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Abstract

Recently the GPU has been used extensively in building indexing structures for moderately complex scenes that
fit inside the GPU core. However, only few methods have been developed for constructing indexing structures
for massive models larger than GPU memory. In this paper, we present an out-of-core HLBVH algorithm, a new
method for constructing spatial hierarchies suitable for massive models that cannot fit into GPU device memory.
A key insight of our method is how to bring and process out-of-core data blocks that do not fit into available
device memory. Results show that our approach can compete with HLBVH hierarchy builder for large models
on CPU. We also demonstrate the value of our algorithms in a GPU-based out-of-core path tracer that brings
tree nodes and geometry into GPU core as needed, and efficiently achieve complex global illumination effects for

models up to hundred million triangles.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and

Techniques—Graphics data structures and data types

1. Introduction

Global illumination algorithms such as ray tracing, path trac-
ing, and photon mapping [PH10] make an extensive use of
bounding volume hierarchies (BVH) [Wal04, PH10] as spa-
tial index structures for fast ray-primitive intersections. In
the past few years, efficient methods for BVH construc-
tion have been proposed on both multicore CPU [Wal(04,
Wal07, PGDS09, SFD09] and manycore GPU [GPBGI11,
GPM11,PL10,LGS*09] for small and medium sized scenes
[HSZ*11]. However, the request for more realism in visu-
alization applications and movie production necessitate an
efficient way to build indexing structures for large and mas-
sively large scenes [IBH11,PFHA10,KTO11,SBB*06].

In this paper, we focus on extending the recently developed
HLBVH construction algorithm [Apel4, Karl12, GPM11,
PL10,LGS*09] for massive models which are greatly larger
than the available device memory. We present four main
contributions. First, we introduce an out-of-GPU-core sort-
ing procedure that can sort hundreds of millions of keys on
GPU as long as the keys reside in main memory. Second, we
present an out-of-GPU-core memory management strategy
that iteratively loads and swaps data upon request between
the host and device memory. Third, we develop a novel hier-
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archy emission strategy suitable for massively large scenes
composed of several million triangles. Finally, we demon-
strate the value of our hierarchy builder in an GPU-based
out-of-core path tracer that produces complex global illumi-
nation effects for massively large models.

We follow partial breadth-first search (PBFS) order
[HSZ*11] to construct tree hierarchy in three main stages;
firstly, we iteratively load the sorted Morton codes into de-
vice memory and emit the first n levels using a large block
descriptor for the root node [PL10], secondly, we use prim-
itives sampling for out-of-GPU-core Morton codes and bi-
nary search [GPM11] to emit the following tree levels until
we get a relatively large leaves with primitives less than a
certain threshold, and finally, we iteratively load large leaves
and their primitives and emit their corresponding treelets en-
tirely inside the GPU.

In all subsequent sections, and unless mentioned otherwise,
the term out-of-core is used to refer to out of GPU device
memory.
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2. Related Work
2.1. Spatial Hierarchy Construction on GPU

Several methods have been proposed for constructing spatial
hierarchy on GPU for grids [KS09], KD-trees [ZHWGO08],
and BVHs [Kar12,GPBG11,GPM11,PL10,LGS*09]. How-
ever, we concentrate on relevant work for BVH construction
on GPU.

Lauterbach et al. [LGS™09] presented a fast BVH con-
struction algorithm called Linear Bounding Volume Hier-
archy (LBVH), which folds the construction process into
two sorting rounds; the first over Morton codes generated
by sampling primitives’ centroids inside scene bounds, and
the second over bit-difference indices (i.e. block-splits) be-
tween neighboring Morton codes. Later, Pantaleoni and Lue-
bke [PL10] introduced the Hierarchical Linear Bounding
Volume Hierarchy (HLBVH) algorithm, that produces the
same hierarchy as of LBVH in less time. Pantaleoni and
Luebke [PL10] replaced the first soring round of LBVH
[LGS*09] by the relatively fast compress-sort-decompress
(CSD) scheme [GL10]. In order to avoid the other sorting
round, Pantaleoni and Luebke [PL10] emitted the tree hierar-
chy in several passes using block descriptors for block-splits,
and prefix scans [HSO07, SHZOO07] for nodes compaction.

