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Abstract
We introduce a hair inverse rendering framework to reconstruct high-fidelity 3D geometry of human hair, as well as its re-
flectance, which can be readily used for photorealistic rendering of hair. We take multi-view photometric data as input, i.e.,
a set of images taken from various viewpoints and different lighting conditions. Our method consists of two stages. First, we
propose a novel solution for line-based multi-view stereo that yields accurate hair geometry from multi-view photometric data.
Specifically, a per-pixel lightcode is proposed to efficiently solve the hair correspondence matching problem. Our new solution
enables accurate and dense strand reconstruction from a smaller number of cameras compared to the state-of-the-art work.
In the second stage, we estimate hair reflectance properties using multi-view photometric data. A simplified BSDF model of
hair strands is used for realistic appearance reproduction. Based on the 3D geometry of hair strands, we fit the longitudinal
roughness and find the single strand color. We show that our method can faithfully reproduce the appearance of human hair and
provide realism for digital humans. We demonstrate the accuracy and efficiency of our method using photorealistic synthetic
hair rendering data.

1. Introduction

With emerging technologies of augmented reality and virtual re-
ality, creating photorealistic digital humans is gaining increasing
attention in computer vision and graphics. Inverse rendering is a
widely used technique that can alleviate 3D artists’ labor-intensive
tasks of modeling high-fidelity digital humans. For human inverse
rendering, there have been several successful approaches to build
capture systems that produce multi-view photometric data, which
is a set of images taken from various viewpoints and under different
lighting conditions. From the images, inverse rendering framworks
are able to reconstruct detailed geometry as well as complex ma-
terial appearance of human skin, e.g., specularity and subsurface
scattering. While previous research on digital humans achieved
great success on faces and bodies, inverse rendering for high-
fidelity hair data is still an open problem due to the inherent charac-
teristics of hair, i.e., the microscale geometry and the large number
of hair strands. In this paper, we present a novel inverse rendering
framework to reconstruct detailed hair geometry as well as its re-
flectance, which can be readily used for photorealistic rendering of
digital humans.

Following recent successes of human inverse rendering research,
we use multi-view photometric data. As a first stage, we reconstruct
hair geometry with strand-level accuracy. Traditional multi-view
stereo techniques fail in this stage as they are designed to recon-
struct 3D surfaces, not 3D strands. The main challenge is to find
pixel-wise correspondences across views. Nam et al. [NWKS19]
proposed a line-based multi-view stereo algorithm that reconstructs

Input Images Reconstruction / Groundtruth

Figure 1: Demonstration of our method on synthetic hair ren-
dering data. (Left) Some of our input images. (Right) A rendering
of our reconstructed hair model. Our hair inverse rendering algo-
rithm can produce a full hair model with geometry and reflectance
information, which is accurate and realistic.

a 3D line cloud from multi-view images. Their method, how-
ever, requires densely positioned cameras (70 cameras on a hemi-
sphere) and relies on several heuristics for correspondence match-
ing and view-selection. We propose a new solution for line-based
multi-view stereo that gives us more densely reconstructed strands
even from a smaller number of views compared to the previous
work [NWKS19] (Section 4). We design a new matching cost func-
tion that fully utilizes the photometric data. We introduce lightcode,
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a per-pixel light encoding that stores information about whether a
small hair segment can be lit by each light or not. Using the light-
code, we efficiently solve the hair correspondence problem as well
as the per-pixel view selection problem.

Using the reconstructed hair geometry, the second stage esti-
mates reflectance properties using photometric data (Section 5).
Estimating the reflectance of hair is challenging, since the over-
all appearance of hair is the result of the aggregated multiple in-
teractions of light with each single hair fiber of about 80 microns
thickness. Each of those fibers exhibits highly anisotropic, complex
light scattering patterns. To estimate the full reflectance properties
of hair strands, a highly complex and sophisticated capture sys-
tem with a microscope is needed [KM17]. Therefore, we propose
a practical solution to use a simple hair reflectance model and fit
the parameters using our reconstructed geometry and illumination
information.

We demonstrate our method using synthetic hair rendering data
(Fig. 1). We use high-quality human head models and hair strand
models that are created by digital artists and render photoreal-
istic images using Blender. To mimic a real-world capture en-
vironment, we place multiple virtual cameras and light sources
on a hemisphere pointing towards a subject, similar to the Light-
Stage [GLD*19].

In summary, we introduce the following contributions:

• A hair inverse rendering framework using multi-view photomet-
ric data that yields high-fidelity hair geometry and its reflectance,
which can be used for photorealistic rendering of hair on virtual
characters.

• A novel solution for line-based multi-view stereo that yields ac-
curate hair geometry from multi-view photometric data. By us-
ing lightcode, our method can reconstruct denser strands with
sparser cameras compared to state-of-the-art work. (Section 4)

• Hair reflectance estimation using multi-view photometric data.
Given the estimated fiber direction and a set of light and cam-
era vectors, we leverage these sparse samples of the hair BSDF
to estimate the multiple scattering albedo and the longitudinal
roughness that define the overall color of the hair and the width
of the highlights respectively. (Section 5)

2. Related Work

2.1. Multi-view Photometric Stereo

Multi-view stereo [HZ03] has been widely used to reconstruct
3D geometry from images taken from multiple viewpoints un-
der a fixed lighting condition. On the other hand, photometric
stereo [Woo80] reconstructs surface normals, as well as surface re-
flectance, using multiple images taken from a fixed viewpoint but
under varying illumination. Multi-view photometric stereo com-
bines the two techniques to get rich information of 3D geome-
try and surafce reflectance at the same time [SDR*20; LMC19;
PSM*16; ZWT13; YY11; HVC08; TFG*13; DYW05; KN08].
The multi-view and multi-illumination setup has proven to be ef-
fective for creating photorealistic digital humans. However, most
work has focused on faces [FJA*14; FGT*16; GFT*11] and bod-
ies [ZFT*20; VPB*09; GLD*19], and is thus not applicable to hair.

2.2. Image-based Hair Modeling

There have been many efforts to model hair geometry using cap-
tured images. Please refer to [BQ18] for an overview. A com-
mon approach is to use a multi-view setup. Most existing methods
first obtain a rough geometry from structured-light [PCK*08], vi-
sual hull [PBS04; WOQS05], multi-view stereo [LLP*12; LLR13;
XWW*14; HMLL14; HML*14; HBLB17; EBGB14; BBN*12],
depth-from-focus [JMM09], thermal video cameras [HZW12], or
an RGB-D sensor [HML*14], and run an additional strand-fitting
step to get 3D hair strands. Recently, Nam et al. [NWKS19] pre-
sented a line-based multi-view stereo method that directly recon-
structs 3D hair strands from images, thus achieving high accu-
racy. Paris et al [PCK*08] showed the feasibility of a hair inverse
rendering pipeline using multi-view and multi-light images. They
first reconstruct 3D geometry of hair using structured light patterns
and estimate its reflectance using controlled illumination. Different
from [PCK*08], we reconstruct hair strands directly from multi-
view photometric data using our novel solution.

