasonable speed

(about a few hundred milliseconds without parallelizing for
the San Miguel scene). We have not observed any major per-
formance drop for all the scenes we tested.

5. Discussion

In this section we discuss when it is suitable to use our
method with additional experiments.

5.1. Bidirectional Algorithms

Crytek Sponza SATO Ours

NB
NL
NT

8.01×107

0.82×107

1.33×107

7.91×107

0.75×107

1.21×107

Table 3: Application of our traversal order in light tracing.
The numbers of node visits (NB), leaf node visits (NL), and
triangle intersection tests (NT) before (with SATO) and af-
ter sorting. 10 million photon paths are used in the logging
phase. Sorting the nodes slightly reduces traversal steps.

Our algorithm is not limited to shadow rays and can also
be used for any occlusion tests. Bidirectional light transport
algorithms require many visibility tests to connect eye sub-
path vertices and light subpath vertices. We cannot simply
use a small portion of them as representative rays because
their distribution is too uniform in general. Therefore, we
recommend limiting the use to the paths between light sub-
path vertices and eye. We implemented light tracing in our
rendering system and tested with the Crytek Sponza scene
(Table 3). The number of triangle intersection tests is re-
duced by roughly 10%. Our method works well when a cam-
era is located inside of a scene unlike [VHS12]. Fast pre-
processing makes our method suitable for multi-pass algo-
rithms.

5.2. Multiple Lights and Environment Maps

If a scene contains multiple light sources, sorting child nodes
per light might be beneficial since the optimal ordering de-
pends on lighting in a scene. We rendered the car scene
with two directional lights. When the MBVH is updated per
light, the total number of traversal steps is slightly reduced
(Table 4). These results suggest that sorted deferred shad-
ing [ENSB13] could benefit from our algorithm by sorting
shadow rays by their associated light sources.

When using an environment map, light comes from ev-
ery direction. Importance sampling should be used because it
does not only reduce noise but also helps yielding ray coher-
ence. We also experimented to see how environment maps
affect the performance (Table 6). The number of traversal
steps is reduced by about 10-20% for all images. To achieve
further speedup, images could be segmented into regions

c© The Eurographics Association 2015.

60

Shinji Ogaki and Alexandre Derouet-JourdanOLM Digital, Inc. / JST, CREST / MBVH Child Node Sorting for Fast Occlusion Test

Light 1+2 Light1 Light2 Light 1 Light 2 Sum Whole

NB
NL
NT

2.84×108

0.62×108

1.02×108

1.61×108

0.34×108

0.55×108

4.45×108

0.96×108

1.57×108

4.74×108

1.04×108

1.67×108

Table 4: Comparison of reordering per light against reordering for all lights. The scene contains two directional lights and
1024 samples per pixel are used for each light. In this case, the total number of tests performed for the reordering per light,
written in the second to last column is noticeably smaller to the number of tests performed for the reordering for all lights.

that have the same amount of energy and processed one by
one. The optimal segmentation is out of the scope of this
paper.

5.3. Memory Consumption

Figure 3: Number of node visits, leaf node visits, and tri-
angle intersection tests for our reordering relatively to the
number of tests without reordering given the depth of re-
ordering. Depth = 0 means no reordering, Depth = 1 means
reordering only the child nodes of the root, etc. The results
were obtained with an OBVH (N = 8) using SATO in the log-
ging phase. The number of tests decreases as depth increases
allowing trade-off between memory and computation time.

One drawback of our algorithm is that a 4×N-byte ar-
ray has to be added to each node when padding is not avail-
able. The memory consumption can be reduced by allocating
counters for the upper-level nodes. To see if this is possi-
ble, we measured how the number of traversal steps is influ-
enced by the depth range in the logging and sorting phases
(Figure 3). Although they are not monotonically decreasing,
the traversal steps quickly drop as the depth increases. This
means we can trade-off performance with memory. Not sort-
ing child nodes at all depth levels also leads to faster prepro-
cessing.

6. Conclusion and Future Work

We presented a very simple technique for fast occlusion test.
This technique provides more than 10% traversal step reduc-
tion and we obtained up to 10% speedup for Embree.

Our algorithm can be readily implemented in a ray trac-
ing based pipeline because occlusion tests can be acceler-
ated by only sorting MBVH child nodes. Once child nodes
are sorted, we do not need extra computation to determine
traversal order at run time. We believe this property is very
useful to take advantage of increasingly wider SIMD units.
If padding is not used, a small memory footprint is neces-
sary. However, this can be mitigated by allocating counters
only for MBVH nodes at shallow levels. Reducing memory
footprint might also be helpful to handle instancing.