While LBVH and HLBVH algorithms focused on Morton
codes to find block-splits, and then mapping such block-
splits into nodes’ splits in the tree hierarchy. Garanzha et
al. [GPM11] used binary search to find the block-split in
each node, which directly maps to a node split. Garanzha
et al. [GPM11] avoided the relatively slow several kernel
launches in LBVH and HLBVH by emitting the entire tree
hierarchy in a single kernel launch using running queues for
input and output nodes on GPU.

Karras [Karl2] followed another direction to enhance the
construction time of (H)LBVH by mapping Morton codes
into binary radix tree (BRT). It was noted that hierarchy pro-
duced by (H)LBVH is identical to what produced by BRT if
Morton codes are distinct, otherwise the hierarchy produced
by BRT continue splitting leaves having more than one prim-
itive in (H)LBVH until all leaves have exactly one primitive.

Most of the previous methods for BVH construction on GPU
were limited by the available device memory, and required
the whole scene, or the whole primitives to be loaded in ad-
vance inside the GPU [HSZ*11]. In this paper, we are in-
terested in HLBVH construction for massive models which
are larger than the available device memory. We begin by
emitting the first n tree levels using a large block descrip-
tor for the root node [PL10] to get a coarse tree hierarchy
suitable for parallel processing. Then, we emit the following
tree levels using binary search over a small set of out-of-core
Morton codes until we reach a relatively large leaves hav-
ing primitives less than a predefined threshold. Finally, we
iteratively emit the remaining large leaves’ treelets entirely

in GPU using running queues and binary search for Morton
codes splits [GPM11].

2.2. GPU based Global Illumination

In the past few years, the GPU has been used extensively to
simulate global illumination effects using real-time ray trac-
ing [ZHWGOS], interactive photon mapping [WWZ*09],
and path tracing [PBPP11]. Garanzha et al. [GBPGI11] in-
troduced a general rendering pipeline for GPU out-of-core
data loading. Wang et al. [WHY *13] presented a GPU out-
of-core method for many-lights rendering framework that
renders scenes up to many million triangles using a large
number of virtual point lights. We have a similar spirit to
what presented by Garanzha et al. [GBPG11], and Wang
et al. [WHY*13], and introduce a general memory paging
strategy that iteratively loads the data needed upon request
for hierarchy construction and various rendering tasks on
GPU.

3. Our Approach

At the core of our algorithm is the use of a simple pag-
ing technique for data swapping between host and device
memory. Our paging technique allows both data reading and
writing for out-of-core data blocks that do not fit into GPU
device memory. Generally, we follow the parallel rendering
pipeline of requesting, processing, and swapping out-of-core
data blocks on GPU [GBPGI11].

Our algorithm begins by sampling primitives’ centroids in-
side the scene bounding box to extract a 60-bit Morton code
for each primitive. However, since we can not upload the
whole primitives into GPU, we partition the primitives into
buckets that can fit into available device memory, and extract
the Morton codes of the primitives of each bucket separately.
Next, we sort the Morton codes using an out-of-core key-
value sorting algorithm. In order to sort a large array of keys
that does not fit inside in-core memory, we split the keys into
fixed-sized buckets so that we can sort each bucket in-core
using a key-value sorting algorithm [HOS*07]. Then, we it-
eratively merge each pair of sorted buckets of size S, to get
a larger sorted bucket of size 2S5, [HR89], and recursively
repeat the merge step until we get the whole array of keys
sorted.

After sorting the Morton codes, we emit the entire tree hi-
erarchy in three main stages: In the first stage, we build a
coarse tree hierarchy for the upper levels by filling a large
block descriptor [PL10] for the root node using the first n
bits of Morton codes, and emit the corresponding treelet in-
side the GPU core. In the next stage, we build the hierarchy
for the following tree levels in breadth-first search (BFS) or-
der. We begin by partitioning the Morton codes into equally-
sized pages and sample Morton codes at each page bounds.
We use the sampled codes to approximate the search range
for each node split by finding the the page containing node
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split index using binary search over sampled codes. Then,
we use our paging strategy to load the subset of pages con-
taining the current nodes’ splits, and use binary search inside
the corresponding pages to get the exact nodes’ splits. We
continue BFS nodes splitting until each node has a relatively
large number of primitives under a certain threshold. In our
experiments, we set this threshold equal to the page size of
Morton codes. In the final stage, we begin with the resulting
large leaves from stage two, and iteratively upload subsets
of these leaves and their primitives into GPU to emit their
corresponding treelets entirely inside the GPU [GPM11].

