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Figure 1: Two example scenes demonstrating that our radiance-based model (tGMM) is able to distribute samples towards the important
regions of the sky, offering variance reduction a) significantly higher than naive sampling (uniform) and b) that matches more computationally

demanding approaches (SAT).

Abstract

Parametric clear sky models are often represented by simple analytic expressions that can efficiently generate plausible, natural
radiance maps of the sky, taking into account expensive and hard to simulate atmospheric phenomena. In this work, we show
how such models can be complemented by an equally simple, elegant and generic analytic continuous probability density
function (PDF) that provides a very good approximation to the radiance-based distribution of the sky. We describe a fitting
process that is used to properly parameterise a truncated Gaussian mixture model, which allows for exact, constant-time
and minimal-memory sampling and evaluation of this PDF, without rejection sampling, an important property for practical
applications in offline and real-time rendering. We present experiments in a standard importance sampling framework that
showcase variance reduction approaching that of a more expensive inversion sampling method using Summed Area Tables.

CCS Concepts

* Computing methodologies — Ray tracing; Image-based rendering; Mixture modeling;

1. Introduction

Analytic sky models have been an active area of research for many
years [NDKY96,PSS99, HW 12, Hil20]. This is mainly due to their
applicability in a wide range of rendering tasks, from real time ren-
dering to architectural simulations. In many environments, natural
light from the sky dome can be a dominant factor to a scene’s illu-
mination, especially when the sun disk is not directly visible. These
parametric models have the benefit of adjustable sun position and
clearness conditions through a small and configurable set of pa-
rameters, making them intuitive to adjust and artist-friendly. Even
though a lot of work has focused on the generation of analytic for-
mulas for the radiance distribution across the sky, the efficient sam-
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pling of such distributions remains an open problem. Typically, an-
alytic sky models are treated as regular environment maps that are
sampled either uniformly or using a discrete distribution on some
parametric space.

In this work, we are particularly interested in achieving effi-
cient sampling of the sky illumination directly from the parametric
sky model, potentially also spread over time and conditions, as is
the case in architectural simulations and daylighting systems (Fig-
ure 2). As stochastic methods based on ray tracing become more
practical thanks to recent hardware advances, an analytic formula
for sampling analytic sky models becomes very useful. Most mod-
ern ray-tracing-based rendering approaches for outgoing radiance

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/0000-0003-2282-4644
https://orcid.org/0000-0003-4774-0746
https://doi.org/10.2312/sr.20211288

36 N. Vitsas, K. Vardis & G. Papaioannou / Sampling Clear Sky Models using Truncated Gaussian Mixtures

Sky radiance Modelled PDF

Hosek - turbidity 7, elevation 8°

Hosek - turbidity 7, elevation 73°

B -

Preetham - turbidity 4, elevation 22°

Preetham - turbidity 2, elevation 62°

Figure 2: Sampling of different sky model instances using our
tGMM-based PDF model. Left: sky radiance in hemispherical co-
ordinates. Right: resulting PDF, accounting for the polar distor-
tion.

estimation rely on Monte Carlo integration with importance sam-
pling. A distribution function for this sampling process needs to be
efficient to compute and straightforward to incorporate in any such
framework [Vea98, TCE(O5]. One potential direction would be to
work directly on the analytic formula provided by the chosen sky
model. However, this can be computationally expensive or mathe-
matically infeasible. Furthermore, this would restrict the approach
to a particular sky model. Instead, we decided to fit a new distri-
bution to the underlying analytic sky model’s radiance, a truncated
Gaussian mixture model ({(GMM) in particular, adjusting its param-
eters to match the specific sky model in question.

Mixture models are widely used in data mining, pattern recogni-
tion, machine learning, and statistical analysis [Bis06]. Apart from
providing a framework for clustering data, they can also be used
for building complex probability distributions. A very common
and well-behaved mixture model is the Gaussian mixture model
(GMM), which is a linear combination of Gaussian components,
aiming to provide a richer class of density models than a single
Gaussian. A tGMM is simply a linear combination of truncated
Gaussian components. Truncation refers to bounding the distribu-
tion to a region [o, B], o, B € R, outside of which the PDF is zero.
The small storage requirements of a single tGMM allows us to
rapidly generate and efficiently store a large number of tGMMs
that compactly encode the radiance-based distribution of an entire
sky model.