For future work, we would like to apply our method to dy-
namic scenes using a fast BVH construction algorithm such
as LBVH [LGS∗09], and improve the logging and sorting
phases, for example, by removing atomic operations. Our al-
gorithm is orthogonal to advanced traversal techniques such
as DRST (Dynamic Ray Streaming Traversal) [BAM14].
Thus further performance enhancement could be obtained.
We would also like to find better approximations of the prob-
abilities used in the cost model to improve performance es-
pecially for MBVH built with spatial splits. Another interest-
ing research avenue is to apply this technique to other fields,
for instance, collision detection.

Acknowledgements

We thank anonymous reviewers for their very helpful com-
ments and suggestions. The Bedroom scene was modeled by
David Vacek and is available from the Lighting Challenges
(http://3dRender.com). The room model of the Car scene
is created by Yoichi Kimura. The San Miguel scene was
modeled by Guillermo M. Leal Llaguno of Evolucien Vi-
sual. This scene is available from the McGuire Graphics
Data site (http://graphics.cs.williams.edu/data/
meshes.xml). The Crytek Sponza scene was created by
Frank Meinl. All environment maps used in the paper are
available from the sIBL Archive (http://www.hdrlabs.
com/sibl/archive.html). We would like to thank Ken
Anjyo for simplifying the proof, and Toshiya Hachisuka for
his insightful comment that the proof can be extended for the

c© The Eurographics Association 2015.

61

http://3dRender.com
http://graphics.cs.williams.edu/data/meshes.xml
http://graphics.cs.williams.edu/data/meshes.xml
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html

Shinji Ogaki and Alexandre Derouet-JourdanOLM Digital, Inc. / JST, CREST / MBVH Child Node Sorting for Fast Occlusion Test

whole tree. This work was supported by Japan Science and
Technology Agency, CREST.

References
[Áfr13] ÁFRA A. T.: Faster Incoherent Ray Traversal Using

8-Wide AVX Instructions. Tech. rep., Babeş-Bolyai University,
Cluj-Napoca, Romania, Aug. 2013. 2

[BAM14] BARRINGER R., AKENINE-MÖLLER T.: Dynamic ray
stream traversal. ACM Trans. Graph. 33, 4 (July 2014), 151:1–
151:9. 5

[BH09] BITTNER J., HAVRAN V.: RDH: Ray Distribution
Heuristics for Construction of Spatial Data Structures. In 25th
Spring Conference on Computer Graphics (SCCG 2009) (Bud-
merice, Slovakia, May 2009), Hauser H., (Ed.), ACM SIG-
GRAPH and EUROGRAPHICS, ACM, pp. 61–67. 2

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast simd ray tracing of inco-
herent rays. In Proceedings of the Nineteenth Eurographics Con-
ference on Rendering (2008), EGSR ’08, pp. 1225–1233. 2

[ENSB13] EISENACHER C., NICHOLS G., SELLE A., BURLEY
B.: Sorted Deferred Shading for Production Path Tracing. Com-
puter Graphics Forum 32, 4 (2013), 125–132. 4

[FLF12] FELTMAN N., LEE M., FATAHALIAN K.: SRDH: Spe-
cializing BVH Construction and Traversal Order Using Repre-
sentative Shadow Ray Sets. In Eurographics/ ACM SIGGRAPH
Symposium on High Performance Graphics (2012), Dachsbacher
C., Munkberg J., Pantaleoni J., (Eds.), The Eurographics Associ-
ation. 2, 3

[IH11] IZE T., HANSEN C.: RTSAH Traversal Order for Occlu-
sion Rays. In Computer Graphics Forum (Proceedings of Euro-
graphics 2011) (2011), vol. 30, pp. 297–305. 2

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast BVH Construction on GPUs.
Computer Graphics Forum (2009). 5

[MB90] MACDONALD D. J., BOOTH K. S.: Heuristics for
ray tracing using space subdivision. Vis. Comput. 6, 3 (May
1990), 153–166. URL: http://dx.doi.org/10.1007/
BF01911006, doi:10.1007/BF01911006. 2

[NM14] NAH J.-H., MANOCHA D.: SATO: Surface Area Traver-
sal Order for Shadow Ray Tracing. Computer Graphics Forum
33, 6 (2014), 167–177. 2

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial splits
in bounding volume hierarchies. In Proc. High-Performance
Graphics 2009 (2009). 2

[VHS12] VINKLER M., HAVRAN V., SOCHOR J.: Technical sec-
tion: Visibility driven bvh build up algorithm for ray tracing.
Comput. Graph. 36, 4 (June 2012), 283–296. 2, 4