Hair capture from a single image is another stream of re-
search [HMLL15; HML*14; CWW*12; CWW*13; CLS*15;
CSW*16; ZCW*17]. These are data-driven methods that utilize a
large number of manually created 3D hair models. More recently,
deep learning-based approaches were proposed. Pre-trained net-
works, such as convolutional neural networks [ZHX*18] or gen-
erative adversarial networks [ZZ19], were used to infer 3D hair ge-
ometry from a single image. While these methods have the benefit
of easy capture, the reconstructed geometries are not suitable for
photorealistic rendering.

2.3. Hair Reflectance Model

The seminal work of Marschner et al. [MJC*03] described the com-
plex light transport within each human hair fiber, representing it as
a rough dielectric cylinder. This work resulted in the classification
of different scattering modes, namely R for the primary reflectance,
TRT for a secondary colored and attenuated reflection offset from
the primary, and TT for a transmission term, responsible for most
of the observed hue of the hair. D’Eon et al. [dFH*11] refined this
far field model into a more principled spherical Gaussian for the
longitudinal (along the fiber) component, and supplied a separate
roughness control on the azimuthal (in the cross sectional plane of
the cylinder) term. More recently, Chiang et al. [CBTB15] returned
to a near field solution, and provided a fourth TRRT lobe to cover
the missing energy from the additional internal bounces not consid-
ered previously. We start from a base implementation of this model
in Blender [Ble20] and add explicit artistic and debugging factors
for each term, also improving the convergence via fits similar to the
approaches from Pekelis et al. [PHVL15].

Previous work has tried to match the appearance of hair from a
single image [BPV*09], but accuracy is limited because they do not
utilize accurate strand level hair geometry. Zinke et al. [ZRL*09]
proposed to measure the reflectance properties of hair fibers coiled
around a cylinder. Progress has also been made in the case of tex-
tile fibers [KSZ*16] based on volumetric representations of fiber
assemblies. Different from previous work, we rely on explicit fiber
level estimation of hair geometry and do not depend on the usual
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limitations of traditional hair reflectance models, being able to
model any kind of color coming from dyes, or extra coating or wet-
ness layers.

3. Overview

An overview of our hair inverse rendering pipeline is shown in
Fig. 2. The input of our framework is multi-view photometric data,
i.e., a set of images taken from various view-points and different
lighting conditions. We assume that Nc cameras are pointing to-
wards the subject and there are Nl point light sources (Nl � Nc).
We also assume that each camera has a co-located light source.
Given Nc⇥ (Nl + 1) images captured from all cameras under each
light source (and additional uniform lighting), we first reconstruct
a dense set of hair strands using the theory of multi-view photomet-
ric stereo (Section 4), and then estimate the reflectance properties
of the hair strands using the inferred geometry (Section 5).

We develop our algorithm based on synthetically “captured”
data. We use high-quality human head models and hair strand mod-
els created by digital artists, and use Blender to render the input
images. Specifically, we place Nc = 24 cameras on the upper hemi-
sphere, aiming at the hair region, and then distribute Nl = 36 point
lights uniformly on the sphere. We make sure that each camera has
a co-located point light source. Using synthetic data has the fol-
lowing advantages. First, we have access to the ground-truth hair
strands which is impossible to obtain in real captured data. Second,
we can efficiently control the dataset. For example, we can easily
change the hair reflectance parameters, the number of cameras and
lights, exposure settings, etc. We render the images using the de-
fault setting of the Blender Cycles renderer [Ble20], which uses
path tracing with 1024 samples per pixel. All the images are ren-
dered with the resolution 2048⇥ 2048, where a single hair strand
is roughly 3 pixels wide.

4. Hair Geometry Reconstruction

Our geometry reconstruction algorithm is inspired by the recent
success of Nam et al. [NWKS19]. They proposed the line-based
multi-view stereo (LMVS) to reconstruct strand-accurate hair ge-
ometry using multi-view captures. However, due to multiple scat-
tering effects inside the hair, strands cannot be easily distinguished
from captured images. As a result, a large number of cameras (70
views in [NWKS19]) are needed for satisfactory output, and only
the outer surface of the hair is recovered.

We therefore use a multi-view photometric stereo (MVPS) setup
to solve the problem and propose a new solution for LMVS that
fully exploits the photometric data. In particular, we introduce
lightcode, a novel per-pixel light encoding structure. lightcode en-
ables efficient neighbor view selection for multi-view stereo, and
also provides a strong signal for robust correspondence matching
across views. The remainder of this section describes our new so-
lution for LMVS using MVPS data. We kindly refer readers to
[NWKS19] for more details about basic LMVS and to [CLK09;
BS05; BFV05] for more traditional computer vision approaches
that use lines.

4.1. 2D Orientation Map

4.1.1. Per Light Orientation Extraction

Similar to previous work [PBS04], we filter each photometric im-
age Ic(l,x,y) under a point light l and camera c with a set of con-
volutional kernels, and find the per pixel 2D orientation from the
maximum response. We use log-gabor filters [FŠP*07] rather than
gabor filters, because they have finer frequency supports:

Rq(l,x,y) = sq ⇤ Ic(l,x,y)
Qc(l,x,y) = argmax

q
Rq(l,x,y)

Wc(l,x,y) =
Âq Rq(l,x,y) · cos(q�Qc(l,x,y))

maxq Rq(l,x,y)
,

(1)

where Rq(l,x,y) is the convolutional response at pixel (x,y) with a
q-rotated log-Gabor filter sq. Qc(l,x,y) and Wc(l,x,y) are the 2D
orientation map and the confidence map for image Ic(l,x,y).

4.1.2. Per View Orientation Merge

After we extract the 2D orientation and its confidence from each
photometric image under a specific camera c, we apply a weighted
average on the per light 2D orientation and confidence:

Qc(x,y) = Â
l

Wc(l,x,y) ·Qc(l,x,y)

Wc(x,y) = Â
l

Wc(l,x,y) · cos(Qc(l,x,y)�Qc(x,y)),
(2)

where the output is per-view 2D orientation map Qc(x,y) and con-
fidence map Wc(x,y). Please refer to the supplemental material for
more details about the effect of the log-Gabor filter compared to the
original Gabor filter.