Our work is based on two key observations: a) the radiance dis-
tribution of the sky exhibits low frequency changes and uniform
regions and, thus, can be well-fitted with normal distribution ker-
nels, and b) bounding, i.e. truncating, the distribution to the hemi-
spherical domain dispenses with (expensive) rejection sampling ap-
proaches, which would be inevitably required at least for the lati-
tudinal sample coordinate, due to the hard clipping at the horizon.
Our experiments show that a tGMM of only a few components can

accurately approximate the distribution of the sky model and is very
easy to store, sample and evaluate.

To summarise, the main contribution of this paper is a probability
density function based on truncated Gaussian mixture models fitted
on the sky radiance distribution that:

e uses minimal and adjustable look-up-table (LUT) storage to en-
code the approximate PDF,

e has constant-time evaluation, offering great performance charac-
teristics for both CPU and GPU implementations,

e can easily be integrated in any existing importance sampling es-
timator,

e dispenses with any form of rejection sampling, which is unpre-
dictable in terms of performance.

A brief overview of the proposed model generation and sky model
importance sampling is shown in Figure 3.

2. Related Work

This section covers previous work on analytic sky models, envi-
ronment map sampling techniques and the application of learned
distributions, like GMMs, to several aspects of rendering.

Analytic sky models. The importance of using realistic and con-
trollable sky illumination in rendering has led to several parametric
methods being proposed over the years. Some of them, have been
formally adopted by CIE [C*94]. Many well-known and widely
used models in computer graphics are based on variations of the
Perez formula [PSM93]:

FO,)=(1 +AeB/Cose)(1 +Ce™ + Ecos™y). (1)

The two input variables are 6 and 7y, which are the angle between
the zenith and the viewing direction and the angle between the sun
and the viewing direction, respectively. The terms A, B,C, D, E have
specific physical effects on the sky’s distribution like darkening and
brightening of the horizon or relative intensity of the circumsolar
region.

Based on the Perez formula, Preetham et al. [PSS99] proposed a
fitting of the parameters using reference simulated data. Hosek et
al. [HW12] expanded the Preetham model using data generated by
an offline volumetric path tracer, taking into account complex at-
mospheric phenomena. Hosek’s model is more stable and offers a
wider range of sky appearances. The main configurable parameter
in both models, apart from the sun position (altitude, longitude) is
turbidity #, which models the clearness of the sky. In the Preetham
model the valid range for ¢ is [2,6], while Hosek performs well in a
wider range, [2, 10]. One can rapidly generate sky maps by manipu-
lating those few parameters. The Hosek model also adds an albedo
parameter p, which mainly affects the chromatic appearance of the
sky rather than its power distribution and therefore, we exclude this
parameter from our tabular PDF data.

An even more expressive and compact sky and atmospheric
model was recently proposed by Hillaire [Hil20]. This model is
very efficient and can handle atmospheric visualisation from any
point of view, ground or space with focus on real-time graphics
and artistic visualisation. A machine-learning-driven process for
learning and predicting sky models was proposed by Satilmis et
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Figure 3: The fitting and sampling process of our analytic PDF, applied to the Hosek sky model.

al. [SBCD17]. Using a single layer artificial neural network, the
authors show that the network can adapt to several analytic models
and even captured images. However, it is not discussed how this can
be integrated in an importance sampling framework. The interested
reader can refer to the work of Bruneton [Brul7] for an extensive
evaluation of several clear sky models.

Compact sky radiance representations. Efficient encoding and
storage of those sky maps can be achieved using long-standing rep-
resentations in computer graphics. When approximations are ac-
ceptable, (Spherical) Radial Basis Functions have been extremely
useful. They offer a very good compromise between storage, recon-
struction performance and accuracy. Spherical gaussians [TS06],
spherical harmonics [SKS02] and Haar wavelets [NRHO3] have
all been employed for fast, approximate precomputed light trans-
port. Spherical harmonics in particular have been proposed for the
Preetham model [HMWOS].