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid
of packets - efficient simd single-ray traversal using multi-
branching bvhs. In IEEE Symposium on Interactive Ray Tracing,
2008. RT 2008 (2008), IEEE, pp. 49–57. 2

[WFWB13] WOOP S., FENG L., WALD I., BENTHIN C.: Em-
bree ray tracing kernels for cpus and the xeon phi architecture. In
ACM SIGGRAPH 2013 Talks (2013), SIGGRAPH ’13, pp. 44:1–
44:1. 2, 3

Appendix A: Minimizing the occlusion test cost for one
node

Let’s consider a node with N children, each one associated
with a probability or intersecting a ray Qi and visitation cost

Ci. Suppose that the cost of the parent node CSORT defined
eq (1) is minimal. Let’s consider 1 ≤ I < N and the same
node, with the children I and I +1 swapped. The new prob-
abilities Q′ and costs C′ follow

∀i ∈ J1,NK, Q′i ,C
′
i =


QI+1,CI+1 if i = I
QI ,CI if i = I +1
Qi,Ci otherwise.

Denoting the new cost C′SORT , the cost difference is

C′SORT −CSORT = τ((σ+CI+1)QI+1− (σ+CI)QI

+(σ+CI +CI+1)(1−QI+1)QI

− (σ+CI +CI+1)(1−QI)QI+1),

where

σ =
I−1

∑
j=1

Cj

and

τ =
I−1

∏
k=1

(1−Qk).

Both are positive, independent of (Ql ,Cl) and (Ql+1,Cl+1).
After reduction, we have

C′SORT −CSORT = τ(CI+1QI−CIQI+1).

We assumed CSORT to be minimal. Thus we have

C′SORT −CSORT ≥ 0.

Since τ is positive, necessarily,

CI+1QI−CIQI+1 ≥ 0,

which leads to
QI

CI
≥ QI+1

CI+1
.

Therefore, if CSORT is minimal, the sequence (Qi
Ci
) is de-

creasing. Since CSORT can only take a finite number of val-
ues over the permutations of (Qi,Ci), we deduce that the
minimal value is obtained when the sequence (QI

CI
) is ordered

in decreasing order.

c© The Eurographics Association 2015.

62

http://dx.doi.org/10.1007/BF01911006
http://dx.doi.org/10.1007/BF01911006
http://dx.doi.org/10.1007/BF01911006

Shinji Ogaki and Alexandre Derouet-JourdanOLM Digital, Inc. / JST, CREST / MBVH Child Node Sorting for Fast Occlusion Test

BBVH (N=2) QBVH (N=4) OBVH (N=8)
FBTO SATO FBTO SATO FBTO SATO

H
ai

rb
al

l NB/ray
NL/ray
NT /ray

55.51
5.04

46.06

53.40
4.52

40.75

56.62
4.45

40.61

54.64
4.49

40.10

27.62
6.81

42.30

26.99
6.12

36.91

28.77
5.79

35.96

27.58
6.11

37.22

18.67
9.47

39.72

18.01
8.48

34.57

18.93
8.45

35.22

18.36
8.37

34.22

C
ry

te
k

Sp
on

za NB/ray
NL/ray
NT /ray

30.94
1.37
3.86

25.50
1.22
3.43

31.15
1.37
4.00

25.55
1.23
3.45

14.96
1.53
2.79

11.55
1.27
2.19

12.50
1.38
2.65

11.56
1.26
2.30

13.75
2.53
4.07

6.85
1.52
2.39

11.20
2.09
4.84

6.55
1.48
4.25

C
on

fe
re

nc
e

NB/ray
NL/ray
NT /ray

24.16
1.71
6.78

23.64
1.73
6.46

23.99
1.79
6.71

23.57
1.72
6.60

11.78
1.84
6.11

11.44
1.80
5.59

11.63
1.85
5.79

11.45
1.79
5.58

7.91
1.97
5.69

7.60
1.94
5.13

7.76
1.95
5.77

7.51
1.93
5.36

B
ed

ro
om NB/ray

NL/ray
NT /ray

19.34
1.52
5.54

15.92
1.27
3.77

16.12
1.29
4.04

15.34
1.24
3.58

10.28
2.20
6.04

6.72
1.50
3.10

8.56
1.89
4.79

6.38
1.49
3.06

9.44
3.42
7.61

3.67
1.63
2.69

8.02
2.73
5.22

3.61
1.63
2.78

Table 5: Impact of the traversal order used in the logging phase for MBVH with different number of child nodes, measured
by the number of node visits (NB), leaf node visits (NL), and triangle intersection tests (NT) per shadow ray. Path tracing with
multiple importance sampling is used to render images.