4. Out-of-Core Paging

Page Table Structure In order to upload a large array that
does not fit into available device memory, we use a simple
paging technique. We partition the host array into fixed-sized
pages, and partition the available device memory into pages
of the same size. We use a page table to record CPU to GPU
page referencing. For each page on CPU, we use a 32-bit
page table entry, where bit 31 indicates whether the page is
in-core or out-of-core, bit 30 is a page request flag, bit 29
is a page modified flag, and the remaining 29 bits are used
to indicate the page offset relative to the device array start
address (see Figure 1).

Out-of-Core Process, Request, and Swap Initially, we
clear the page table by clearing the in-core flag of the en-
tire page table. Then, we iteratively call the processing ker-
nel several times until all page requests have been supplied
and processing finishs. In the processing kernel, we perform
CPU to GPU address translation of array elements. The ad-
dress translation is very trivial; we extract the page index by
dividing array index by page size, and get local offset inside
the corresponding page using the remainder of this division.
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Given the page index, we examine the in-core flag of the
corresponding page table entry, if the page exists inside the
GPU, the kernel processes the array element, and arbitrar-
ily set the modified bit flag if the array element has been
modified, and needs to be written back to CPU. If the corre-
sponding page is out of in-core memory, we invoke a page
request using the page request flag.

After each kernel launch, we iterate over the page table and
write back the modified pages and supply page requests that
fit into available device memory. First, we check the modi-
fied page flag. If it has been set, we copy the corresponding
page from the device to the host. Next, we check the page
request flag. If it has been set, we copy the page from the
host to the device and update the corresponding page table
entry. We also keep an array that has a length equals to the
number of pages on GPU. Inside this array we record CPU
page index that resides in the corresponding GPU page or
-1 if no page resides. During page uploading, we use this
array to clear the in-core flag of the pages uploaded in the
previous round, and update the entries of this array using the
newly uploaded page-indices. We stop page uploading after
we supply all pages requests, or reach the maximum number
of page-uploads on GPU.

To reduce the data transfer overhead from CPU to GPU. We
always keep two synchronized copies of the page table on
the host and the device. After each kernel launch, we copy
the entire page table from the device to the host to write back
modified pages, and supply page requests at the host side.
Before the next kernel launch, we copy back the page table
from the host to the device to reflect the new memory map-
ping and use the device copy of the page table to raise new
page requests, and new page modifications.

Mapping Multiple Arrays on GPU If we have more than
one large array in a certain processing phase, we divide the
available device memory among these arrays.

Iterative Kernels Launches Since each kernel may be
launched several times during processing an out-of-core
data, we assign a flag for each thread to mark thread pro-
cessing status. At the beginning of the processing phase, this
flag is set for all threads, and later when a thread receives its
all data requests and performs data processing, it clears this
flag to avoid processing in further kernel launches.

5. Out-of-Core HLBVH Construction

In this section, we explain in details the main processing
stages for constructing an out-of-core HLBVH hierarchy.
At first, we describe an out-of-core parallel sorting algo-
rithm which is used to sort primitives’ Morton codes. Then,
using the sorted Morton codes, we present an out-of-core
HLBVH hierarchy emission strategy suitable for massively
large scenes.
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Figure 3: Out-of-core merging. The solid lines entering
the array K7 |jg mark the inclusive start boundary, and the
dashed lines mark the exclusive end boundary in the two
ranks arrays (LR jg and RRy | jR)-

5.1. Out-of-Core Sorting

To sort Morton codes array that does not fit inside GPU
memory, we begin by dividing the array into smaller N,
buckets, each of which has at most size S;, (in our experi-
ments we set S, = 32 M) so that each bucket is small enough
to be sorted inside GPU using a fast parallel sorting algo-
rithm [HOS*07]. Then, we perform [log, Nj,| merge steps
to sort the whole array. At the first merge step, we merge
every two consecutive buckets of size Sj, to get larger sorted
buckets of size 2 x S;,. Next, we recursively repeat this merge
step on the resulting buckets. After [log, N, | merge steps we
get whole array sorted.

Merging two sorted arrays which reside in in-core memory
into a larger sorted array can be efficiently done in parallel.
Each element at position P in an array finds its rank R in the
other array using binary search. The key’s new location in
the output array will be at position P + R (see Figure 2).