Environment map sampling. Accurate sampling of environment
maps is very important for image-based lighting. Sampling the
sky dome naturally falls under the general category of environ-
ment sampling. A robust sampling approach is to use a cumulative
density function, generated from a radiance-based PDF. Pharr et
al. [PJH16] define a piecewise-constant 2D probability distribution
function in image coordinates that corresponds to the distribution
of radiance represented by the environment map. This function can
then be sampled using the marginal and conditional CDF stored
in two Summed Area Tables (SAT) [Cro84, CETC06, CAMOS].
Previous research in environment sampling has also led to hi-
erarchical subdivisions like Penrose tiling [ODJ04], stratified re-
gions [ARBJO03] and “cascading sets” of conditional and marginal
1D CDFs [LRROS]. Other applicable approximate methods include
spherical harmonics [JCJ09, Ber11] and wavelet importance sam-
pling [CJAMJO0S]. To account for occlusion that is most notably
present in indoor scenes, Bitterli et al. [BNJ15] proposed visibility-
based importance sampling of environment map regions through
rectangular portals using a novel rectilinear mapping.

Several of the referenced methods for environment map sam-
pling can accommodate specialised implementations for the spe-
cific problem of skylight sampling. However, our main concern is
the construction of an analytic model that is simple, robust, easy to
implement and can be sampled exactly.
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Learning-based methods. The idea of learning a distribution from
data has been explored heavily in the context of rendering, espe-
cially for approximating probability functions based on the product
of direct lighting with the visibility or BRDF terms. In the con-
text of path guiding, Vorba et al. [VKv*14] proposed guiding the
sampling process by progressively learning sampling distributions
based on GMMs in order to handle scenes with complex geome-
try and lighting conditions. Herholz et al. [HEV*16] extended this
idea by fitting separately obtained GMMs for the BRDF and illumi-
nation terms, which are combined in a product mixture to impor-
tance sample indirect illumination. In a similar fashion, Tsai and
Shih [TCJWO08] used SRBF kernels to fit the BRDF and environ-
ment map which are then combined for efficient product sampling
of the two. Reibold et al. [RHID18] use complete transport paths of
high variance as samples to construct and cache a continuous PDF
using a Gaussian mixture model. These can later be sampled for
important paths. Recently, Xia et al. [XWHM20] employed low-
component Gaussian mixtures to approximate the BSDFs of com-
plex layered materials. They take advantage of the analytic solu-
tions to Gaussian products to importance sample multiple layers of
a material.

3. Background

In this section, we review importance sampling, environment map
sampling using Summed Area Tables and truncated Gaussian Mix-
ture Models.

Importance sampling (IS) is a very effective variance reduction
technique that has been applied to all terms of the rendering equa-
tion. It requires generating samples from probability density func-
tions that exhibit similar characteristics to the original function.
These samples can be generated by CDF inversion, rejection sam-
pling, Metropolis sampling, or other means. When applicable, the
inversion method is the most convenient and is the one used by
most common BRDF and light source sampling techniques. How-
ever, many lighting distributions in a 3D scene are hard to sample
using the inversion method. Ideally, in our sampling strategy, we
want p(x) o< f(x), but a useful property of IS is that difficult or
impossible to sample densities p can be replaced by an approxi-
mate distribution p; better approximations lead to more efficient
importance sampling. The result will remain unbiased as long as p
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integrates to 1 and is greater than zero wherever there is non-zero
importance. Given the Monte Carlo estimator

Ly ()
I~ (k) =5 )~
N ; p(x)
1 is expected to converge faster, if samples are taken from a distri-
bution that is similar to the integrand.

