Spatiotemporal Blue Noise Masks Supplemental

1 INTRODUCTION

While the main paper is self-contained, this supplementary doc-
ument details a number of additional discussions, results and ex-
tensions for the interested reader. Section 2 includes additional
discussion, and contains background information about using blue
noise masks in real-time rendering. Section 3 contains results be-
yond those shown in the main paper. Section 4 shows some best
practices and simple extensions for using spatiotemporal blue noise.
Finally, the appendix provides a theoretical frequency analysis of
integration and inversion with blue noise offsets.

2 DISCUSSION
2.1 Masks vs. Samples

There have been many advancements in blue noise sampling in
recent years, such as generating high quality sample points more
quickly [4] as well as generating sample points with other desirable
properties [12]. However, there has been little advancement in
blue noise masks, apart from blue-noise dithered sampling which
makes vector valued blue noise masks [8]. Due to this, there can be
confusion and ambiguity when talking about blue noise without
qualifying which is being referred to. Our paper focuses on blue
noise masks.

Blue noise samples take integer indices as input and return N
dimensional vectors. If considering blue noise samples as a function
y = f(I), plotting the vector y values as dots on a binary image and
taking the DFT of that image is what shows blue noise. Blue noise
samples can be used when you need to take multiple samples from
a sampling domain.

Blue noise masks take in integer coordinates and return N di-
mensional vectors. If considering blue noise masks as a function
y = f(I1, I, ..., Ip), the scalar or vector valued image made up of
the M dimensional grid for all possible input locations are analyzed
to define the samples as blue noise. Blue noise masks can be used
when you need a random value per pixel, as in all the examples
in our paper. In contrast, blue noise samples or point sets cannot
give per-pixel values, which is needed for the rendering algorithms
shown in the paper.

Figure 1 shows the difference between blue noise samples and
masks, while showing their similarities in frequency space.

d

DFT Magnitude

Blue Noise Sample: DFT Magnitude Blue Noise Mask
Figure 1: The left two images show blue noise sample points
in 2D and the magnitude of the discrete Fourier transform
(DFT). The right two images show the same for a blue noise

mask.

Author’s address:

2.2 Using Blue Noise Masks In Rendering

Blue noise masks are tiled in screenspace and used as a source of per
pixel random numbers for stochastic rendering techniques, with
the goal of making error that is harder to see and easier to remove
than error left by either low discrepancy sequences or white noise.

The perceptual benefit of blue noise as well as the ease of de-
noising it can be seen in Fig. 2, where an image has been dithered
with white and blue noise and quantized to 8 colors (1 bit per color
channel). In the raw images, the blue noise looks better and finer
details are more discernable. In the Gaussian blurred versions of the
images, the blue noise dithered image becomes smooth, whereas
the white noise dithered image retains randomized low frequency
blobs.

Blue Noise

White Noise

Figure 2: A comparison of white noise versus blue noise, and
corresponding spatially filtered results. White noise results
in visual clumps when filtered with a low-pass filter (blur)
due to low frequencies present in the noise. Blue noise images
do not contain these low frequencies, and thus do not contain
clumps in the filtered output.

3 ADDITIONAL RESULTS

We now describe some additional applications and results (all gen-
erated using scalar spatiotemporal blue noise masks).

3.1 Stochastic Transparency

Stochastic transparency is the process of stochastically choosing
whether to ignore a sample based on a material’s transparency
level. This is useful in situations such as deferred lighting where
you are storing information about how to shade a pixel, instead of
the shaded result itself, and it is impractical to store multiple layers
to later calculate proper transparency.

Sophisticated algorithms have been developed by Enderton et
al. [6], Wyman and McGuire [15], and are also discussed in the
work by Wyman [14], but the core idea of stochastically accepting

STBN (Ours) 1 Frame

White

2DBN

GR

STBN (ours)

DFT(ZY)

Frame 13

DFT(XY) zY MC 4 Frames
| a5 w1

EMA 64 Frames

&

Figure 3: Stochastic transparency with a = 0.9 using various noise types and integration schemes. At 4 frames of Monte Carlo
integration, our STBN provides better quality than 2D blue noise, and is competitive with golden ratio (GR) animated blue noise.
Under 64 frames of exponential moving average (EMA), our STBN provides better quality than golden ratio noise. Columns 2

and 4 are averaged DFTs to show expected spectra.