When the two arrays exceed the capacity of the device mem-
ory, we use Hagerup-Riib algorithm [Sen10, HR89] for out-
of-core merging. The out-of-core merge process is elabo-
rated in Figure 3. We begin by sparsely sampling the b-th
keys of both arrays into arrays S, and Sg, and the associated

ranks into arrays Ry and Rg. Then, we recursively merge the
sampled keys and ranks using a key-value merge into arrays
Spyr and Ry g respectively. For each key K; in the array
SR, We extract two ranks; its ranks in left array of keys
(LR;), and its rank in the right array of keys (RR;). One of
these ranks is already known from the array of keys it was
initially picked, and the other rank is extracted from the other
array of keys using binary search over a small range of keys.
We store the left and right ranks of each sampled key (i.e.,
LR; and RR;) into arrays LRy ;g and RRy | respectively.

However, finding keys’ ranks in the other array of keys is
not trivial, since each of the array of keys are stored out-of-
core. We use an array of flags (i.e. LF array) for the sampled
keys and its prefix scan to define a small search range for
each sampled key in the array of keys it was not initially
picked. Into the flags array we store 1 if the corresponding
sampled key was picked from the left array, otherwise, we
store 0. The scan of the flags array (i.e. PLSA array) records
the number of sub-arrays preceding the current sampled key
in the left array of keys, and by subtracting the scan of the
flags array from the current sampled key index, we get an
array (i.e. PRSA array) that records the number of sub-arrays
preceding the current sampled key in the right array of keys.
Given the number of sub-arrays preceding the current key,
we restrict binary search for key’s rank in the next keys’ sub-
array of the corresponding array of keys.

Corresponding ranges in the arrays LRy | jr and RRy | g de-
fine contiguous and non-overlapped ranges in the left and
the right arrays of keys respectively, which can be merged
in-core together. Since we sample keys at every b-th posi-
tion, no range will contain more that than b elements. In
practice, we use several rounds to merge the keys according
to the available device memory. At each round, we use the
flags array and its scans (i.e. LF, PLSA, and PRSA arrays)
to guide keys uploading into in-core memory. Once the keys
uploaded, we fill the corresponding ranges in the ranks ar-
rays (i.e., LRy jg and RRy g arrays), and merge each pair
of keys’ ranges into an output array. We use values in the
ranks arrays to define the start address, and the number of
keys of each merge in the output array. As a final step, we
copy the sorted output array to the host memory.

5.2. Out-of-core HLBVH Hierarchy Emission

As shown in Figure 4, we construct the entire tree hierarchy
in three main stages:

e At the first stage, we emit the higher tree levels using a
single block descriptor for root node [PL10].

e At the second stage, we begin with the leaves of root
treelet, and emit the next levels using binary search over
in-core sampled set of Morton codes, followed by binary
search over out-of-core Morton codes employing our pag-
ing strategy to upload the required set of Morton codes
into GPU. During this stage, we filter tree nodes having
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Figure 4: PBFS Out-of-core HLBVH hierarchy emission

triangles less than a predefined threshold to be split in in-
core memory in the next stage.

e At the final stage, for all large leaves filtered in the pre-
vious stage, we iteratively load a subset of leaves and
their data into in-core memory, and emit the correspond-
ing treelets using binary search over Morton codes, and
task queues for input and output nodes [GPM11].

5.2.1. Root Treelet Emission

We prepare a large block descriptor for the root node em-
ploying the firsts n bits of Morton codes to fill the split in-
dices (in our experiments we set n = 20). As we are analyz-
ing 20 bits, we need at most 2201 cells in the block de-
scriptor. To fill the block descriptor, we partition the Morton
codes into buckets that fit into available device memory, and
iteratively upload the Morton codes buckets into GPU to fill
split-indices between Morton codes, We modify the block
descriptor a little bit, and store with each split index the two
split Morton codes around it to be used later in the treelet
emission (see Figure 5).

After filling the block descriptor we count the number of
non-empty cells to prepare memory arena for the root treelet.
Each non-empty cell will emit two child nodes. This makes
the total number of nodes in the resulting treelet equals twice
the number of non-empty cells in the block descriptor.