4.1.3. Hair Region Masking

We also use a pre-trained deep neural network [YWP*18;
LLWL20] to extract the hair region from the uniformly-lit images.
We compute 2D orientation maps only for the valid hair region,
which has great benefits in fast computation and efficient outlier
removal.

4.2. 3D Line Reconstruction

4.2.1. Lightcode

In multi-view stereo (MVS), finding correct correspondences
across views is crucial for accurate geometry reconstruction. Tra-
ditional methods fail in hair because first, the intensities between
neighboring pixels are highly similar, and second, due to the micro-
structures of hair strands, the pixel values change rapidly with dif-
ferent viewpoints. 2D orientation maps Q(x,y) can be used for cor-
respondence matching [NWKS19], but it is inefficient as it involves
multiple projections between cameras.

We therefore propose to use lightcode Lc(x,y) as a matching
feature to find correspondences between multiple views:

Lc(x,y) = b1b2 · · ·bNl , (3)

where bi is a binary bit which represents the visibility of the
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Figure 2: An overview of our hair inverse rendering pipeline.
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Figure 3: This figure illustrates how lightcode can be used for view
selection. We use the interchangeability of the camera rays and
light rays. If one pixel of camera A under light B is bright, it means
that pixel can also be observed by camera B (blue point). If another
pixel of camera A under light B is dark, it indicates that camera B
cannot see the pixel (red point).

reference view

neighboring
view

neighboring
view

Figure 4: An illustration of how we analytically derive the 3D line
segment S from a given depth d. For a pixel in the reference view,
we first get Spos (the position of S) by shooting a ray toward the
pixel. Then we get Sdir (the 3D direction of S) using Eq. 4.

pixel under light i. The lightcode shares a similar idea as Space-
time Stereo [DRR03], where they use pixel values from different
time slices for matching between cameras. Here, we assume that
whether a strand is bright or not is independent of camera views,
though its intensity is view-dependent. We use the percentage of
matching bits between the lightcodes to evaluate the similarity be-
tween cameras. We found that the lightcode could find the corre-

sponding pixels in the neighboring cameras efficiently and accu-
rately. In practice, we use the median pixel value of the image under
the furthest light as the shadow threshold of the camera.

4.2.2. View Selection using Lightcode

In MVS, neighboring view selection also affects efficiency and ac-
curacy of the algorithm. Due to the lack of visibility information,
traditional MVS algorithms, including [NWKS19], have to search
for matching pixels in all the neighboring views. Using lightcode,
we can extract the visibility information since a point light is placed
right next to each camera. As shown in Fig 3, if one pixel of camera
A under light B is bright, then it means that specific pixel can also
be observed by camera B, and vice versa. Here, we use the inter-
changeability of the camera rays and light rays. The shadow casted
by the light next to a camera represents the visibility information
when observed from other views. We use this visibility information
to select per-pixel valid neighboring views. For the remaining parts
of this section, ’neighbor view’ always refers to ’per-pixel valid
neighbor view’.

Essentially, the lightcode encodes the visibility information at
each 3D point. Since the human head is roughly a sphere, about half
of the bits in each lightcode are 0. This means that for each point
associated with a lightcode, a large number of cameras cannot see
this point. In order to prune these invalid observations, we only use
the nearest 16 cameras when we are doing 3D reconstruction.

4.2.3. Analytic Derivation of 3D Line Segment from Pixel
Depth

Given the 2D information (orientation map Q(x,y), confidence
W(x,y), and lightcode L(x,y)) of all cameras, our goal is to find
the per-pixel optimal line segment S in the 3D space, represented
by a 3D position Spos and a 3D line direction Sdir. We observe that
both Spos and Sdir can be analytically derived when the depth d of
the pixel is given. For a single pixel (x,y) in camera c, assuming
we know its depth d, we can find the 3D location of its correspond-
ing segment Spos and project it to its visible neighbors. For each
n-th neighboring camera, if the 3D line direction Sdir is consistent
with the 2D line direction Qn(xpro j,ypro j), the 3D line should lie
in the plane formed by the projection ray and the 2D line on the
image plane. In other words, we will get the 3D line direction Sdir
by solving the equation below:

2

64

Ray0(xpro j,ypro j)⇥Q0(xpro j,ypro j)
...

RayNn
(xpro j,ypro j)⇥QNn(xpro j,ypro j)

3

75 ·Sdir = 0, (4)

where Nn is the number of neighbor views and n = 0 indicates the
reference view. Here, we use Qn to represent the 2D line vector on
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the image plane of the n-th neighboring camera. The equation can
be efficiently solved for Sdir by finding the singular vector corre-
sponding to the smallest singular value. Figure 4 illustrates this pro-
cedure. In this way, we reduce the whole problem to a 1D searching
problem w.r.t. the pixel depth d.

4.2.4. Objective Function

Now, the problem is reduced to a 1D search over the depth d for
each pixel. To formulate our objective function, we sample Ns = 25
points along the 3D direction Sdir of the segment S. The sampled
points are represented by the superscript s. Our objective function
is a multiplication of two sub functions, the lightcode correlation
term Olightcode and the geometric correlation term OQ:

Olightcode = mL(Lc(x,y),Ln(xs
pro j,y

s
pro j)),

OQ = cos(diff(Qn(Ss
dir),Qn(xs

pro j,y
s
pro j)))

·Wn(xs
pro j,y

s
pro j),

(5)

where s indicates the sampled 3D points, n refers to n-th view, mL()
evaluates the similarity between two lightcodes, (x,y) is the tar-
get pixel in the reference view, (xs

pro j,y
s
pro j) is the pixel coordinate

where the sample s is projected to the n-th view, diff returns the 2D
angle difference, and Qn(Sdir) is the 2D line direction of the 3D
line segment when projected to the n-th view.

Finally, we find optimal depth d per pixel, which maximizes the
following objective:

O =
Ns

Â
s=1

Nn

Â
n=0

Olightcode ·OQ, (6)

where Ns is the number of samples, and Nn is the number of neigh-
bor views. Note that n = 0 indicates the reference view. This ob-
jective function represents the overall correlation across views. We
find depth d that maximizes the correlation.

4.2.5. Optimization

Optimizing Eq. 6 is straightforward. For each pixel on the refer-
ence view, we enumerate possible depth candidates and calculate
O using Eq. 4 and Eq. 5. Then we select the depth d that returns
maximum O. This brute force search guarantees to find the global
optimum, but it can be slow. We therefore run a two-stage optimiza-
tion. First, for each depth candidate, we only evaluate Olightcode in
Eq. 6 and collect the depth candidates that produce high lightcode
matching. Then we evaluate the full objective O only for the se-
lected candidates. We find that this two-stage optimization enables
faster correspondence matching while preserving the output qual-
ity.