Sampling using Summed Area Tables. The standard and arguably
more general and robust approach for importance-sampling an en-
vironment map is to consider a discrete 2D distribution with an
unnormalised, piecewise constant PDF constructed from the inten-
sity values I of each pixel [PJH16]. From this, one can easily cal-
culate the marginal density function p(v) and the conditional dis-
tribution p(u|v) for each row of the image. During sampling, the
marginal 1D distribution is used to select a row of the image to
sample. Rows with bright pixels are more likely to be sampled.
Consequently, the row is sampled using its 1D conditional distribu-
tion. The marginal and conditional CDFs are built from the discrete
PDF values and stored in Summed Area Tables [Cro84]. However,
the process of inversion sampling of these CDFs, although simple,
requires an O(logn) operation in the form of a binary search over
the SAT. Apart from the performance considerations, the calcula-
tion and storage of large tabular data for both the original image, as
well as the CDFs and PDFs, is required. In execution environments
like those of a GPU processor, such an operation can be unjustifi-
ably costly.

Truncated Gaussian Mixture Model. To better understand the
reasons we chose this representation as our model, we start with
a brief discussion on Gaussian distribution components. In order
to apply the inversion method to a distribution p(x) we must first
build its CDF P(x) and its inverse P~ (x). The n-dimensional nor-
mal distribution takes the general form:

exp (~3(x—w)2 7 (x—p))

¢(-x;l‘72) = 275"/2|Z|1/2

Sampling from this distribution with a non-diagonal covariance
matrix X and arbitrary truncation regions would involve sample re-
jection and in our case, it would be unnecessary; due to the param-
eterisation of the sky domain and the inherent, symmetrical appear-
ance of clear skies, we need only use a diagonal covariance matrix
¥ = diag(c7,63), where the equation in 2D can be simplified to:

exp (— 3 <%’X + y%fy) )

2nGx Oy
exp (—XZE‘)‘(X) exp (—ZS”)
\/2no% \/210%

= 0(x; ux, 6%)O (Vs ay , OF ).

2 2
&(x,y; ux ,uy ,0x , Oy ) =

This is the product of two 1D Gaussian distibutions, which can
be sampled independently.

A truncated Gaussian in a region [, B] can be exclusively for-
malised in terms of a regular Gaussian distribution:

. _ 0(npc?)
Yo%, a,B) = ®(0) — D(B)’ @
P (E) = o7 (@(a) +E(@(B) — D))o + 4,

where ®(x;u,6°) and @' (x;,6%) are the CDF and the quan-
tile function of the regular Gaussian distribution, respectively. The
above formulas demonstrate a useful property of truncated Gaus-
sians; they can be defined and evaluated in terms of their “parent”
Gaussian distribution. This effectively means that a truncated Gaus-
sian can be sampled exactly, within the truncation bounds, using the
analytic formulas of the unbounded Gaussian. Inverting a Gaus-
sian function directly is not possible. It requires the use of the error
function which, however, has very fast and robust analytic approx-
imations that can be used. Moreover, the Gaussian distribution has
been extensively studied and there are many methods to efficiently
draw samples from it and its truncated variants.

A truncated Gaussian Mixture Model, similar to a Gaussian Mix-
ture Model, can be expressed in terms of a latent selection variable
z€[1..N]:

N
p(x) =Y p(2)p(xlz) = Y mey(xlu, 0%), 3
z k

where 0 <7, <1 andZiVTCkz 1.

Sampling from such a mixture model is fairly straightforward,
which makes it very useful in the context of importance sampling
for rendering. The first step is to sample from the categorical dis-
tribution p(z) defined by the weights of each individual component
and then, draw a sample from the distribution of this one single
component WY(x|uy, ).

4. Method Description

We describe here the complete process for the modelling, fitting
and sampling of our tGMM PDF generated from the radiance dis-
tribution map of an analytic sky model. The method must generate
samples over the polar coordinates of the sky dome hemisphere
6 €10,2m),0 € [0, %}, where 0 is the sample elevation and ¢ its az-
imuth, that follow the distribution of the sky radiance (typically the
luminance component). Unfortunately, drawing samples from the
Perez model (Equation 1) with inversion sampling is very hard, if
possible at all. However, the several exponential components in the
equation and the resulting power distribution both hint at a reason-
able fitting by a mixture model of Gaussian components, which we
exploit.

