Eurographics Symposium on Rendering 2023

- Symposium Track -

Delft, The Netherlands 28 – 30 June 2023

Organized by

Program Co-Chairs

Tobias Ritschel, University College London Andrea Weidlich, NVIDIA

Conference Chair

Elmar Eisemann, TU Delft Ricardo Marroquim, TU Delft

Proceedings Production Editor

Dieter Fellner (TU Darmstadt & Fraunhofer IGD, Germany)

Sponsored by EUROGRAPHICS Association

DOI: 10.2312/sr.20232013

This work is subject to copyright.

All rights reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks.

Copyright ©2023 by the Eurographics Association Postfach 2926, 38629 Goslar, Germany

Published by the Eurographics Association

-Postfach 2926, 38629 Goslar, Germany—
in cooperation with
Institute of Computer Graphics & Knowledge Visualization at Graz University of Technology and
Fraunhofer IGD (Fraunhofer Institute for Computer Graphics Research), Darmstadt

ISBN 978-3-03868-228-8 ISSN 1727-3463

The electronic version of the proceedings is available from the Eurographics Digital Library at https://diglib.eg.org

Table of Contents

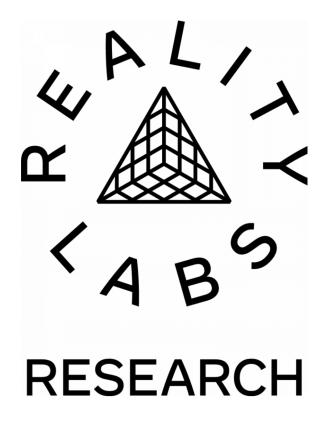

Table of Contents
Partnersv
International Programme Committee
Author Index
Keynotesix
Ray Tracing
Mean Value Caching for Walk on Spheres
Spectral
A Microfacet Model for Specular Fluorescent Surfaces and Fluorescent Volume Rendering using Quantum Dots
NeRF
Floaters No More: Radiance Field Gradient Scaling for Improved Near-Camera Training
Materials
SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions
Data-driven Pixel Filter Aware MIP Maps for SVBRDFs
Patterns and Shadows
Learning Projective Shadow Textures for Neural Rendering of Human Cast Shadows from Silhouettes63 Farshad Einabadi, Jean-Yves Guillemaut, and Adrian Hilton
pEt: Direct Manipulation of Differentiable Vector Patterns
FloralSurf: Space-Filling Geodesic Ornaments

Table of Contents

Perception

n Inverted Pyramid Acceleration Structure Guiding Foveated Sphere Tracing for Implicit Surfaces in VR ndreas Polychronakis, George Alex Koulieris, and Katerina Mania	97
ractical Temporal and Stereoscopic Filtering for Real-time Ray Tracing	111
aze-Contingent Perceptual Level of Detail Prediction	119

Partners

International Programme Committee

Alla Chaitanya, Chakravarty R. - Facebook Reality Labs

Belcour, Laurent - Intel Coporation

Benard, Pierre – Université de Bordeaux - Inria

Bitterli, Benedikt - NVIDIA

Bittner, Jiří - Czech Technical University in Prague

Christensen, Per – Pixar

Clarberg, Petrik – NVIDIA Corporation

d'Eon, Eugene - NVIDIA

Deschaintre, Valentin – Adobe Research

Dhillon, Daljit Singh - Clemson University

Dischler, Jean-Michel – ICUBE - Université de Strasbourg

Drettakis, George - Inria, Université Côte d'Azur

Droske, Marc - Weta Digital

Dupuy, Jonathan – Intel Corporation

Fichet, Alban - Intel Corporation

Garces, Elena - Universidad Rey Juan Carlos, Seddi

Georgiev, Iliyan - Adobe Research

Grittmann, Pascal – Saarland University

Grosch, Thorsten - TU Clausthal

Gruson, Adrien - École de Technologie Supérieure

Günther, Tobias – FAU Erlangen-Nuremberg

Hachisuka, Toshiya - University of Waterloo

Hanika, Johannes – Karlsruhe Institute of Technology

Herholz, Sebastian - Intel Corporation

Iseringhausen, Julian - Google Research

Jarabo, Adrian - Meta Reality Labs Research

Jarosz, Wojciech - Dartmouth College

Kettunen, Markus - NVIDIA

Khademi Kalantari, Nima – Texas A&M University

Kim, Min H. - KAIST

Kuffner dos Anjos, Rafael - University of Leeds

Lee, Sungkil – Sungkyunkwan University

Leimkuehler, Thomas – MPI Informatik

Lensch, Hendrik – University of Tübingen

Liktor, Gabor - Intel Corporation

Marschner, Steve – Cornell University

Meister, Daniel - Advanced Micro Devices, Inc.