Monte Carlo Integration EMA

— 2D BN

—— 2D BN + GR
—— STBN
White

20 22 24 26
Frames

20 2?2 2¢
Frames

Figure 4: Convergence rates in stochastic transparency of
various types of noise. Golden ratio (GR) animated blue noise
converges marginally faster than our spatiotemporal blue
noise (STBN), but damages frequencies spatially, and has an
error spike under EMA when the sequence needs to restart
to avoid numerical issues.

or rejecting a pixel remains the same. Our algorithm described here
is aimed at low computational costs (a single texture read and com-
parison), giving blue noise distributed error in screen space as 2D
blue noise does, but also converging faster. We show renderings of
stochastic alpha using various types of scalar valued spatiotemporal
noise under both Monte Carlo integration and EMA in Fig. 3.

When looking at frame 13 in isolation, independent 2D blue
noise and spatiotemporal blue noise have the same quality which
is correct and shows that our noise is as good for each slice in time.
Under 4 frames of Monte Carlo or 64 frames of EMA, our spatiotem-
poral blue noise shows much better convergence than independent
blue noise. Our method is competitive with golden ratio animated
blue noise for 4 frames of Monte Carlo, but is superior at 64 frames
of EMA where the golden ratio sequence restarts. Under motion, the
golden ratio shows high-frequency strobing. Convergence graphs
are shown in Fig. 4, which reveal the same story as what is seen
visually.

3.2 Dithering

Dithering is the process of adding a small random value before
quantization to turn quantization artifacts (banding) into noise
instead. This allows less memory to be used while preserving image
quality. Dithering rounds the quantized value up or down randomly,
with probability to round down being higher as the value gets
closer to the lower boundary of quantization. White noise is not
often preferred in dithering, but Bayer [2] and the less real-time
friendly techniques, such as Floyd-Steinberg error diffusion [7], do
not consider the time axis. For a more in depth read about dithering,
consult Christou’s thesis [3].

The rendered results in Fig. 5 reveal that our scalar noise deliver
approximately the same quality as golden ratio animated noise and
much better than the other types of noise. Our noise again pro-
vides better image quality at 64 frames of EMA though. As before,
the golden ratio noise has high-frequency strobing. Convergence
graphs are nearly identical to Fig. 4, and so are omitted.

3.3 Volumetric Rendering

The paper included results from volumetric rendering as the teaser
image, which showed a slightly different layout and details than
other rendered results. Figure 6 shows results in the other format.

3.4 Preserving Blue Noise Over Time

The main paper shows that XY slices of our noise are 2D blue noise
spatially, and that Z lines of our noise are 1D blue noise temporally.
It also showed how using the noise to integrate the identity function
resulted in spatial blue noise of lower magnitude than 2D blue noise
for the sample sample counts. In Fig. 7 we show the same in an
ambient occlusion technique.

Spatiotemporal Blue Noise Masks Supplemental

STBN (Ours) 1 Frame

Figure 5: Ditheing to 1 bit per color channel using various

MC 4 Frames EMA Frame 64

DFT(ZY)

White

2DBN

Eh Fohe

STBN (ours)

2

noise types and integration schemes. Golden ratio animated blue

noise and our spatiotemporal blue noise generate images with better quality than the other types of noise, and look comparable
under Monte Carlo integration. Our STBN generates better image quality than golden ratio under 64 frames of TAA, however.

DFT(ZY) EMA Frame 64

MC 4 Frames

STBN (ours)

Figure 6: Single scattering volume rendering using various noise types and integration schemes. Our spatiotemporal noise
and golden ratio animated blue noise are comparable, but we have slightly better convergence and are more temporally stable
under EMA as can be seen in the supplemental materials. The ground truth is shown in the inset in the left image (lower right

corner).

3.5 Comparing STBN to 2DBN + Golden Ratio

Figure 9 shows how blue noise animated with the golden ratio
has uneven frequency content each frame and blue noise quality,
whereas spatiotemporal blue noise has even frequency content each
frame. The uneven frequency content means that each frame would
need to use a different filter to optimally remove the blue noise. The
uneven blue noise quality means that some frames will be more
difficult to denoise than others.