4.1. PDF Modelling

We parameterise the PDF according to solar elevation and turbidity
and obtain a tGMM for each parameter pair, by fitting the model
to a normalised luminance map, densely generated from the sky
model. The azimuth of the sun is not taken into account as a pa-
rameter for the model as it is typically only applied as a constant
offset to the generated angle ¢ of each sample.

© 2021 The Author(s)
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Figure 4: Our tGMM fitting pipeline. a) Luminance distribution of the sky data to be fitted, b) the resulting GMM from the fitting process;
the range of the resulting function exceeds the [0,21] x [0, %] region, c) the redistribution of the PDF within the truncation bounds and d) the
refitting of the weights so that they reflect the new truncated GMM representation.

Due to its relative high radiance and small subtended solid angle
on the hemisphere, most analytic sky models handle the sun’s solar
disk contribution separately from the main model [HW13,PSS99].
We also perform our fitting on the sky dome illumination without
the contribution of the sun disk. Depending on the desired accu-
racy, the sun is better sampled as a directional light or a spherical
ellipsoid [GUnK*17], rather as part of the environment map.

Prior to normalisation and fitting, we weigh the luminance values
by sin 6, the absolute determinant of the Jacobian [BNJ15, PJH16]
of the mapping from spherical coordinates (¢,0) to Cartesian co-
ordinates (x,y,z), to account for the non-uniform stretching of the
luminance mapping:

L(u,v)

Ly = max(L)

sin(0). 4)

We use the tGMM of Equation 3 as our approximate PDF. We do
not follow the formulation of a particular cleat sky model but rather
model our PDF as an independent function, with adjustable degrees
of freedom that make it directly applicable to any clear sky model.
For the model evaluation and practical application of the PDF, we
provide fitted tGMM parameters for the Hosek model, which is the
state of the art in analytic sky models from ground view, i.e. the
most common case. We also provide results for the fitting of the
tGMM on the widely used Preetham model.

For the Hosek and Preetham models, we have chosen the number
of components N for the tGMM to be 5, after experimentally study-
ing the behaviour of the fitting error (Section 4.2 and Figure 3).
Therefore, for each elevation-turbidity parameter pair correspond-
ing to a complete sky map, 25 real values need to be stored for each
tGMM. For each of the 5 Gaussians, these values correspond to two
U and oy parameters, for the longitudinal and latitudinal directions
respectively, and one for the component’s weight ;. The storage
requirements increase linearly with the required parameter combi-
nations. Since each tGMM requires only the storage of a few real
values, it is possible to store large combinations of the radiance-
based PDFs of sky model parameters in compact lookup tables.
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4.2. Fitting

The PDF fitting operation only needs to be performed once and
the resulting tables can be reused across multiple rendering tasks.
Therefore, we also provide precomputed tables as part of the sup-
plemental material. We choose to parameterise the GMM directly
in the [0,2m] x [0, 7] region instead of normalising it to the [0, 1)
domain. This effectively means that values that are sampled or eval-
uated through this GMM directly correspond to polar coordinates.

The fitting operation is performed in two steps. The first step
uses a robust Trust Region Reflective least squares fitting algo-
rithm [BCL99] to fit a curve defined by a linear superposition of
Gaussian kernels on the luminance distribution map (Figure 4a).
Initially, we do not constrain our fitted model to be a true GMM,
i.e. we only require that weights are positive, but not necessarily
summing up to 1. However, the fitted Gaussian components are
constrained so that they represent proper normal distributions. Due
to the symmetric nature of sky luminance with respect to the para-
metric space axes, we also enforce a diagonal covariance matrix X.
This results in fewer parameters and independent sampling of the
two random variables 0,¢. We further confine the means u to be
inside the region [0,27] x [0, 3] and variance & of each component
to not exceed 27. Since we later convert the component distribu-
tion to a truncated Gaussian, these constraints are not imperative
but rather help avoid arithmetic precision errors during sampling.
After the first step completes, the weights are normalised, resulting
in a GMM defined on the infinite parametric domain (Figure 4b).