To complete the hierarchy, we need to determine the parent-
child relationship of emitted nodes. We have noticed that the
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Figure 5: Root treelet emission. As an example node 4 which
starts at primitive 1 and ends at primitive 3 uses the first and
last Morton codes (i.e., [ 010 : 011 ]) to restrict the binary
search at level 3 in the block descriptor for a primitive index
that lies in its range (i.e., 2). Once the split found, node 4 is
linked to child nodes corresponding to split 2 (i.e., node 7,
and node 8). The ranges and Morton codes of child nodes are
inherited from parent node, split index, and the two neigh-
boring Morton codes around the split.

block descriptor stores the split indices sorted by split level.
This allows us to build the parent-child relationship level by
level using task-queues for input and output nodes at each
level [GPM11]. For each input node, we find the split level
[ using the first bit plane by which the node’s first, and last
Morton codes differ. Then, we restrict the binary search in
the block descriptor to level /, and find the split s having
a primitive index that lies inside node’s range, and link the
input node to the two nodes emitted by split s, finally, we
append the child nodes to the output queue for next level
splitting. This process is highlighted with node 4 in Figure
5.

5.2.2. Mid-Level BFS Tree Nodes Emission

After emitting the first n tree levels in the previous stage,
we begin with the leaves in root treelet, and build the sev-
eral next tree levels in breadth-first search (BFS) order using
an out-of-core binary search over Morton codes. First, we
partition Morton codes into equally-sized pages, and sample
the first and last code of each page. Following that, we split
nodes level by level using task queues for input and output
nodes [GPM11].

Each split round consist of two main steps (see Figure 6);
in the first step, we launch a kernel that uses binary search
over sampled Morton codes to find the corresponding Mor-
ton code page of node’s split plane, and in the second step,
we launch another kernel that uses binary search inside the
corresponding pages of Morton codes to find the exact split
index for each node. We use our paging strategy to iteratively
upload the required pages for all input nodes into in-core
memory. In this step, we keep track of the two Morton codes
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Figure 6: Mid-level BFS tree nodes emission using out-of-
core binary search of Morton codes. The page size equals
4 for illustration purpose only. The red arrows illustrate the
path from parent node, to sampled Morton codes, and op-
tionally to Morton codes pages, and finally to child nodes.

around the split index to be used in the resulting child nodes.
A special handling happens if node’s split plane lies at the
start of a certain page (e.g., node 5 in Figure 6). However,
we have no need to upload any pages for this node, since
our sampled Morton codes already record the Morton codes
at the start and the end of each page. After finding nodes’
splits, we split input nodes, and dump output nodes to CPU
to be split in the next round. Exception happens with child
nodes having primitives less than a predefined threshold (in
our experiments we set this threshold to be equal the page
size of Morton codes), which are filtered in a separate list to
be split in in-core memory in the third stage.

5.2.3. Large Leaves Treelets Emission

At this stage, we have a list of relatively large-sized leaf
nodes. For clarity, we refer to these nodes as large roots.
Each of these large roots covers a relatively small spacial
extent, and contains Morton codes that reside in at most
two consecutive pages. Thus, for each large root, we emit
its treelet entirely inside the GPU in a single kernel launch
after uploading its corresponding Morton codes. Compared
to global BFS emission in the previous stage, the advantages
of this local BFS emission are two-fold:

e Less global memory traffic: by uploading at most two
pages for each treelet, we avoid multiple page swapping
occurring in global BFS node splitting.

e Ensure locality of reference during rendering: by emitting
each treelet locally, and storing treelet nodes in nearby
locations.

Splitting Nodes’ Geometry In order to access the geom-
etry of leaf nodes from the global scene data structures
(i.e., sorted triangles’ indices array, index buffer, and ver-
tex buffer), we have to pass through several paging steps.
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(© The Eurographics Association 2015.



Mahmoud Zeidan & Taymoor Nazmy & Mostafa Aref / GPU-based Out-of-Core HLBVH Construction 47

First, we have to load the sorted triangles’ indices. Then,
we load three vertex-indices of each triangle form the in-
dex buffer. And finally, we load the corresponding vertices
of each vertex index from the vertex buffer. This may be a
critical performance issue in ray tracing applications, since a
certain node may refer to several distant blocks at the index
buffer, and vertex buffer, and require several page loads even
with small-sized nodes. Thus, for efficient ray tracing perfor-
mance, we extract the geometry of current state roots from
the global scene data structures, and relocate them com-
pactly in a local index-vertex format.

To split the geometry of large roots, we estimate the num-
ber of triangles that can be processed in the available device
memory, and accordingly calculate the number of nodes that
can fit into GPU device (see Figure 7). To do so, we fill the
length of each node into array Node Length and scan this
array, and launch a parallel routine that performs a binary
search in the scanned array for multiples of number of trian-
gles that can be processed in the available device memory.
Then, we initiate several rounds for geometry splitting for
each set of roots bounded by indices returned from the bi-
nary search routine.