4.2.6. Comparison to the Previous Work

Previous work by Nam et al. [NWKS19] treats the optimization as
a multi-dimensional problem, as both the depth d and the 3D line
direction Sdir are unknown. In contrast, we treat it as a 1D problem
with a single unknown variable d. This makes our algorithm faster
and more stable compared to [NWKS19].

Another key difference between our objective function and the
one from Nam et al. [NWKS19] is that we are solving a max-
imization problem rather than a minimization problem. This has

the following two advantages. First, during optimization, we are
not only finding the best matching pixels, but also maximizing the
number of pixels that correspond to a strand (large W value). Sec-
ond, by formulating the problem as maximization, we implicitly set
the value of “bad matching” and “non-valid matching” to be zero,
which leads to more stable optimization.

4.3. Strand Generation and Extension

After we generate the line segments from each pixel in each cam-
era, we follow the approach of [NWKS19] to connect them into
strands. We first select the small line segments S that are consistent
in at least 3 neighboring cameras, and then apply the mean shift
algorithm on the line cloud. The mean shift algorithm efficiently
collects the small line segments into a long strand in the 3D space.
After that, we cluster the neighboring line segments into strands.

At the current stage, we arrive at a set of hair strands. However,
the connected strands do not represent the hair geometry very well.
The average strand length is usually under 1 cm. Thus, we further
extend each hair strand from its tips to get longer and more rea-
sonable hair strands. For each tip P, we project the 3D point XP
back to each camera, and select the cameras where the projected
3D direction of P aligns with the 2D direction at the projected point
Qi(xpro j,ypro j) (angle different less that 5�). Using the aligned 2D
directions from valid cameras, we can compute the possible grow-
ing direction Sdir by following Eq. 4. After we solve for the cor-
rect growing direction Sdir, we extend the strand for a certain step
XP = XP+Sdir ·dstep, where dstep = 0.05cm. We repeat this process
until the new tip point can find no more than 5 cameras that align
with our 3D direction Sdir.

5. Hair Reflectance Estimation

Hair reflectance is difficult to estimate due to the aggregated nature
of hair appearance. Light may bounce many times inside the hair
volume, especially in the case of blonde or other kinds of lightly
colored hair. In order to match the look of the captured image, we
need to accurately estimate the reflectance properties of the sin-
gle fiber. There are two properties that affect the visual appearance
the most: the longitudinal roughness of the hair and the absorp-
tion coefficient. The longitudinal roughness bl controls the size of
the highlight on the hair strands, and the absorption coefficient s
determines how much light is absorbed by each single fiber, thus
controlling the color of the hair strands.

5.1. Hair roughness estimation

The longitudinal roughness is one of the parameters of the hair re-
flectance model, which is usually expressed as a BSDF function.
We use the BSDF model of Chiang et al. [CBTB15] in our paper.
The general form of the BSDF model can be written as:

r(qi,qr,fi,fr) = rl(qi,qr,bl) ·ra(qi,qr,fi,fr,ba), (7)

where rl is the longitudinal component and ra is the azimuthal
component. The meanings of angles are shown in Fig. 5. Longitu-
dinal roughness bl determines the width of white (R) and all the
subsequent colored lobes (TT, TRT, TRRT). In contrast, the az-
imuthal roughness ba affects the overall translucency of the hair
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Figure 5: Parametrization of the hair BSDF. qi and qr are the lon-
gitudinal angles, and fi and fr are the azimuthal angles.

volume. In order to keep the problem tractable, we decide to only
optimize the longitudinal roughness bl since it is ultimately what
controls the most prominent visual features of hair: the length of the
highlights on the strands. For this, we fix the azimuthal roughness
ba to common plausible values for human hair ba = 0.2 [MJC*03;
YY97; Bhu08], and assume that the azimuthal component ra is a
constant. The analytical BSDF function of the longitudinal compo-
nent is expressed as:

rl(qi,qr,bl) =
exp(�S�1/bl) · I

bl · (1� exp(�2/bl))

where I =I0 (cos(qi) · cos(qr)/bl)

S =sin(qi) · sin(qr)/bl

(8)

I0 is the modified Bessel function of the first kind, order 0.

In order to fit to the BSDF model and solve for the longitudinal
roughness, we collect the BSDF samples of the hair reflectance by
collecting the pixel values whose viewing and lighting directions
are close to the mirror reflection:

Dq = |qi�qr|<
p
6
,

Df = |fi�fr|<
p
6
.

(9)

We divide the range of Dq 2 [0, p
6 ] into 32 bins, and average

the BSDF samples in each bin. Suppose the measured BSDF is
rm(Dq), we find the longitudinal roughness of the hair strands by
solving the following optimization:

max
bl

ÂDq rm(Dq) ·rl(Dq,bl)q
ÂDq r2

l (Dq,bl)
. (10)

Figure 6 shows a measured BSDF and the fitted analytical BSDF
of the longitudinal components. The shape of the measured BSDF
follows the analytical one when Dq is small, as the BSDF is domi-
nated by the direct reflection (R component). As Dq becomes larger,
the measured BSDF becomes flat, due to the multiple scattering
between hair strands. For this reason, we only do our fitting on
Dq 2 [0, p

6 ].

5.2. Hair color optimization

The overall perceived color of the hair, often called multiple scatter-
ing albedo, not only depends on the absorption coefficient s of each

Figure 6: The measured and the corresponding fitted analytical
BSDF of the longitudinal components. Our measured BSDF fol-
lows the analytical BSDF when Dq is small, and becomes flat when
Dq is large, due to multiple scattering in the hair strands.