The sequence also multiplies the frame number by the golden-
ratio, which leads to numerical issues as the frame number increases.
The common fix uses modulus, which creates a discontinuity as
can be seen in Fig. 4 at frame 64.

The benefit of STBN over golden rato animated blue noise can
also be seen in renderings, such as in the pica pica [1] scene in

Fig. 8 where the albedo channel of a gbuffer has been quantized
to 2 bits per color channel, dithered using the two types of noise
in question, and denoised using a custom real time spatiotemporal
filter. Spatiotemporal blue noise is more converged.

4 EXTENSIONS

We now describe a number of possible extensions of our method,
which are useful in some practical situations.

4.1 Getting Multiple Values Per Pixel

It is fairly common to need more than 1 random value per pixel,
such as when taking multiple samples in a frame. One way to handle
this situation is to advance the z axis index for each sample one
needs, instead of only advancing it by the frame number. Since

1 sample 2 3 8 16 32 64
- o 2
i F _'-':'
White ek £
i ¥
A &
i Fic
i E
Blue2D Lt 5
¥ ’
-
STBN (Ours) e
Ground Truth
1 sample 2 3 8 16 32 64
White
Blue2D
STBN (Ours)
Ground Truth

Figure 7: Top: Ambient occlusion rendered with different numbers of noise types and sample counts. Bottom: The discrete
Fourier transform magnitude of the rendered images. Blue2D and our STBN both show blue noise frequencies in the render,

but STBN converges toward the real render more quickly.

the values are progressive on the Z axis, taking multiple samples
per frame along the Z axis is also progressive. One would use this
method when taking multiple samples per pixel since the values
would be correlated the correct way.

Another way to handle this situation is motivated by Fig 10,
which shows that blue noise textures have correlation over small
distances, but values are uncorrelated at longer distances. This sec-
ond method for getting multiple values per pixel is to read N values
per pixel at N different offsets, preferably with those offsets being
as distant from each other as possible toroidally to be maximally

uncorrelated. Doing this, one ends up with N spatiotemporal blue
noise values that have no correlation to each other. You would use
this method when you wanted multiple uncorrelated values.

We used this approach in Fig. 5, since dithering an RGB image
requires three random values per pixel. Specifically, we used the
R2 low discrepancy sequence [13] to get three nearly maximally
spaced offsets to read the texture at to get three fairly independent
spatiotemporal blue noise values per pixel.

Spatiotemporal Blue Noise Masks Supplemental

Figure 8: GBuffer albedo dithered before quantization to 2 bits per color channel and denoised with a custom real time
spatiotemporal filter. Golden ratio animated blue noise (left) is noticeably much less converged than spatiotemporal blue noise

(right).

GR DFT(XZ) GRO GR 13 GR 14 GR 21 GR 22

STBN DFT(XZ) STBN 0 STBN 13 STBN 14 STBN 21 STBN 22

Figure 9: A comparison of blue noise quality between golden
ratio (GR) blue noise and STBN (ours) over time. The blue
noise qualities of GR are periodically damaged over time,
resulting in a strobing pattern. STBN results in consistent
blue noise qualities from one frame to the next.

Autocorrelation

—

sooo
N s O 00
il
L

i

magnitude

0 5 10 15 20 25 30
radius in pixels

Figure 10: For this diagram, we computed the autocorrelation
of 64 blue noise textures of resolution 64 x 64, which resulted
in a circularly symmetric image. We show a radial plot of the
average of those. In blue noise textures, neighbors have very
different values, which causes a rippling of correlation and
anti-correlation for small values of the radius, but rapidly
decays to zero, i.e., to decorrelated values.

4.2 Higher Dimensional STBN

Our generalized void and cluster algorithm (for scalar STBN) runs
in D dimensions to generate a mask M, where D is the number

of parameters needed to index into the mask to get a scalar value.
These parameters are the axes of the blue noise mask. The D di-
mensions are broken up into one or more sets G, where each set
of G contains one or more dimensions. A specific set g of G with a
membership count of d implies that all d dimensional projections
of the D dimensional blue noise mask should be d dimensional blue
noise, when only the axes within that group vary, and all other axes
are held constant. We will also define a group of axes h as being all
axes which are not in g.

