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Abstract
Image classification based on neural networks has been widely explored in machine learning and most research have focused on
developing more efficient and accurate network models for given image dataset mostly over natural scene. However, industrial
image data have different features with natural scene images in shape of target objects, background patterns, and color. Addi-
tionally, data imbalance is one of the most challenging problems to degrade classification accuracy for industrial images. This
paper proposes a novel GAN-based image generation method to improve classification accuracy for defect images of OLED
panels. We validate our method can synthetically generate defect images of OLED panels and classification accuracy can be
improved by training minor classes with the generated defect images.

CCS Concepts
• Applied computing → Computer-aided design;

1. Introduction

Image classification is one of the most active research areas in ma-
chine learning. Deep learning (DL)-based classification techniques
have been widely explored since AlexNet [KSH17] won ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [RDSK15].
It achieved the lowest error rate of 15.3% with ImageNet dataset
which was 10.8% lower than previous classification algorithms.
Since then, more advanced DL approaches have been introduced
and among them ResNet [HZRS16] accomplished 3.6% error
rate which outperformed human experts with 5% error in aver-
age. Although such advanced DL networks can achieve good per-
formance with ideal datasets such as MNIST, CIFAR, and IM-
AGENET [LBBH98, Kri09, DDSL09], they show low accuracy
for unbalanced dataset where minor classes have smaller data size
compared to other classes. Generally, unbalanced dataset suffer
from overfitting problem incorrectly classifying minor classes as
major classes with larger number of data. This paper proposes a
novel image generation method, Defect Transfer GAN (DTGAN),
to improve classification accuracy for unbalanced dataset by in-
creasing the data size of minor classes. Our method synthetically
generates defect images based on Generative Adversarial Network
(GAN) [GPAMX14]. Conventional GANs could be applied for im-
age generation of minor defects but their contribution for classifica-
tion accuracy was limited since features of generated defects can-
not faithfully reflect actual feature distribution due to training with
insufficient dataset [RV19]. To overcome this limitation of conven-
tional GANs, our method generates defect images by transferring
actual defect features from large dataset into target images of mi-

nor classes as shown in Fig. 1. Let’s assume we have sufficient
defect images for Product A and we want to improve classification
accuracy for Product B. We have sufficient defect-free images for
Product B which is common situation in manufacturing since yield
rate is generally much higher than failure rate. Our goal is gen-
erating defect images for Product B using its defect-free images
reflecting feature distribution of defects in Product A. For this task,
we propose DTGAN using paired dataset consisting of defect and
defect-free images.

2. Related works

Image-to-image translation methods based on GAN can be clas-
sified as two categories: paired and unpaired dataset. GANs with
paired dataset are trained by pairs of input and output images while
the other category of GANs are trained by unpaired dataset. Gen-
erally, both categories of GANs can be applied for synthetic image
generation and style conversion but the former category with paired
dataset is known to be advantageous for specifying outputs.

2.1. Image to image translation with paired dataset

Pix2pix exploited Conditional GAN as a unified platform for var-
ious applications such as image generation with semantic label,
object generation from an edge map, and colorization from a
grayscale image [IZZE17]. Pathak et al. demonstrated adding a
conventional loss like L1 or L2 distance to GAN loss function
can be effective for similar image generation with a target im-
age [PKDD16]. Our problem is generating a defect image of an
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Figure 1: Transferring defect features from Product A to Product B
for balancing dataset of each class. (A) Sufficient dataset for Prod-
uct A can be utilized to balance dataset for Product B. (B) For de-
fect classification, insufficient image of minor classes for Product B
can be augmented by synthetically generating defect images using
feature transferring from sufficient dataset for Product A.

OLED panel from a defect-free image while preserving a com-
plex electronic circuit pattern so we adopted L1 distance in our
loss function. Isola et al. showed L1 distance produced less blur
effect than L2 distance [IZZE17]. They required paired dataset to
compute L1 loss which additionally made the network converg-
ing faster than typical GANs. Despite its good performance, ap-
plications were limited due to impracticalness of obtaining paired
dataset. We overcome such limitation by introducing an acquisi-
tion method of paired dataset with Inpaint net based on Contextual
Attention GAN [YLYS18].