Algorithm 1: Hair Color Optimization
Function HairColorOpt(Captured Hair Image I under

uniform lighting, IterNum=5):
Rrgb Ave color of the hair region in I;
C0

rgb Rrgb;
for s = 0 · · · IterNum�1 do

Rendering the hair image I(s) using hair color
parameter C(s)

rgb;

R(s)
rgb Ave color of the hair region in I(s);

if s == 0 then
C(s+1)

rgb  
Rrgb

R(s)
rgb

·C(s)
rgb;

else
Perform linear fitting R(s)

rgb = a ·C(s)
rgb +b

using R(s)
rgb and C(s)

rgb from 0 to s;

C(s+1)
rgb  

Rrgb�b
a ;

return C(IterNum)
rgb ;

of the single fibers, but also on the azimuthal roughness ba, that de-
termines the translucency of the hair volume. However, the multi-
ple scattering albedo is invariant to hair density[CBTB15; ZW07],
given a dense enough volume of strands. Chiang et al. [CBTB15]
empirically linked the multiple scattering hair albedo Crgb to the
single fiber absorption coefficient s and the azimuthal roughness
ba using the following formula:

s =(logCrgb/(5.969�0.215ba +2.532b2
a

�10.73b3
a +5.574b4

a +0.245b5
a))

2.
(11)

This equation gives us a good approximation of the absorption co-
efficient s given a fixed azimuthal roughness ba and an RGB hair
color Crgb. This enables us to optimize for an RGB hair color Crgb
instead of the absorption coefficient s.
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We develop an iterative algorithm to find the color Crgb that
makes the color of the rendered hair match the color of the captured
hair images. We present the pseudo code of our hair color opti-
mization in Algo. 1. Given the captured hair image I under uniform
lighting, we first extract the average color Rrgb of its hair region,
and initialize the color parameter C0

rgb as Rrgb. Then, we compute
the absorption coefficient using the color parameter C0

rgb, render
the image of the hair I(0), and compute the average color of the hair
region R0

rgb on the rendered image. We iteratively update the color

parameter C(s)
rgb in order to close the gap between the rendered hair

color R(s)
rgb and the groundtruth hair color Rrgb.

We assume a simple linear model on the relation between the
color of the rendered hair R(s)

rgb and the hair color parameter C(s)
rgb:

R(s)
rgb = a ·C(s)

rgb +b, (12)

where s is the iteration step number, and R(s)
rgb is the hair color of

the rendered image. This assumption is based on the observation
that the pixel colors of the hair region consist of the constant color
part that does not change with the hair color parameter (mainly the
scalp color), and the global hair albedo that is mostly linear in the
color parameter C(s)

rgb thanks to Eq. 11. As we observe more R(s)
rgb and

C(s)
rgb pairs, we can perform fitting based on Equ. 12, and solve the

optimal Crgb using the groundtruth hair color Rrgb. Our algorithm
can find the correct color parameter within 3⇠ 5 iterations.

6. Evaluation

6.1. Previous Work Comparison

We compare our algorithm with the current state-of-the-art work on
hair geometry reconstruction [NWKS19]. [NWKS19] can recon-
struct strand-level accurate geometry of the hair given a dense set
of cameras (Nc = 70), while our algorithm is designed to use addi-
tional lighting for recovering both the geometry and the reflectance
from a sparse set of cameras (Nc = 24). We run both of the algo-
rithms on our synthetic dataset, and we use the uniformly lit images
from our cameras (Nc = 24) as the input to [NWKS19]. Figure 7
shows visual comparison of the reconstructed strands. Our algo-
rithm can reconstruct denser and more complete hair strands com-
pared to [NWKS19]. This is because [NWKS19] relies on a large
number of camera views to eliminate outliers (non-visible camera),
while our algorithm utilizes the cues from lightings to select valid
camera candidates for 3D reconstruction.

Table 1 shows a quantitative comparison on geometry recon-
struction errors following the metric in [NWKS19]. Precision
(a.k.a. accuracy) and recall (a.k.a. completeness) values are com-
puted using the groundtruth hair geometry. tp and td are thresholds
for estimated position and direction of 3D points. We validate 3D
points if they satisfy both tp and td . F-score is defined as harmonic
mean of precision and recall. As shown in Table 1, our method can
reconstruct hair strands more accurately and completely compared
to the previous work.

Input Ours [NWKS19]

Figure 7: Compared to Nam et al. [NWKS19] which uses Nc = 70
cameras in the original paper, our algorithm better reconstructs the
hair geometry under sparse camera setups (Nc = 24).

6.2. Results

We now show our full results of hair inverse rendering. Given a set
of photometric hair images, we run our algorithm to get the geom-
etry of hair strands, the hair roughness parameter bl , and the hair
color Crgb. We then render the hair overlaid on a predefined hu-
man head model using the reconstructed geometry and reflectance
information. Rendering results of various hairstyles under uniform
light and point lights are shown in Fig. 10. Our algorithm can han-
dle different hair styles, and the re-rendered results match with the
groundtruth on hair color, highlight shape, as well as the overall
hair styles.

6.2.1. Hair Roughness

We run our algorithm on a set of hair examples which only differ
in their longitudinal roughness, and the reconstructed results are
shown in Fig. 8. As we decrease the roughness, it becomes harder
to reconstruct the hair geometry since the highlights on the hair
strands becomes sharper and shorter (bottom-left corner). However,
in all three cases, our algorithm could estimate the longitudinal
roughness of the hair strands fairly well, and the highlight shape
of the reconstruction matches the groundtruth image in its overall
appearance.

6.2.2. Hair Color

We additionally test our hair color optimization component by re-
construction of hair with different colors. As shown in Fig. 9, our
algorithm could reconstruct the fine geometry of the hair consis-
tently well, regardless of the hair color. Moreover, our algorithm
could accurately recover the original hair color well.

6.3. Runtime

Our algorithm is implemented in Python and CUDA, and the exper-
iments are all tested using a single NVIDIA Quadro P6000 GPU. It
takes around 30 minutes to apply our inverse rendering algorithm
on a set of synthetic hair images. For hair geometry reconstruction,
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Short hair Long hair
tp/td 1mm / 10� 2mm / 20� 3mm / 30� 1mm / 10� 2mm / 20� 3mm / 30�

Method Nam’19 Ours Nam’19 Ours Nam’19 Ours Nam’19 Ours Nam’19 Ours Nam’19 Ours
Precision 46.36 42.33 78.80 86.60 85.71 96.19 33.42 32.36 69.88 75.70 85.85 88.56

Recall 3.53 15.25 12.07 44.99 23.86 67.52 3.83 25.03 9.48 57.75 16.69 73.96
F-score 6.56 22.42 20.94 59.22 37.32 79.35 6.87 28.22 16.70 65.52 27.95 80.60

Table 1: Precision and recall of the two datasets in Figure 7 with various threshold values. Our method outperforms the previous
work [NWKS19] in most threshold values.
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Figure 8: Our inverse rendering results on hair with different lon-
gitudinal roughness values.
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Figure 9: Our inverse rendering results on hair with different col-
ors.

2D orientation extraction takes 700 seconds (30 seconds per cam-
era), 3D segment generation needs 340 seconds, and strand gen-
eration and extension takes 150 seconds. For hair reflectance esti-
mation, it takes 300 seconds to estimate the roughness, and around
800 seconds for hair color estimation.

7. Conclusions and Future Work

In conclusion, we have proposed a full pipeline for hair inverse
rendering given a set of photometric images captured from mul-
tiple cameras. This is to our knowledge the first algorithm that
both reconstructs the hair geometry and the fine-details of hair re-
flectance information from only images. We demonstrated that our
algorithm can reconstruct the hair geometry better compared to pre-
vious works under a sparse camera setup, and also recover the hair
reflectance properties from only a sparse set of input images.