Once the dimensions are grouped, each group g is naturally
mapped to an energy function E4 by only using the dimensions
present in the group (denoted as py and q4) within the usual Gauss-
ian energy function, so long as the axes from the corresponding
group h are equal between the two pixels. The energy function
between two pixels is the sum of all E; functions between those
pixels, and the energy field F is the sum of energy at each pixel,
from every other pixel. This is summarized as

“Pg_qg ”2) .
-—=Z 2| ifp, =

Eg(P, Q= P(204 Pn=
0, otherwise.)

E(p.q) = Xgec Eg(p. @),
F(p) = Xqem E(p.).

Each dimension can be of different size, can use a different o val-
ues to control the frequency content of the result, and can also
choose to compute distances toroidally or not. The original void
and cluster algorithm can be seen as a special case such that D is
any arbitrary value, and that there is only a single group in G which
contains all axes. Thus, the void and cluster algorithm makes D
dimensional blue noise masks. When considering spatiotemporal
blue noise, D is 3, and G has two groups in it: gxy and g,. In that
sense, spatiotemporal blue noise can also be seen as a 2Dx1D blue
noise mask.

Table 1: The storage size of masks, and generation time.

Dimensions Size Generation Time
64 X 64 4 kB < 1 second
32X32X%X16 16 kB < 1 second
32X 32X%32 32 kB 2 seconds

64 X 64 X 16 64 kB 10 seconds
256 X 256 64 kB 10 seconds
128 X 128 X 8 128 kB 44 seconds

64 X 64 X 64 256 kB 3 minutes
128 X 128 X 32 512 kB 12 minutes
64X 64x16%x16 | 1 MB 48 minutes
64X 64X 64X 64 | 16 MB | 206 hours (Estimated)

Frequency analysis of a 2DXx1DX1D and 2Dx2D mask can be
seen in Fig. 11, which shows the desired frequency behaviors for
axis pairs. The 2Dx2D blue noise shows 2D blue noise on the XY
plane and the ZW plane, but white noise everywhere else. The
2Dx1Dx1D blue noise shows 2D blue noise on the XY plane and
shows 1D blue noise on both the Z and W axes.

XY X WX Y WY

| 2Dx2D

2DX1DX1D

Figure 11: DFTs of the 2D projections of 4D blue noise masks
that are 64 X 64 X 16 x 16. All projections averaged to show
expected frequency spectra.

Generation time of blue noise masks using void and cluster
is a function of the total pixel count n, and is nearly O(n?) so
that doubling the pixel count roughly quadruples the generation
time. Table 1 shows some reasonable mask sizes, their size in bytes
assuming a single channel 8-bit texture, and the time taken to
generate them. We have found that smaller textures such as 64 x
64 X% 16 (64 kB) for spatiotemporal blue noise, and 64 X 64 X 16 X 16
(1 MB) have been sufficient in our rendering tests.

Note that this generation time is a preprocess, and is simply used
to generate a blue noise texture. At run-time only a simple texture-
read needs to be performed, so our algorithm (spatiotemporal blue
noise masks in the main paper or higher-dimensional masks dis-
cussed here) has essentially no overhead, and can be included in
any real-time image synthesis method.

The same energy function modifications that allow the void
and cluster based algorithm to generate higher dimensional scalar
valued masks can also be applied to the swap based algorithm to

Triangle function sampled with 32x32x64 noise (MC)

2! — White

~—— Vector STBN

—— Vector BNxstrat

—— Vector STBN IS triangle

20 2! 22 22 2* 2 2
Frames (32x32 samples)

Figure 12: Noise that is blue over space but stratified over
time converges well, but not until all samples are used.

generate higher dimensional vector valued masks. That algorithm
runs until a user specified number of iterations have occurred, or
until a user specified error level has been reached. Because of this,
the runtime is tuneable for quality vs speed.

4.3 Spatial BN Stratification Over Time

Our research was motivated by the desire for spatial blue noise,
which also converges rapidly over time. However, it is not known
how to generate such spatiotemporal masks, which are blue over
space but have a particular temporal sequence. We solved this in the
main paper by developing algorithms for spatiotemporal blue noise.
But we were also interested in considering other fast-converging
temporal sequences, such as stratified sampling over time, for which
we were able to find an initial solution.