2.2. Image to image translation with unpaired dataset

Many neural networks with unpaired dataset have been presented
for synthetic image generation through feature transferring scheme
such as CycleGAN [ZPI∗17], StyleGAN [KLA19], and Star-
GAN [CCKH18,CUYH20]. While transferring and preserving fea-
tures can be explicitly trained by paired dataset, establishing paired
dataset with the same feature relationship is a challenging task.
Methods with unpaired dataset are advantageous with easy estab-
lishment of database but require additional tricks to control trans-
ferring features. CycleGAN proposed a consistency loss function
proportional to the difference between input and generated images
to keep the originality of the input image. StyleGAN could train
only the style of source images by Adaptive Instance Normaliza-
tion [HB17]. While StyleGAN-based approaches required separate
training for specific style transfer from unpaired dataset, StarGAN
allowed to train various styles from single dataset in multiple fea-
ture domain. Generally, those generative networks were designed
for natural scene images where high-level features like hairstyle,
makeup, age, and glasses were assumed as transferring styles and

Figure 2: Limitation of a conventional GAN. Originality of an in-
put image, electronic circuit pattern of an OLED panel, cannot be
preserved in a generated image by a conventional GAN, StarGAN-
v2.

low-level features like pose, gesture, and shape were as original-
ity of the input. Unlike such a natural scene image, our target is
electronic circuit images obtained from OLED manufacturing pro-
cesses where definition of styles is not valid. Therefore, we ex-
ploited a mask image to explicitly define transferring and preserv-
ing features in paired dataset.

2.3. GAN-based Image Inpainting

Inpaining methods based on neural networks have been widely
applied to various computer vision tasks including photo editing,
image-based rendering, and VR/AR. A technical challenge is gen-
erating seamless and visually consistent pixels with neighboring
pixels in ROI (Region Of Interest) without any boundary artifacts
and blurry texture

3. Defect Transfer GAN (DTGAN)

Many neural networks have been introduced for synthetic image
generation by feature transferring such as Pix2Pix

3.1. Architecture of DTGAN

Generally it is impossible to acquire both defect and non-defect
image pair for the same region of an OLED panel. So we applied
Inpaint based on Contextual Attention GAN [YLYS18] to replace
a defect region in a defect image with a normal region as shown
in Fig. 3 (A). This is a key step of our method to overcome the
impracticalness of generative networks with paired dataset despite
their good performance. This process also benefits from easy access
to huge amount of defect-free images since stable OLED manufac-
turing process generally achieves over 90% yield rate which means
the rate of defective and non-defective panels is 1:9. Then, we train
an adversarial network with the paired dataset of defect and defect-
free images. We used the paired dataset and a mask image as input
for our generative network. The mask image as shown in Fig. 3 (B)
is a binary image where white and black pixels correspond to defect
and defect-free regions, respectively. We exploited a mask image
to explicitly specify region to be defect. The mask image allows a
generator in Fig. 3 (B) to focus on the defect region. We added the
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Figure 3: Architecture of DTGAN. It consists of Inpaint net to gen-
erate a defect-free image from a defect image and GAN to train
relationship between a pair of defect and defect-free images. The
defect region in the defect image is specified by a mask image.

defect-free image to activation of the generator to keep the back-
ground pattern of the defect-free image. A discriminator judges the
output of generator as a real or fake image and the overall network
is trained to minimize a loss function.

3.2. Generator

Our generator is inputted by a four channel image which consists of
a defect-free image (RGB 3 channel) and a mask image (Binary 1
channel) in Fig. 4. We designed the generator with 17 convolutional
layers including 2 down-sampling, 2 up-sampling, and 4 dilated
convolutional layers. To generate a sharp image in high-resolution,
we minimized down-sampling layers and added more dilated con-
volutional layers to increase a receptive field. We used ReLU as
an activation function and spectral normalization (SN) since batch
normalization tends to distort a region with a mono-color pattern.