Our hair inverse rendering algorithm is not free from limitations.
As shown in Fig. 7 and 10, our algorithm yields sub-optimal output
for the hair that is curly or long. In addition, as shown in Fig. 9, we
tend to underestimate the roughness value when hair strands have
saturated color. Another limitation is that we can only reconstruct
the outer hair strands that are visible from multiple cameras. A pos-
sible future work is to estimate the 3D flow field of the inner region
based on priors, and grow the inner hair strands to make the hair
style more complete. For reflectance recovery, we only estimate
the longitudinal roughness and assume that the azimuthal rough-
ness is constant. A direct next step is to recover the full roughness
parameters using densely captured images.

Acknowledgement

This work was supported in part by NSF Chase-CI grant 1730158
and ONR DURIP grant N000141912293 to UC San Diego. This
work was also supported by a Facebook Distinguished Faculty
Award, A Google PhD Fellowship, the Ronald L. Graham Chair,
and the UC San Diego Center for Visual Computing. Thanks to the
reviewers for the valuable feedback, to Akira Orikasa and Cyrus
Jam for the help on hair modeling, to Olivier Maury for the fruitful
discussion, to Ronald Mallet for being the captured subject, and to
Tomas Simon for the help on data capture.

References
[BBN*12] BEELER, THABO, BICKEL, BERND, NORIS, GIOACCHINO, et

al. “Coupled 3D reconstruction of sparse facial hair and skin”. ACM
Transactions on Graphics (ToG) 31.4 (2012), 117 2.

[BFV05] BAY, HERBERT, FERRARIS, VITTORIO, and VAN GOOL, LUC.
“Wide-baseline stereo matching with line segments”. Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on. Vol. 1. IEEE. 2005, 329–336 3.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

186



T. Sun, G. Nam, C. Aliaga, C. Hery, R. Ramamoorthi / Human Hair Inverse Rendering using Multi-View Photometric data

Groundtruth Reconstruction Crop

Figure 10: We apply our hair inverse rendering algorithm on vari-
ous hairstyles. Our algorithm can faithfully reproduce the appear-
ance of the captured hair.

[Bhu08] BHUSHAN, BHARAT. “Nanoscale characterization of human hair
and hair conditioners”. Progress in Materials Science 53.4 (2008), 585–
710 6.

[Ble20] BLENDER ONLINE COMMUNITY. Blender - a 3D modelling and
rendering package. Blender Foundation. Blender Institute, Amsterdam,
2020. URL: http://www.blender.org 2, 3.

[BPV*09] BONNEEL, NICOLAS, PARIS, SYLVAIN, VAN DE PANNE,
MICHIEL, et al. “Single photo estimation of hair appearance”. Computer
Graphics Forum. Vol. 28. 4. Wiley Online Library. 2009, 1171–1180 2.

[BQ18] BAO, YONGTANG and QI, YUE. “A survey of image-based tech-
niques for hair modeling”. IEEE Access 6 (2018), 18670–18684 2.

[BS05] BARTOLI, ADRIEN and STURM, PETER. “Structure-from-motion
using lines: Representation, triangulation, and bundle adjustment”. Com-
puter vision and image understanding 100.3 (2005), 416–441 3.

[CBTB15] CHIANG, MATT JEN-YUAN, BITTERLI, BENEDIKT, TAPPAN,
CHUCK, and BURLEY, BRENT. “A Practical and Controllable Hair and
Fur Model for Production Path Tracing”. ACM SIGGRAPH 2015 Talks.
SIGGRAPH ’15. Los Angeles, California: ACM, 2015, 23:1–23:1. ISBN:
978-1-4503-3636-9. DOI: 10 . 1145 / 2775280 . 2792559. URL:
http://doi.acm.org/10.1145/2775280.2792559 2, 5,
6.

[CLK09] CHANDRAKER, MANMOHAN, LIM, JONGWOO, and KRIEG-
MAN, DAVID. “Moving in stereo: Efficient structure and motion using
lines”. 2009 IEEE 12th International Conference on Computer Vision.
IEEE. 2009, 1741–1748 3.

[CLS*15] CHAI, MENGLEI, LUO, LINJIE, SUNKAVALLI, KALYAN, et al.
“High-quality hair modeling from a single portrait photo”. ACM Trans-
actions on Graphics (TOG) 34.6 (2015), 204 2.

[CSW*16] CHAI, MENGLEI, SHAO, TIANJIA, WU, HONGZHI, et al. “Au-
toHair: fully automatic hair modeling from a single image”. ACM Trans-
actions on Graphics 35.4 (2016) 2.

[CWW*12] CHAI, MENGLEI, WANG, LVDI, WENG, YANLIN, et al.
“Single-view hair modeling for portrait manipulation”. ACM Transac-
tions on Graphics (TOG) 31.4 (2012), 116 2.

[CWW*13] CHAI, MENGLEI, WANG, LVDI, WENG, YANLIN, et al. “Dy-
namic hair manipulation in images and videos”. ACM Transactions on
Graphics (TOG) 32.4 (2013), 75 2.

[dFH*11] D’EON, EUGENE, FRANCOIS, GUILLAUME, HILL, MARTIN, et
al. “An Energy-Conserving Hair Reflectance Model”. Computer Graph-
ics Forum. Vol. 30. Wiley Online Library. 2011, 1181–1187 2.

[DRR03] DAVIS, JAMES, RAMAMOORTHI, RAVI, and RUSINKIEWICZ,
SZYMON. “Spacetime stereo: A unifying framework for depth from tri-
angulation”. 2003 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 2003. Proceedings. Vol. 2. IEEE. 2003, II–
359 4.

[DYW05] DAVIS, JAMES E, YANG, RUIGANG, and WANG, LIANG.
“BRDF invariant stereo using light transport constancy”. Tenth IEEE In-
ternational Conference on Computer Vision (ICCV’05) Volume 1. Vol. 1.
IEEE. 2005, 436–443 2.

[EBGB14] ECHEVARRIA, JOSE I, BRADLEY, DEREK, GUTIERREZ,
DIEGO, and BEELER, THABO. “Capturing and stylizing hair for 3D fab-
rication”. ACM Transactions on Graphics (ToG) 33.4 (2014), 125 2.

[FGT*16] FYFFE, GRAHAM, GRAHAM, PAUL, TUNWATTANAPONG,
BOROM, et al. “Near-Instant Capture of High-Resolution Facial Geome-
try and Reflectance”. Computer Graphics Forum. Vol. 35. 2. Wiley On-
line Library. 2016, 353–363 2.