The algorithm to make vector valued spatiotemporal blue noise
can be modified to have an energy function which returns zero
energy between pixels if they are from different slices (different z
value) or if the temporal histograms of the pixels involved in the
swap get worse from the swap. Doing this generates noise that is
blue over space but stratified over time, with a per pixel randomized
stratification order.

However, stratification is not progressive, so this noise does not
converge well until all samples have been taken. It does converge
quite well at that point though, as can be seen in Fig 12. Given these
limitations, the main paper focuses on spatiotemporal blue noise.

4.4 Spatiotemporal Point Sets

Since our (scalar) spatiotemporal blue noise masks are created us-
ing the void and cluster algorithm, they have the property that if
you threshold the mask values to some percentage, the same per-
centage of the pixels will survive. Thresholding a blue noise mask
produces a sample point set. Our thresholded masks produce blue
noise sample patterns over both space and time. While there are
better algorithms for generating blue noise sample patterns, such
as blue noise through optimal transport (BNOT) [4], they do not
handle the time axis. To the best of our knowledge, our algorithm
is the first method for making spatiotemporal blue noise sample
patterns.

Figure 13 shows how thresholded masks are not as high quality
spatially as BNOT, but they are able to make point sets of any
density. Figure 14 shows how the thresholded point sets keep their
desired frequency spectra over axis groups.

Spatiotemporal Blue Noise Masks Supplemental

An example usage case is doing sparse ray tracing, using an
importance map to decide which regions should have more samples.
For each pixel p, we shoot a ray if and only if the importance map
value f(p) € [0, 1] is greater than the mask value g(p) € [0,1].
Using white noise over space and time, the spatial pattern will have
redundant samples and large holes, while also having duplicated
samples over time. Using spatial blue noise makes the sampling
more even over space, but still has the problems of white noise
over time. Using spatiotemporal blue noise means that samples
are evenly distributed over both space and time. This is shown in
Fig. 16.

BNOT 1/16

Ours 1/16 Ours 1/8 Ours 1/32

Figure 13: Comparing 1024 BNOT samples with a slice of a
128 x 128 X 10 spatiotemporal blue noise mask (ours) thresh-
olded to different levels. BNOT is much higher quality over
space, but has a fixed density and gives no treatment to the
time axis, necessitating independent sample sets to be white
noise over time.

DFT(XY)

Figure 14: 2D projections of our 64 X 64 X 64 spatiotemporal
blue noise (STBN) masks thresholded to point sets, which
keep their desired spectra. DFTs are averaged over 64 slices.

4.5 Curve Inversion

Putting a scalar spatiotemporal blue noise value through a space
filling curve can give you a vector spatiotemporal blue noise value.
We have had better luck with Hilbert curves than Morton curves,
but neither makes vector valued noise which is as good as noise
made through the swapping algorithm, described in the main paper,
see Fig 15. This method is extremely quick at generating vector
valued masks from scalar ones, however.

Triangle function sampled with 32x32x64 noise (MC)

27t —— White

STBN Morton
—— STBN Hilbert
—— Vector STBN

T
22 n
z

20 2! 22 22 24 25 26
Frames (32x32 samples)

Figure 15: Vector valued spatiotemporal blue noise is best
made with the swap algorithm, but Hilbert and Morton
curves can also be used to convert scalar masks to vector.

A FREQUENCY ANALYSIS OF INTEGRATION
AND INVERSION

We develop a simple frequency analysis of integration with blue noise
offsets, and explain the inversion method in Heitz and Belcour [9]. While our
theory is closely inspired by previous work [5, 10, 11], we do not believe this
frequency analysis of the spatial distribution of error has appeared before,
and it may provide valuable insight into previous algorithms. However, it is
not required for understanding our method in the main paper.

For simplicity, consider a 1D integral at a single pixel,

N
= [swrmdy =g iswew. @
where s(y) is the sampling pattern, f(y) is the integrand we seek to
integrate by Monte Carlo, I is the output image pixel radiance from using
N samples, and y is the variable we are integrating over. Note that the
sampling pattern s is actually N points y;, which can be treated as delta
functions. The integral can also be estimated in the Fourier domain [5],

In = (5(@) ® F())| o = / S(@)F (o) do, 3

where we use capital letters to denote the Fourier transforms, and * denotes
the complex conjugate (note that F*(w) = F(-w)).