At each splitting round (see Figure 8), we calculate the num-
ber of triangles to be processed form the array Node Length
and its scan. We prepare an array of head flags for trian-
gles, and fill the head locations defined by the scan of Node
Length array with s and fill other locations with Os. Then,
we fill another array (i.e., array TIP) with triangles refer-
ences to the sorted triangles indices of each node. To fill this
array, we prepare another array (i.e., array NSF) which is ini-
tially filled with 1s, and into corresponding locations of the
scan of Node Length array, we store the corresponding node
start index. Then, we invoke a segmented scan on the array
NSF to get triangles references of each node (i.e., array TIP).
Currently, we have a consecutive list of triangles references
of each node referring to the sorted triangles indices array.
Using our paging strategy, we load the triangles indices from
the sorted array of triangles indices into array S7I. Then, we
use our paging strategy again to load the corresponding three
vertex-indices of each triangle from the global index buffer
into array VI.

At each node, some vertices may be referenced more than
once, so we need to avoid duplicate loading of these ver-
tices during rendering. In order to do so, we load the vertex-
indices into 64 bits array, into this array we store the vertex
index at the lowest 32 significant bits, and the store the node
index at the highest 32 significant bits. Then, we sort this
array using key-value sorting employing the 64 bits concate-
nated node index and vertex index pairs as keys. After sort-
ing this array we have a segmented sorted array of vertex-
indices, where the sorting process has been performed for
each node separately. We invoke a parallel kernel that fills
an array of flags (i.e. array VH). This kernel checks every
key in the sorted array, and stores 1 into corresponding lo-

(© The Eurographics Association 2015.

cations that have a key that differs from its predecessor, and
stores 0 otherwise. Then, we perform a scan on this array
into array SVH. The total length of these flags defines the
exact number of compacted vertices of currently processed
nodes, and using locations marked by node’s first and last
element index multiplied by three, we can calculate the start
and the size of each node local vertex buffer.

Using the array VH, and its scan SVH, we load the com-
pacted vertices once into local device memory using our pag-
ing strategy, and update the index buffer of each node to re-
fer to the new location of vertices. As a final step, we copy
back the compacted vertices to the host memory, and use our
paging strategy to write back the sorted index buffer of cur-
rently processed nodes to host memory at locations derived
from corresponding node’s first and last triangles indices.

Hierarchy Emission At the beginning of this stage, we di-
vide the available device memory into two partitions. In the
first partition, we load large roots data such as nodes point-
ers, Morton codes, and other temporary data, and conserva-
tively reserve a room for the the resulting treelets data (i.e.,
child nodes pointers, and AABBs). The second partition is
used for paging out-of-core data such as triangles’ data, and
previously created nodes.

Since we can not process all the large roots inside the GPU
in a single round, we have to divide these roots into smaller
buckets suitable for the available device memory, and pro-
cess each bucket separately. Each of the large roots requests
a room in the device memory that is a function of the num-
ber of triangles inside the node (i.e., maximum treelet size is
less than twice the number of triangles). Thus, we estimate
the number of large roots processed in each round in way
similar to Figure 7, excpet that we replace node’s size with
node’s room size in the array Node Length.

At each processing round, we use our paging strategy to up-
load large roots’ data, and corresponding primitives’ data in-
cluding Morton codes into GPU. Next, we let each thread
block to process a single root, and emit its treelet in BFS
order using shared memory and block synchronization in
a manner similar to what explained by Garanzha et al.
[GPM11]. After emitting the treelet, we preform a local
AABB refitting on child nodes and the parent large root. As
a final step after processing the current large roots, we com-
pactly write back output treelets to CPU using a prefix scan
of the exact sizes of all treelets, and update the current large
roots data on CPU.