[FJA*14] FYFFE, GRAHAM, JONES, ANDREW, ALEXANDER, OLEG, et
al. “Driving high-resolution facial scans with video performance cap-
ture”. ACM Transactions on Graphics (TOG) 34.1 (2014), 1–14 2.

[FŠP*07] FISCHER, SYLVAIN, ŠROUBEK, FILIP, PERRINET, LAURENT,
et al. “Self-invertible 2D log-Gabor wavelets”. International Journal of
Computer Vision 75.2 (2007), 231–246 3, 11.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

187



T. Sun, G. Nam, C. Aliaga, C. Hery, R. Ramamoorthi / Human Hair Inverse Rendering using Multi-View Photometric data

[GFT*11] GHOSH, ABHIJEET, FYFFE, GRAHAM, TUNWATTANAPONG,
BOROM, et al. “Multiview face capture using polarized spherical gradi-
ent illumination”. Proceedings of the 2011 SIGGRAPH Asia Conference.
2011, 1–10 2.

[GLD*19] GUO, KAIWEN, LINCOLN, PETER, DAVIDSON, PHILIP, et al.
“The relightables: Volumetric performance capture of humans with real-
istic relighting”. ACM Transactions on Graphics (TOG) 38.6 (2019), 1–
19 2.

[HBLB17] HU, LIWEN, BRADLEY, DEREK, LI, HAO, and BEELER,
THABO. “Simulation-ready hair capture”. Computer Graphics Forum.
Vol. 36. 2. Wiley Online Library. 2017, 281–294 2.

[HML*14] HU, LIWEN, MA, CHONGYANG, LUO, LINJIE, et al. “Cap-
turing braided hairstyles”. ACM Transactions on Graphics (TOG) 33.6
(2014), 225 2.

[HMLL14] HU, LIWEN, MA, CHONGYANG, LUO, LINJIE, and LI, HAO.
“Robust hair capture using simulated examples”. ACM Transactions on
Graphics (TOG) 33.4 (2014), 126 2.

[HMLL15] HU, LIWEN, MA, CHONGYANG, LUO, LINJIE, and LI, HAO.
“Single-view hair modeling using a hairstyle database”. ACM Transac-
tions on Graphics (TOG) 34.4 (2015), 125 2.

[HVC08] HERNANDEZ, CARLOS, VOGIATZIS, GEORGE, and CIPOLLA,
ROBERTO. “Multiview photometric stereo”. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 30.3 (2008), 548–554 2.

[HZ03] HARTLEY, RICHARD and ZISSERMAN, ANDREW. Multiple view
geometry in computer vision. Cambridge university press, 2003 2.

[HZW12] HERRERA, TOMAS LAY, ZINKE, ARNO, and WEBER, AN-
DREAS. “Lighting hair from the inside: A thermal approach to hair re-
construction”. ACM Transactions on Graphics (TOG) 31.6 (2012), 1–
9 2.

[JMM09] JAKOB, WENZEL, MOON, JONATHAN T, and MARSCHNER,
STEVE. “Capturing hair assemblies fiber by fiber”. ACM Transactions
on Graphics (TOG) 28.5 (2009), 164 2.

[KM17] KHUNGURN, PRAMOOK and MARSCHNER, STEVE. “Azimuthal
scattering from elliptical hair fibers”. ACM Transactions on Graphics
(TOG) 36.2 (2017), 1–23 2.

[KN08] KOPPAL, SANJEEV J and NARASIMHAN, SRINIVASA G. “Ap-
pearance derivatives for isonormal clustering of scenes”. IEEE transac-
tions on pattern analysis and machine intelligence 31.8 (2008), 1375–
1385 2.

[KSZ*16] KHUNGURN, PRAMOOK, SCHROEDER, DANIEL, ZHAO,
SHUANG, et al. “Matching Real Fabrics with Micro-Appearance Mod-
els”. ACM Trans. Graph. 35.1 (Dec. 2016). ISSN: 0730-0301. DOI:
10.1145/2818648. URL: https://doi.org/10.1145/
2818648 2.

[LLP*12] LUO, LINJIE, LI, HAO, PARIS, SYLVAIN, et al. “Multi-view hair
capture using orientation fields”. Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on. IEEE. 2012, 1490–1497 2.

[LLR13] LUO, LINJIE, LI, HAO, and RUSINKIEWICZ, SZYMON.
“Structure-aware hair capture”. ACM Transactions on Graphics (TOG)
32.4 (2013), 76 2.

[LLWL20] LEE, CHENG-HAN, LIU, ZIWEI, WU, LINGYUN, and LUO,
PING. “Maskgan: Towards diverse and interactive facial image manipu-
lation”. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, 5549–5558 3.

[LMC19] LOGOTHETIS, FOTIOS, MECCA, ROBERTO, and CIPOLLA,
ROBERTO. “A differential volumetric approach to multi-view photomet-
ric stereo”. Proceedings of the IEEE International Conference on Com-
puter Vision. 2019, 1052–1061 2.

[MJC*03] MARSCHNER, STEPHEN R., JENSEN, HENRIK WANN, CAM-
MARANO, MIKE, et al. “Light Scattering from Human Hair Fibers”.
ACM Trans. Graph. 22.3 (July 2003), 780–791. ISSN: 0730-0301. DOI:
10.1145/882262.882345. URL: http://doi.acm.org/10.
1145/882262.882345 2, 6.

[NWKS19] NAM, GILJOO, WU, CHENGLEI, KIM, MIN H, and SHEIKH,
YASER. “Strand-accurate multi-view hair capture”. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition.
2019, 155–164 1–5, 7, 8.

[PBS04] PARIS, SYLVAIN, BRICEÑO, HECTOR M, and SILLION,
FRANÇOIS X. “Capture of hair geometry from multiple images”. ACM
transactions on graphics (TOG) 23.3 (2004), 712–719 2, 3.

[PCK*08] PARIS, SYLVAIN, CHANG, WILL, KOZHUSHNYAN, OLEG I,
et al. “Hair photobooth: geometric and photometric acquisition of real
hairstyles”. ACM Transactions on Graphics (TOG). Vol. 27. 3. ACM.
2008, 30 2.

[PHVL15] PEKELIS, LEONID, HERY, CHRISTOPHE, VILLEMIN,
RYUSUKE, and LING, JUNYI. A Data-Driven Light Scattering Model
for Hair. https : / / graphics . pixar . com / library /
DataDrivenHairScattering/. Feb. 2015 2.