3.3. Discriminator

Our discriminator consists of two discriminators to enhance the
texture quality of an output image: global and local discrimina-
tors which cover 256×256 and 64×64 pixel regions, respectively.
Input was a 4 channel image with defect and mask images. The
global discriminator was trained to judge the defect image between
real or fake images through 6 convolutional layers. The local dis-
criminator was trained for the same job based on detail features
and texture in a local region through 4 convolutional layers sharing
weights. Outputs of global and local discriminators were concate-
nated into a fully connected layer to make a final judgement where
WGAN (Wasserstein GAN) was used to maximize training stabil-
ity [ACB17].

3.4. Objective Function

Our generator and discriminators were trained with following loss
function in (1) where G and D indicate generator and discrimina-

Figure 4: Architecture of generator in DTGAN. It consists of 17
convolutional layers with 2 down-sampling, 2 up-sampling, and 4
dilated layers being inputted by a defect-free and a mask image.

tor, respectively. The novelty of our objective function is the sep-
arate weights for defect and background (defect-free) regions. In
the equation, ‘inner’ and ‘outer’ means two regions for generat-
ing defect and background texture, respectively. The two regions
are defined by the white and black pixels in the mask image corre-
sponding to ‘inner’ and ‘outer’ regions. We used a greater value for
the C2 than C1 (C2 > C1) to preserve the texture of defect-free re-
gion in an input image and increase the generative effect of defect.

Loss = arg minGminD CGANLGAN(G,D)+C1L1,inner(G)+

C2L1,outer(G)
(1)

3.5. Training Procedure

This section describes a pipeline for our training method. First, it
starts with training Inpaint GAN [YLYS18] using 500 defect-free
images. The images were randomly blocked by a square and the
network generated a texture image for the blocked region while be-
ing trained for minimizing difference between the generated region
and the mask region of the original image. Secondly, we created
mask images in Fig. 3 for 100-200 defect images. Then, box mask
images were created from the mask image in the condition that a
rectangle included a defect region of the mask image as shown in
the first row of Fig. 6. By inputting a box mask image and a de-
fect image into the trained Inpaint GAN, it converted the defect
region to a defect-free region as shown in the third row of Fig. 6.
It is crucial for the defect generation quality of DTGAN to use a
box mask image instead of a mask image for Inpaint GAN. Slight
seams around the edge of mask in the generated defect-free im-
age cannot be unavoidable and they can be trained as defect region
by DTGAN if it uses the same box mask image. That is, by using
different mask images for Inpaint GAN and DTGAN, generative
errors near the edge of mask can be avoidable. Lastly, we trained
DTGAN using a generated defect-free image, an original defect
image, and a mask image. To optimize training with a limited num-
ber of images, we made random augmentation at each epoch such
as resized crop, rotate, flip, CLAHE, brightness, and contrast using
python albumentation package [BIKP20]. The later 3 augmentation
methods were not applied to mask images.
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Figure 6: Inpaint GAN results for defect images of OLED panels in different manufacturing processes. It generates a defectfree images from
a defect image and the defect position is specified by a box mask image which is manually created.

3.6. Defect Image Generation

We generated a defect region in a defect-free image using the
trained DTGAN. The input of DTGAN was a defect-free image and
a mask image to set position, size, and boundary shape of a defect.
We could generate various defect images from the same defect-free
image using different mask images as shown in Fig. 7. We applied
the same mask used for training and newly generated masks for
varying the size and location of defects.

Figure 5: Architecture of discriminator in DTGAN. It consists of
global and local discriminators which covers 256×256 and 64×64
pixel region, respectively. The global region in 256×256 pixels is
divided into 4×4 grid patches. These patches are fed into 16 local
discriminators which share weight parameters.

4. Results

4.1. Inpaint GAN

We tested the performance of Inpaint GAN using various inspection
images acquired from OLED manufacturing processes as shown in
Fig. 6. The input of Inpaint GAN is a box mask image and a de-
fect image in the first and the second row. A defect-free image in
the third row was generated from the defect image by replacing
the defect region with a normal region. Note that the defect images
with complicated patterns were successfully changed to defect-free
images without any visible flaws and seams by the Inpaint GAN.
We trained Inpaint GAN separately for images with the same pat-
tern, obtained from the same manufacturing process, to improve
the generation quality of defect-free images. In the Fig. 6, 1-2, 3-4,
and 5-6 columns were grouped together for training Inpaint GAN
separately. The performance of Inpaint GAN depends on the size of
defect region. It failed in the case that the size of defect region was
similar with the entire image. Empirically, we found it achieved
good performance when defect region was smaller than one over
third of the image.