We now consider perturbing the sampling pattern by a constant y. That
is, we replace all y; by y; + y. In practice, the values of y will differ at each
pixel, in our case with a blue noise-like pattern. We now have,

LN S(y-yi-y) =s(y-y))
eI rS(y), ()

s(y;y) =
S(y;y) =

where the last line follows simply from the addition theorem for Fourier
series. Note that the magnitude of the Fourier spectrum for the sampling
pattern remains the same, only its phase is shifted, with different phase
shifts at each pixel corresponding to each y. If we now plug the shifted
sampling pattern for the integral we seek into Equation 3, we obtain,

IN=/S(w)F*(w)e_iwydw. (6)

Now, we can define G(w) = S(w)F* (w), where the corresponding angular
domain function is given by a convolution! g(x) = f(x) ® s(x). Note that

ISince F* (w) = F(~w) so that G(w) = S(w)F (- w), this convolution has a slightly
non standard form with the plus sign instead of the conventional minus in the primal

angular domain, s(x) ® f(x) = fs(x +y)f(y)dy.

Importance Map White noise 2DBN

STBN (ours)

Pixel Count

0 10 20 50 60

30
Frames

Figure 16: To the left, we show an importance map, which was used to generate the next three images. These were generated by
simulating adaptive sampling using the importance map to guide where the samples should be over five frames. The images
were generated in such a way that the more pixels that are lit, the more unique pixels have been sampled. STBN provides the
best results here, since it has substantially more lit pixels. Right: a diagram showing the percentage of unique pixels sampled
over time as a function of frame number. White noise can have redundant sampled pixels each frame, and over time, 2D blue
noise reduces redundant pixels over space, and STBN (ours) reduces them over time as well.

Figure 17: One SPP path tracing, rearranging the seeds using
the Heitz/Belcour technique to make the render noise match
the stylized texture shown in the lower left.

Equation 6 can be viewed as an inverse Fourier transform, evaluated at the
value of —y (we omit normalizations),

g(x) = s®f = / (5(0)>F*(w)) eiwx do (7)

g(=y). 8)

Note that this analysis holds not just for the value In; but for the error
as well, if we simply zero out the DC term in S (the DC term corresponds
to the ideal sampling pattern resulting in the true integral value).

Finally, we analyze the spatial distribution of the noise, which has not
usually been considered in previous frequency analyses. We follow the
reasoning from Heitz and Belcour [9], which assumes the function f (and
hence g) is locally constant in a patch. From the above results, we can then
define,

In

IN=9(-y) = In(x)=g(-y(x)). ©)

In Heitz and Belcour’s work [9] and in this paper, we want the error in
In(x) to be distributed as a blue noise pattern. The simplest approach [8]
is to choose the offsets/seeds y(x) in a blue-noise pattern. However, the
pattern in Iy is not necessarily blue-noise since it is transformed by the func-
tion g(—y(x)). Instead, if we want the distribution Inr (x) (or equivalently
the error in the distribution) to achieve some desired pattern Iy (x) ~ a(x),
then we seek that g(—y(x)) = a(x) where a(x) is the desired blue noise

pattern,
y(x) =g (a(x)), (10)

where we have ignored the negative sign, and we need to explicitly invert
the function g. However, this seems intractable, since we do not know g nor
its inverse (or even the integral of f); indeed that’s what we are trying to
find by Monte Carlo integration. Instead, Heitz and Belcour [9] perform this
inversion in an ordinal numerical fashion within a local patch. They sort
the seeds y(x) and the function values g(y(x)) from just applying naive
blue-noise patterns in the first step. Then, instead of doing exact inversion
and interpolation, one can just map the function ordinally in terms of the
sorted order. So now, in the next frame, if you have a seed a(x) at pixel x,
we get the corresponding ordinal value of @ and see which g(y) gave that
corresponding ordinal value, effectively inverting y (x) = g~ (at(x)).

Note that the inversion method is orthogonal to the specific desired
pattern a(x) (or for that matter the initial pattern y(x)). Indeed, we have
successfully used the method even to produce stylized error patterns as can
be seen in Fig. 17.

We have integrated our spatiotemporal blue noise into Heitz and Bel-
cour’s method [9], using both seed sorting and retargeting and show im-
proved convergence performance, as shown in Fig. 18.