HLBVH Top-levels Refitting After processing all large
roots, we perform AABB refitting on mid-level and high-
level nodes employing our paging strategy to upload re-
quired child nodes into GPU upon request.
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Scene Num. of Triangles | Num. of Vertices Num. of Nodes Cum. Num. of Nodes in Stage | & 2
Buddha-Dragons 55 MT /662 MB 29MV/344MB | 110MN/34GB 21 KN/22KN
Armadillos 99MT/1188MB | 52MV/618MB | 151 MN/4.7 GB 29 KN/30 KN
Lucys 107MT/1284 MB_| 56 MV/67IMB | 214 MN/6.7 GB 44KN/44 KN
MPI 70 MT /844 MB 38MV/458MB | 128 MN/4.0GB 40KN/49 KN

Table 1: Tree statistics of our test scenes. First column lists
the number of mega-triangles of each scene, and their stor-
age size in Megabytes. Second column lists the number of
mega-vertices after geometry splitting phase and their stor-
age size in Megabytes. Third column lists the number of
mega-nodes of the resulting HLBVH hierarchy and their
storage size in Gigabytes. The forth column lists the cumu-
lative number of nodes after the first and second stages re-
spectively.

6. Out-of-Core HLBVH Ray Traversal

We have noticed that HLBVH nodes created in the first and
second stages are always small enough to be kept in device
memory during the entire rendering process. For clarity, we
refer to these nodes as top-nodes. Last column in Table 1
shows the number of top-nodes in our test scenes. The leaves
of top-nodes are the large roots in the third stage, where each
root references an out-of-core treelet. We employ a segment
table for all out-of-core treelets, and perform out-of-core
segmentation in a way similar to out-of-core paging as ex-
plained in Section 4.

In order to traverse a ray through HLBVH, we maintain two
stacks for each ray, one for traversing the top-nodes, and the
other is used when the ray hits an in-core treelet of a certain
large root. Initially, and for all rays, we push the root node
into the stack of top-nodes. Then, each ray performs an out-
of-core ray tracing in several rounds.

During each round, the traversal kernel pops up the first node
from the the stack of top-nodes, and visits top-nodes in the
ordinary traversal way [AL09]. When the ray hits a large
root, the kernel checks the corresponding treelet in-core flag.
If the treelet resides in in-core memory, then the traversal
kernel branches to another code segment that traverses the
ray in the corresponding treelet using the other stack seeking
for the nearest hit. If the corresponding treelet is out-of-core,
then the ray stops traversal, pushes the current large root into
the stack of top-nodes, and raises a treelet request. In future
rounds, the thread of this ray continues checking the in-core
flag of the requested treelet to resume traversal. When a ray
finishes a large root treelet, it returns to the main code seg-
ment, and pops up the next node from the stack of top-nodes
to resume traversal in top-nodes. The entire traversal ends
when the stack of top-nodes is empty. At the host side after
each traversal round, we supply treelets requests fitting in
the available device memory, and update the segment table.

7. Results and Discussion

We implemented the above algorithms on an Intel Core
i7-3770 3.40 GHz CPU with 32 GB of memory, and an

Scene CPU Build Time GPU Build Time GPU Build Time without Stage 1
Buddha-Dragons 225 (3507 ms) 115 (1198 ms) 125
Armadillos 455 (9187 ms) 20 's (2632 ms) 22s
Lucys 48 5 (6977 ms) 21 5(2857 ms) 26s
MPI 275 (4162 ms) 16's (1929 ms) 155

Table 2: Build time statistics in seconds for our test scenes,
the numbers inside brackets represent the sorting time of
Morton codes in milliseconds.

Buddha-Dragons (11010 ms)
145 ms
1198 ms
201 ms

Lucys 21434 ms) | MPI (16367 ms)
2641 ms. 1409 ms
2857 ms. 1929 ms
298 ms
05ms Blms
4689 ms. 4146 ms
10880 ms 8504 ms

2738 ms
) 5717 ms

Table 3: Time breakdown for our test scenes, all numbers are
in milliseconds.

NVIDIA GTX 670 graphics card having 2 GB of device
memory under Microsoft Windows 8. All algorithms were
implemented using NVIDIA CUDA. We used the CUDPP
library [HOS*07] for data parallel primitives such as scan,
segmented scan, and sorting.

We tested our algorithms with four test scenes (see Figure
9, and Table 1). The Buddha-Dragons scene contains one
Buddha model (100 K triangles), and 8 Asian dragons (each
6.8 M triangles) inside a box. The Armadillos scene contains
300 armadillos (each 338 K triangles) on 30 shelves inside
a box. The Lucys scene contains 4 Lucy models (each 26.8
M triangles) inside a box. And the MPI informatics building
model (70 M triangles). In all scenes, we do not use any in-
stancing for duplicate models, and all images were rendered
at a resolution of 1024 x 1024.