Environment map Car SATO Ours San Miguel SATO Ours

NB/ray
NL/ray
NT /ray

8.29
1.90
3.22

7.10
1.63
2.70

NB/ray
NL/ray
NT /ray

7.85
2.00
3.15

5.69
1.59
2.63

NB/ray
NL/ray
NT /ray

8.44
2.00
3.44

7.49
1.77
3.03

NB/ray
NL/ray
NT /ray

7.47
1.86
2.99

6.25
1.62
2.84

NB/ray
NL/ray
NT /ray

7.62
1.86
3.22

6.54
1.52
2.52

NB/ray
NL/ray
NT /ray

6.51
1.73
2.84

5.42
1.51
2.65

NB/ray
NL/ray
NT /ray

8.07
1.95
3.42

7.33
1.75
2.95

NB/ray
NL/ray
NT /ray

6.48
1.72
2.82

5.37
1.52
2.68

Table 6: Comparison of SATO and our order traversal for different environment maps with respect to the number of node visits
(NB), leaf node visits (NL), and triangle intersection tests (NT) per shadow ray. All images are rendered using OBVH (N=8).
Path tracing with multiple importance sampling is used. The number of tests for finding an occlusion is noticeably reduced
using our traversal order.

c© The Eurographics Association 2015.

63

Shinji Ogaki and Alexandre Derouet-JourdanOLM Digital, Inc. / JST, CREST / MBVH Child Node Sorting for Fast Occlusion Test

Object Splitting
Number of triangles per leaf node 1 triangle 4 triangles 8 triangles

bvh8 Ours bvh8 Ours bvh8 Ours
C

ar

NB/ray
NL/ray
NT /ray

mrps
time[s]

7.79
1.77
2.59

22.52
48.2

7.40
1.59
2.30

22.68
47.9

7.19
1.45
1.79

24.37
44.6

6.90
1.35
1.62

24.41
44.6

6.84
1.46
1.76

23.26
46.6

6.50
1.49
1.79

23.54
46.0

B
ed

ro
om

NB/ray
NL/ray
NT /ray

mrps
time[s]

7.41
2.52
3.95

24.85
51.1

4.54
1.85
2.73

26.37
48.2

6.82
1.82
2.17

27.86
45.6

4.25
1.46
1.57

29.54
42.9

6.42
1.84
2.16

26.97
47.1

4.19
1.49
1.60

27.97
45.4

C
ry

te
k

Sp
on

za NB/ray
NL/ray
NT /ray

mrps
time[s]

12.80
2.20
3.51

18.63
72.1

9.46
1.56
2.68

20.63
65.1

11.68
2.16
3.52

19.16
70.1

8.74
1.78
3.11

20.73
64.8

11.16
2.13
3.00

18.98
70.7

8.39
1.72
2.45

20.58
65.2

Spatial Splitting
Number of triangles per leaf node 1 triangle 4 triangles 8 triangles

bvh8 Ours bvh8 Ours bvh8 Ours

C
ar

NB/ray
NL/ray
NT /ray

mrps
time[s]

8.11
1.73
2.33

22.50
48.4

8.01
1.58
2.09

22.92
47.8

7.38
1.41
1.68

24.40
44.6

7.30
1.36
1.61

24.48
44.5

7.04
1.40
1.60

24.01
45.3

7.03
1.36
1.54

24.12
45.1

B
ed

ro
om

NB/ray
NL/ray
NT /ray

mrps
time[s]

5.79
1.81
2.29

27.74
45.8

5.29
1.66
1.99

28.72
44.4

5.25
1.55
1.74

29.60
42.9

4.89
1.49
1.63

30.06
42.4

4.89
1.58
2.01

28.61
44.3

4.52
1.52
1.87

28.54
44.5

C
ry

te
k

Sp
on

za NB/ray
NL/ray
NT /ray

mrps
time[s]

8.42
1.68
2.14

23.67
56.8

7.80
1.53
1.95

24.43
55.0

7.40
1.47
1.93

25.59
52.5

6.82
1.41
1.86

26.12
51.5

6.89
1.53
1.94

24.88
54.0

6.35
1.47
1.85

25.58
52.5

Table 7: Comparison of OBVH from Embree 2.0 (bvh8) and our traversal order with respect to the number of node visits
(NB), leaf node visits (NL), and triangle intersection tests (NT) per shadow ray. We also compare the number of rays per second
(mrps) as well as the whole rendering time. The number of required tests for finding an occlusion is reduced up to 38% using
our traversal order, which translates to a speedup of up to 9% of the total rendering time for object splitting. The number of
required tests for finding an occlusion is only slightly reduced for spatial splitting due to the rough approximation Pi = 1.

c© The Eurographics Association 2015.

64