[PSM*16] PARK, JAESIK, SINHA, SUDIPTA N, MATSUSHITA, YA-
SUYUKI, et al. “Robust multiview photometric stereo using planar mesh
parameterization”. IEEE transactions on pattern analysis and machine
intelligence 39.8 (2016), 1591–1604 2.

[SDR*20] SCHMITT, CAROLIN, DONNE, SIMON, RIEGLER, GERNOT, et
al. “On Joint Estimation of Pose, Geometry and svBRDF From a Hand-
held Scanner”. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020, 3493–3503 2.

[TFG*13] TUNWATTANAPONG, BOROM, FYFFE, GRAHAM, GRAHAM,
PAUL, et al. “Acquiring reflectance and shape from continuous spheri-
cal harmonic illumination”. ACM Transactions on graphics (TOG) 32.4
(2013), 1–12 2.

[VPB*09] VLASIC, DANIEL, PEERS, PIETER, BARAN, ILYA, et al. “Dy-
namic shape capture using multi-view photometric stereo”. ACM SIG-
GRAPH Asia 2009 papers. 2009, 1–11 2.

[Woo80] WOODHAM, ROBERT J. “Photometric method for determining
surface orientation from multiple images”. Optical engineering 19.1
(1980), 191139 2.

[WOQS05] WEI, YICHEN, OFEK, EYAL, QUAN, LONG, and SHUM,
HEUNG-YEUNG. “Modeling hair from multiple views”. ACM Transac-
tions on Graphics (ToG). Vol. 24. 3. ACM. 2005, 816–820 2.

[XWW*14] XU, ZEXIANG, WU, HSIANG-TAO, WANG, LVDI, et al. “Dy-
namic hair capture using spacetime optimization”. To appear in ACM
TOG 33 (2014), 6 2.

[YWP*18] YU, CHANGQIAN, WANG, JINGBO, PENG, CHAO, et al.
“Bisenet: Bilateral segmentation network for real-time semantic seg-
mentation”. Proceedings of the European conference on computer vision
(ECCV). 2018, 325–341 3.

[YY11] YOSHIYASU, YUSUKE and YAMAZAKI, NOBUTOSHI.
“Topology-adaptive multi-view photometric stereo”. CVPR 2011.
IEEE. 2011, 1001–1008 2.

[YY97] YOU, H and YU, L. “Atomic force microscopy as a tool for study
of human hair”. Scanning 19.6 (1997), 431–437 6.

[ZCW*17] ZHANG, MENG, CHAI, MENGLEI, WU, HONGZHI, et al. “A
data-driven approach to four-view image-based hair modeling”. ACM
Transactions on Graphics 36.4 (July 2017), 156:1–156:11. ISSN: 0730-
0301 (print), 1557-7368 (electronic). DOI: https://doi.org/10.
1145/3072959.3073627 2.

[ZFT*20] ZHANG, XIUMING, FANELLO, SEAN, TSAI, YUN-TA, et al.
“Neural Light Transport for Relighting and View Synthesis”. arXiv
preprint arXiv:2008.03806 (2020) 2.

[ZHX*18] ZHOU, YI, HU, LIWEN, XING, JUN, et al. “HairNet: Single-
View Hair Reconstruction using Convolutional Neural Networks”. Pro-
ceedings of the European Conference on Computer Vision (ECCV).
2018, 235–251 2.

[ZRL*09] ZINKE, ARNO, RUMP, MARTIN, LAY, TOMÁS, et al. “A prac-
tical approach for photometric acquisition of hair color”. ACM Transac-
tions on Graphics (TOG) 28.5 (2009), 1–9 2.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

188



T. Sun, G. Nam, C. Aliaga, C. Hery, R. Ramamoorthi / Human Hair Inverse Rendering using Multi-View Photometric data

(a) Original Image (b) Frequency Space Image

(c) Frequency Space
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Figure 11: As visualized in frequency space, the log-gabor filter
contains sharper and more precise frequency support, which can
better capture the 2D orientation of the hair strands.

[ZW07] ZINKE, ARNO and WEBER, ANDREAS. “Light scattering from
filaments”. IEEE Transactions on Visualization and Computer Graphics
13.2 (2007), 342–356 6.

[ZWT13] ZHOU, ZHENGLONG, WU, ZHE, and TAN, PING. “Multi-view
photometric stereo with spatially varying isotropic materials”. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2013, 1482–1489 2.

[ZZ19] ZHANG, MENG and ZHENG, YOUYI. “Hair-GAN: Recovering
3D hair structure from a single image using generative adversarial net-
works”. Visual Informatics 3.2 (2019), 102–112 2.

Appendix A: Log-Gabor Filter

We use log-gabor filter [FŠP*07] to extract the 2D orientation map
from the images. The frequency representation of a log-gabor filter
which captures the 2D line orientation q is expressed as:

Fq(r,f) = exp

 
�

log(r ·l)
2s2

l

!
· exp

 
�
(f�q)2

2s2
f

!
, (13)

where r and f are the polar coordinates in frequency space. We use
l = 3 because the average width of the hair strands we observe is
roughly 3 pixels. We set sl = log(2) to tolerate the variation in the
hair width, and sf = 2⇤180�/128 since we have divided 180� into
128 bins. In other words, we have 128 log-gabor filters in our filter
bank.

Figure 11(b) shows the frequency representation of a photomet-
ric image which contains many hair strands. Since there are many
hair strands that are following the same 2D line orientation in the
image, we can observe many line-like structures emitting from the
image center. Compared to the frequency support of gabor filter in

Image Crop Filter Response

Figure 12: Filter responses of gabor and log-gabor filters applied
on the same pixel. Log gabor filters produce sharper peaks in the
filter response, thus can detect the hair strand direction better.

Fig 11(c), the frequency support of log-gabor filter is more concen-
trated to a specific direction, and its shape has more resemblance to
the pattern observed in the frequency space image.

Figure 12 shows an example of applying the gabor and the log-
gabor filters on a specific pixel. As shown in the plots, the filter
response from the log-gabor filters contains much sharper peaks
than the response from the gabor filter.

Appendix B: 2D orientation results

In Fig. 13, we show our procedure of extracting 2D orientation
maps and confidence maps from photometric images. We first ap-
ply log-gabor filter on each photometric image to get the per-image
2D orientation map and the confidence map. Notice that these per-
image 2D maps are sometimes inaccurate, since there are many
dark regions in the photometric images. We then collect the 2D
maps from the images taken from the same camera, and merge them
into a single 2D orientation map and a confidence map. These two
maps are later used for 3D line reconstruction.
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Figure 13: We first extract the 2D orientation map and the confidence map from each photometric image. Then we merge the 2D maps from
the same camera into a single 2D orientation map and a confidence map.
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