By definition, this GMM is a valid PDF but sampling from it
within the specific region of the hemispherical sky dome would re-
quire rejection sampling or some unintuitive remapping of the sam-
ples. The GMM’s domain of support is R? and the weights of each
component do not correspond to the importance of each Gaussian
curve in [0,2m) X [0, T]. We need to convert the GMM into a tGMM
effectively making the volume under the curve equal to 1 within
the hemispherical parametric space. Therefore, we refit the model
to obtain proper weights for truncated Gaussian components. Infor-
mally, a truncated normal PDF is constructed by choosing a general
normal PDF with u and 6%, and a truncation range [ct, B]. The PDF
of the associated general normal distribution is modified by setting
values outside the range to 0 and uniformly scaling the values in-
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Algorithm 1: Sampling from the sky model PDF.
Result: Sampled Direction and PDF
CoMPS <~ TGMM GAUSSIAN COMPONENTS;
CDF « 0;
SELECTEDCOMP < NULL;
€1,82,8 ~U(0,1);
for k < 1toN do
CDF +=my;
if CDF > &, then
SELECTEDCOMP < COMPS[k];
break;
end

end

0=TRUNCGAUSSSAMPLE(SELECTEDCOMP, &, 0,27);
6=TRUNCGAUSSSAMPLE(SELECTEDCOMP, &3, 0, %);
PDF = TRUNCGAUSSPDF(ComPs,0,0) (Eq. 5)

return TOCARTESIAN(® + G047, 0), PDF.

side the range so that the function integrates to 1. Of course, in the
case of a mixture model, the component weights must be refitted,
since retaining the initial ones distorts the shape of our PDF (see
Figure 4¢). To accomplish this, we use a final least squares step to
fit the new tGMM. This time, however, we keep u and ¢ of the indi-
vidual Gaussians fixed and only optimise their relative weights. As
illustrated in Figure 4d, the resulting shapes of the GMM and the
tGMM are very close, as expected; only the weights of the compo-
nents are different.

The reason we perform the fitting as a two-step process and not
as a simultaneous optimisation of all the parameters is the follow-
ing. With the free variables, namely u and o, being present in both
the denominator and numerator of the cost function (Equation 2),
the function fitting process becomes a much more difficult optimi-
sation problem. Our experiments showed that we could not get as
good approximations when fitting directly on a truncated Gaussian
mixture model.

We performed the above fitting process on both the Hosek and
the Preetham models. For the Hosek model, we generate sky maps
using the reference implementation provided by the authors and
for the Preetham model we employ a custom implementation. In
both cases, the unnormalised radiance distribution is calculated ac-
cording to Equation 4. As mentioned in Section 4.1, the azimuth of
the sun is irrelevant for the PDF parameterisation. However, care-
ful placement facilitates the fitting process. We chose to position
the sun at an azimuth of 90 degrees, so that neither the sun halo
(90°) nor the opposite brightening of the sky (270°) fall near the
sky map range boundaries (see also Figures 2, 4). Otherwise, an
additional Gaussian would be required to properly model the illu-
mination transition.

In Figure 6, we present some indicative instances of the absolute
error between the normalised luminance (Equation 4) and the fit-
ted tGMM, at various solar elevation and turbidity values. As we
can observe, the error rarely reaches 10%, and only at very steep
luminance transition zones.

0.12
0.1
0.08
< 0.06
s
0.04

0.02

GMMs
Turbidity 2 — 4--- 7.... Elevation 3

13— 43— 73 —

Figure 5: MAE decreases with the number of Gaussian compo-
nents, reaching an optimal configuration with 4-6 components.

Finally, each radiance distribution map is fitted with a selected
number of truncated Gaussian components. Our experimental re-
sults indicate that 5 Gaussian components adequately model the
PDF with a very low approximation error across the parameter
space. We present the mean absolute error (MAE) of the fitting with
respect to the number of components in Figure 5.

4.3. Sampling and Reconstruction

The process to sample a tGMM is described in Algorithm 1. Using
a uniform random variable &; ~ U(0, 1), we construct the 1D CDF
of the weights m; and return the first component where &; < .
Subsequently, and by exploiting the fact that each component has
a diagonal covariance matrix, we can easily sample the 2D trun-
cated Gaussian as two separate 1D truncated Gaussian distributions
based on two uniform random variables &, and &3. For the genera-
tion of the random values &;,&,, &3, we follow the sampling process
adopted in similar implementations, where two independent vari-
ables are generated (&1, & ). One of them is used for the Gaussian
lobe selection (&) and is then remapped to obtain a second uniform
random number (&3) for the subsequent (2D) Gaussian sampling.