International Programme Committee

Meng, Xiaoxu - Tencent

Meyer, Quirin – Coburg University

Montazeri, Zahra - University of Manchester

Mueller, Joerg – Graz University of Technology

Munkberg, Jacob – NVIDIA Corporation

Nguyen-Phuoc, Thu – Reality Labs Research, Meta

Nimier-David, Merlin – NVIDIA

Papas, Marios – Disney Research | Studios

Peers, Pieter - College of William & Mary

Peters, Christoph – Intel Corporation

Pharr, Matt - NVIDIA

Philip, Julien – Adobe Research

Reshetov, Alexander - NVidia

Rousselle, Fabrice - NVIDIA

Salvi, Marco – NVIDIA

Selgrad, Kai – OTH Regensburg

Serrano, Ana – Universidad de Zaragoza

Silvennoinen, Ari – Activision Publishing, Inc.

Singh, Gurprit - Max-Planck Institute for Informatics, Saarbrucken

Sintorn, ERIK - CHALMERS UNIVERSITY

Sýkora, Daniel – CTU in Prague, FEE

Tatarchuk, Natalya –

Tursun, Cara – University of Groningen

Vaidyanathan, Karthik - Intel

Vardis, Konstantinos – Athens University of Economics and Business

Vicini, Delio - Walt Disney Animation Studios

Vorba, Jiří – Weta Digital

Walter, Bruce - Cornell University

Wang, Beibei - Nanjing University of Science and Technology

Wang, Rui – Zhejiang University

Wei, Li-Yi – Adobe Research

Wong, Tien-Tsin – The Chinese University of Hong Kong

Wu, Hongzhi - State Key Lab of CAD and CG, Zhejiang University

Xu, Zexiang - Adobe Research

Yan, Ling-Qi – UC Santa Barbara

Yuksel, Cem - University of Utah

Zeltner, Tizian - NVIDIA

Zhao, Shuang - University of California, Irvine

Author Index

Aittala, Miika51	Kemppinen, Pauli	51
Albano, Valerio87	Koulieris, George Alex	97
Bakbouk, Ghada 1	Lehtinen, Jaakko	51
Benamira, Alexis	Mania, Katerina	97
Celikcan, Ufuk	Miandji, Ehsan	37
Deschaintre, Valentin25	Pattanaik, Sumant	11
Didyk, Piotr119	Peers, Pieter	1
Einabadi, Farshad63	Pellacini, Fabio	77, 87
Fanni, Filippo Andrea87	Philip, Julien	25
Frisvad, Jeppe Revall	Philippi, Henrik	111
Giachetti, Andrea	Polychronakis, Andreas	97
Guillemaut, Jean-Yves	Riso, Marzia	
Hajisharif, Saghi37	Surace, Luca	119
Hilton, Adrian63	Tursun, Cara	119
Jensen, Henrik Wann111	Unger, Jonas	37
Kavoosighafi, Behnaz		

Keynote

Wētā FX: The Way of Water Technology

Pavani Rao Boddapati

Abstract

Join Wētā FX's VFX Supervisor, Pavani Rao Boddapati, as she takes a deep dive into the story behind the creation of the 2,225 water shots seen in Avatar: The Way of Water. The ambitious story required new technology and techniques as well as close collaboration between researchers, developers, artists, production, and of course, Director James Cameron, to bring his artistic vision to life. The films development spanned over five years, beginning in 2017 with the Water Development Project. Pavani will discuss what this project entailed and how it was used to evaluate and continuously refine the water pipeline to ensure the toolset could support a crew rapidly onboarding to deliver thousands of these shots with consistent industry leading high fidelity. It was essential that the look and feel of the water felt cohesive throughout the sequences as it interacted with other elements and characters. To achieve this realism and ensure scalability and consistency across the shots, the team took a physics-based approach while developing our in-house technology. Pavani will touch on some of the new features that were introduced to our existing rendering system Manuka – including the ability to look through water and manipulate reflections and refractions using secondary deep data. Pavani will also explore our new unified simulation framework, Loki, which enabled meticulous control of water, fire, hair and cloth elements. The culmination of these technological advancements helped push the boundaries of visual effects and expanded the immersive world of Pandora.