REFERENCES

[1] Joghan Andersson and Colin Barré-Brisebois. 2018. Shiny Pixels and Beyond:
Rendering Research at SEED. In Game Developer’s Conference.

[2] B.E.Bayer. 1973. An optimum method for two-level rendition of continuous-tone
pictures. IEEE International Conference on Communications 1, 11-15.

[3] Cameron N. Christou. 2008. Optimal Dither and Noise Shaping in Image Pro-
cessing. MSc thesis, University of Waterloo.

[4] Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Des-
brun. 2012. Blue Noise through Optimal Transport. ACM Transactions Graphics
31, 6, Article 171 (2012), 11 pages.

[5] Frédo Durand. 2011. A Frequency Analysis of Monte-Carlo and Other Numerical
Integration Schemes. Technical Report TR-2011-052. MIT CSAIL.

[6] E.Enderton, E. Sintorn, P. Shirley, and D. Luebke. 2011. Stochastic Transparency.
IEEE Transactions on Visualization and Computer Graphics 17, 08 (2011), 1036
1047.

[7] R. W.Floyd and L. Steinberg. 1976. An Adaptive Algorithm for Spatial Grayscale.
Proceedings of the Society of Information Display 17, 2, 75-71.

[8] Hiyan Georgiev and Marcos Fajardo. 2016. Blue-Noise Dithered Sampling. In
ACM SIGGRAPH Talks. Article 35, 1 pages.

[9] E.Heitz and L. Belcour. 2019. Distributing Monte Carlo Errors as a Blue Noise

in Screen Space by Permuting Pixel Seeds Between Frames. Computer Graphics

Forum 38, 4 (2019), 149-158.

Adrien Pilleboue, Gurprit Singh, David Coeurjolly, Michael Kazhdan, and Victor

Ostromoukhov. 2015. Variance Analysis for Monte Carlo Integration. ACM

Transactions on Graphics 34, 4 (2015), 124:1-124:14.

=
=2

Spatiotemporal Blue Noise Masks Supplemental

(a) Heitz and Belcour w/ STBN (b) 2D BN (c) STBN (Ours) (d) Ground Truth

Figure 18: A comparison of blue noise versus spatiotemporal blue noise (center) applied to the seed rearranging technique by
Heitz/Belcour, with a ground truth image on the right. Both noise signals were filtered using an exponential moving average
and a = 0.1. This example illustrates that our spatiotemporal blue noise can be used in combination with state of the art
techniques such as the Heitz/Belcour algorithm.

[11] Ravi Ramamoorthi, John Anderson, Mark Meyer, and Derek Nowrouzezahrai. sequences/. [Online; accessed 3-March-2021].
2012. A Theory of Monte Carlo Visibility Sampling. ACM Transactions on [14] Chris Wyman. 2016. Exploring and Expanding the Continuum of OIT Algorithms.
Graphics 31, 5 (2012), 121:1-121:16. In High Performance Graphics. 1-11.

[12] Bernhard Reinert, Tobias Ritschel, Hans-Peter Seidel, and Iliyan Georgiev. 2016. [15] Chris Wyman and Morgan McGuire. 2017. Hashed Alpha Testing. In Symposium
Projective Blue-Noise Sampling. Computer Graphics Forum 35, 1 (2016), 285-295. on Interactive 3D Graphics and Games. Article 7.

[13] Martin Roberts. 2018. The Unreasonable Effectiveness of Quasirandom Sequences.
http://extremelearning.com.au/unreasonable-effectiveness-of - quasirandom-

http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/

	1 Introduction
	2 Discussion
	2.1 Masks vs. Samples
	2.2 Using Blue Noise Masks In Rendering

	3 Additional Results
	3.1 Stochastic Transparency
	3.2 Dithering
	3.3 Volumetric Rendering
	3.4 Preserving Blue Noise Over Time
	3.5 Comparing STBN to 2DBN + Golden Ratio

	4 Extensions
	4.1 Getting Multiple Values Per Pixel
	4.2 Higher Dimensional STBN
	4.3 Spatial BN Stratification Over Time
	4.4 Spatiotemporal Point Sets
	4.5 Curve Inversion

	A Frequency Analysis of Integration and Inversion
	References