For device memory allocation, similar to [HSZ*11], we al-
locate a small number of large buffers (i.e., two or three 500
MB buffers) on the device for the entire processing. The
page size of all out-of-core data blocks was fixed at 16 K
primitives. Each triangle is represented using three 32-bit in-
tegers for vertex-indices, where each vertex-index references
three floats of vertex coordinates. Each tree node is stored in
32 bytes using structure of arrays (SoA) format.

We compare the construction time of our algorithm with a
single-threaded CPU-based HLBVH construction algorithm
that splits nodes using binary search to locate split planes
as explained by Garanzha et al. [GPM11]. To sort Morton
codes on CPU, we used the C++ Standard Template Library
(STL) [SL95].

Table 2 lists the absolute build time of the HLBVH hier-
archy for our test scenes. In all test scenes, our GPU hier-
archy construction is faster than CPU-based hierarchy con-
struction. It can be noted that Our HLBVH construction al-
gorithm also scales well with the number primitives. We
also report and compare our GPU-based out-of-core sorting
against single-threaded STL sorting on CPU, and it can be
shown that our sorting procedure is two to three times faster
than CPU sorting for all test scenes. The last column in Ta-
ble 2 lists the construction time of the HLBVH hierarchy

(© The Eurographics Association 2015.
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Figure 9: Path tracing of our test scenes (500 samples per pixel), from left to right: Buddha-Dragons (55 M triangles), Armadillos
(99 M triangles), Lucys (107 M triangles), MPI building (70 M triangles).

Scene Rendering Time Average Memory Traffic / Frame | _Time of Memory Traffic / Frame
Buddha-Dragons 3is/4h14m 67GB 285

Armadillos 23s/3h1lm 46GB 195

Lucys Im43s/14h2im 228GB Tm33s

MPI 485/6h47m 105 GB 25

Table 4: Rendering time for our test scenes. In the first col-
umn, first numbers at each row represent the average ren-
der time of path-tracing one frame, and the second numbers
at each row represent the total time for accumulating 500
frames of path-tracing test scenes as shown in Figure 9. Sec-
ond column lists the average traffic of hierarchy and geome-
try uploading to GPU per frame. Last column lists the aver-
age time spent in uploading hierarchy and geometry data to
GPU for one frame.

using only the second and third stages. It can be noted that
the first stage saves a small amount of time for constructing
the first tree levels in most scenes. This saving in time means
that multiple uploading of Morton codes pages in the second
stage consumes more traffic than uploading the whole Mo-
ron codes once to GPU.

We further analyzed the time spent in main processing
phases in the hierarchy construction in Table 3. We found
that most time was spent in geometry splitting and emitting
large roots treelets in the third stage. This is due to the la-
tency when copying data from CPU to GPU while paging
triangles and nodes data, and the latency in copying back
constructed treelets from GPU to CPU.

Path Tracing Performance We implemented a relatively
simple and unoptimized path tracer with diffuse shading,
where each ray undergoes at most 5 traversal bounces, and
uses Russian roulette for early path termination. Figure 9
shows the path tracing results for our test scenes using 500
samples (i.e., paths) per pixel, and Table 4 shows the corre-
sponding rendering time.

The results shown in Table 4 point out that most of the ren-
dering time was consumed in page trffic between CPU and
GPU. In our rendering pipline, each ray has an associated
I/0 cost related to the total size of all requested treelets. Cur-
rently, we do not use any mechanism for optimizing this I/O
cost among rays.

(© The Eurographics Association 2015.

The cost of uploading a treelet block into in-core memory
is too much larger than uploading a ray. This may points
to an interesting research problem that has been presented
in another rendering framework [WHY*13]. In our render-
ing framework, we may either choose between loading an-
other set of rays that hit a certain in-core treelet, or loading
other requested treelets for currently in-core set of rays. Cur-
rently, we are working on finding the optimal data manage-
ment strategy to minimize I/O cost that results from loading
geometry and rays data blocks into GPU.

8. Conclusion and Future Work

We have presented a GPU-based out-of-core HLBVH con-
struction algorithm suitable for massively large models. We
also demonstrated the use of our HLBVH algorithm in high
quality rendering of large scenes using out-of-core path trac-
ing.

Currently, we are working on improving ray traversal, and
path tracing performance. We believe that there is a large
room for optimization. We also plan to investigate our ren-
dering pipeline in other global illumination algorithms such
as photon mapping [WWZ*09, ZHWGO08], and progressive
photon mapping [GG14,HJ10,HOJOS].
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