Short Biography

Pavani began her visual effects career at Rhythm and Hues in Los Angeles before joining the lighting team at Wētā FX for James Cameron's Avatar. She moved on to Rise of the Planet of the Apes and worked as a CG Supervisor on all three of Peter Jackson's The Hobbit films. Pavani was also CG Supervisor on Maze Runner: The Scorch Trials and on Steven Spielberg's The BFG. She was a Sequence VFX Supervisor on Alita: Battle Angel, for which she spearheaded the underwater sequence for the Crashed Warship environment. Pavani has been leading the development of Wētā FX's next generation water pipeline. As part of this, a cross-functional team of artists and researchers across disciplines integrates lighting, fluids, rendering and animation to create photorealistic water for any conceivable situation or sequence. This monumental work has led to Pavani's role as a VFX Supervisor on Avatar: The Way of Water.

Keynote

What are mental images, and why do we have them?

Thomas Naselaris

Abstract

For many people the experience of mental imagery is inseparable from thinking and remembering. Others don't experience mental imagery at all. Individual variation in the subjective experience of mental imagery has fueled millennia of debate about what mental images are, and what our minds do with them. We argue that mental images are approximate visual representations that are independent of visual input. Using computational models that map mental images to human brain activity, and map human brain activity to mental images, we provide strong evidence for this characterization of mental imagery, and reveal some of the ways in which mental images approximate seen ones. To answer the "why" question, we propose a theory about the computational work that mental images do. According to this hypothesis, mental imagery functions as a useful form of inference that is conditioned on visual beliefs. We implement this form of inference in a simple generative model of natural scenes, and show that it makes testable predictions about differences in tuning to seen and imagined features. We confirm these predictions with a large-scale neuroimaging experiment in which human brain activity was sampled while subjects generated hundreds of mental images. Finally, we will offer some speculations about why the subjective experience of mental imagery varies so dramatically across individuals and states of consciousness.

Short Biography

Thomas Naselaris received a Ph.D. in Neuroscience at the University of Minnesota and completed a postdoctoral fellowship at the University of California, Berkeley. He is an Associate Professor in the Department of Neuroscience at the University of Minnesota, and a member of the Medical Discovery Team on Optical Imaging and Brain Science at the Center for Magnetic Resonance Research. He is co-founder and currently Executive Chair of the Conference on Cognitive Computational Neuroscience.

Keynote

Multum In Parvo: Level of Detail and Approximation Models at the Graphics Nexus

Tamy Boubekeur

Abstract

MIP maps, level-of-details, approximation models, multiresolution processing and multiscale analysis play a central role in 3D computer graphics. In this talk, I will delve into some aspects of our recent contributions to the 3D digital content creation pipeline. From material capture to real-time ray tracing, through surface reconstruction, I will emphasize how these methodologies not only allow for faster and more scalable 3D graphics, but indeed play a major role in the way we design algorithms in 3D and, ultimately, are a fundamental aspect of what we do in our field and how we can impact other areas of applied sciences.

Short Biography

Tamy Boubekeur is a researcher in computer science, specialized in 3D computer graphics. He is currently a Lab Director and Senior Principal Research Scientist at Adobe Research, as well as a Professor at the Computer Science Department of Ecole Polytechnique, Institut Polytechnique de Paris. He is also a Professor (on leave) at Telecom Paris, Institut Polytechnique de Paris. He was previously the founder and head of the Computer Graphics Group at Telecom Paris and chief scientist at Allegorithmic. He was also an Associate Researcher at TU Berlin and a PhD student at INRIA. His lab at large works on 3D visual computing. His personal research areas focus on 3D Computer Graphics, with a special interest in Modeling, Rendering and Learning efficiently 3D data.