4.2. DTGAN

We tested the defect generation of DTGAN with images with vari-
ous patterns as shown in Fig. 7. For the best generation quality, we
trained it with the same type of pattern and defect shape, a black
spot in a colorful circle, in Fig. 7 (A). The results in Fig. 7 (B)
were generated by the trained DTGAN from defect-free images
with a familiar background circuit pattern (seen during training).
The generation results reflect faithfully the characteristic of real de-
fects making hard to distinguish between real and generated defect
images. The color of a circle in the defect region varies depend-
ing on the background color and such feature is reflected in the
defect region of generated images. The size, position and bound-
ary of defect region can be controlled by an input mask image.
We evaluated the generation performance of DTGAN with unseen
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Figure 7: Generated defect images. Our DTGAN generates syn-
thetic defect images, (B) and (D), in high quality which are almost
impossible to distinguish from real defect images in (A). Results in
(B) were generated from defectfree image of trained pattern. Re-
sults in (D) were generated from defect-free images in (C) which
patterns were not seen during training.

background circuit pattern images in Fig. 7 (C) which were not
included in the training dataset. The results in Fig. 7 (D) validate
our DTGAN can faithfully generate defect images from untrained
defect-free images. Fig. 8 shows generation results using defect-
free images with two different types of patterns and five different
defect shapes as shown in (A). The results with trained and un-
trained background pattern are shown in Fig. 8 (B) and (C), respec-
tively. For these multiple types of defects generation, we trained
separate networks each. Note that DTGAN can generate defect im-
ages in not only overlapping manner with a background pattern, 1-3
columns, but also erasing or transforming manner of a background
pattern, 4-5 columns.

4.3. Classification accuracy with generated defect images

We validated that defect classification accuracy can be improved
with defect images generated by DTGAN. First, we trained DT-
GAN for Defect A class with 150 images in the first row pattern of
Fig. 8. Then, we generated synthetic Defect A images for new pat-
tern in the third row of Fig. 8. Finally, we evaluated classification
accuracy with 20 defect classes including Defect A for four cases
as following: (a) without any real and fake images for Defect A (b)
with 200 real images for Defect A (c) with 4000 fake images for
Defect A (d) with 200 real and 4000 fake images for Defect A

The total training and test dataset for 19 classes except Defect A
is 76k and 19k, respectively. Fig. 9 shows recall values of classifi-
cation for the four cases. 0.1 recall score in case (b) was increased
to 0.65 with case (c) where only fake defect images were used for
training in much greater number. We could achieve slightly im-
proved recall score by small increase of training dataset with real
defect images in case (d). Significant increase of recall score be-

Figure 8: Generated defect images for five defect types, Defect A
E, in two different manufacturing processes marked as pattern G
and H. (B) and (C) show results from trained and untrained pattern
images, respectively. Green arrows indicate defect regions.

tween case (b) and (c) verifies that defect generation quality of DT-
GAN is comparable to real defect images and the generated defect
images can contribute to improve defect classification accuracy for
minor classes with small number of training images. The precision
scores are 0, 0.97, 0.73, 0.84 for four cases, respectively.

5. Conclusions

This paper proposes a novel DTGAN method to generate a syn-
thetic image using paired dataset consisting of feature-existing and
feature-free images. Such generated images can be used to im-
prove classification accuracy for imbalanced dataset where minor
classes with insufficient data could cause overfitting problem. We
applied this method to improve defect classification accuracy of

Figure 9: Improved recall value of a classifier which was trained
by the generated defect images. Dots and bars indicate average and
standard deviation of recall values for five trained classifiers.
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OLED inspection process commonly suffering from imbalanced
defect database. We expect our method can be utilized in various
applications where only specific feature information is required to
transfer to another image while keeping other regions unchanged.
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