Given a direction, evaluating the PDF requires the evaluation
of the tGMM. Since the model has multiple overlapping regions,
the PDF for a specific sample is the weighted sum of the PDF for
each component. The PDF needs to also be transformed to be in
terms of directions on the unit sphere, which resolves to a simple
division operation by the determinant of the Jacobian of the map-
ping from Cartesian to polar coordinates. The re-weighted values
in the stretched polar luminance map and the determinant (approx-
imately) cancel out, leading to perfect importance sampling. The
exact calculation of the PDF with respect to the solid angle mea-
sure for direction ® comes from Equation 3, where:

p(9.6)
po) = sin®
N (&)
P(0,8) = ) mewi(9,6).
k

One consideration with mixture models is that they may be costly
to evaluate if they use a lot of components. In our case, however,
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Figure 6: Absolute error of the fitted model with respect to corre-
sponding normalised sky luminance map for different solar eleva-
tion and turbidity values.

there are ways to further improve performance. The first and most
straightforward approach for real-time scenarios and a single sky
parameterisation is to precalculate the values and store them in a
2D texture that can be efficiently sampled for each direction. This
is a very fast procedure that only needs to be performed when the
sky changes and allows for very fast evaluation of the PDF. A more
general solution, also suitable for variable sky parameters, is to use
a small, precalculated LUT for the standard normal distribution to
greatly speed up evaluation time of the exponential functions.

5. Experimental Validation

In our rendering experiments we evaluate our sampling model in
terms of both rendering quality, performance and memory require-
ments. The experimental fitting process verification has been cov-
ered in Section 4.2. We compare our method (tGMM) against naive
uniform sampling and the more accurate, but also more compu-
tationally expensive SAT-based approach. All experiments in this
section use the Hosek model, since it is more physically correct and
supports a wider appearance range. All our images were rendered
with PBRT-v3, where the additional sampling approaches were in-
tegrated in the form of a plugin for infinite light sources.

We provide the full source code of the fitting process as a Python
script and precomputed tabulated data for the tGMMs, for both sky
models. The Python scripts and the source code for the PBRT plu-
gin can be downloaded from the repository https://github.
com/cgaueb/tgmm_sky_sampling and constitute a part of
the supplemental material. For completeness, a representative set
of sky radiance maps, the corresponding PDF maps and rendered
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images for a variety of scenes and sky model parameters are also
provided in the supplemental material.

Quality evaluation. In Figure 7 we show a qualitative comparison
among the three sampling approaches on three different scenes, us-
ing either Next Event Estimation (NEE) or Multiple Importance
Sampling (MIS). Apart from the sky dome, no other light source is
present in the scenes. Two of the scenes contain relatively open
environments, where direct sky dome lighting is dominant. The
breakfast room experiment presents a scenario, where the most im-
portant (brightest) regions of the sky are directly visible through the
opening on the right. We do not employ any form of visibility-based
importance sampling here, but rather expect our fitted radiance-
based model to accurately place path samples on the important re-
gions during light sampling. We typically use 8/16 samples (per
pixel) for NEE and 4/8 samples (per pixel/per distribution) in the
MIS case. We consider it important to have good results at low
sample counts as we are also targeting scenarios with interactive re-
quirements. For each of the resulting images, we include the RMSE
and MAE measures. As demonstrated in the rendered examples,
our model achieves similar quality to the more expensive SAT ap-
proach, but at a significantly lower cost (see performance evalua-
tion next).

As mentioned previously, we perform fitting on a discretisation
of the sky model elevation and turbidity. We generate discrete sam-
ples of the sky radiance map for different combinations of turbidity
and elevation. We sample the elevation every 3 degrees and use the
corresponding applicable turbidity ranges per model: 2..10 for the
Hosek model and 2..6 for the Preetham model. For arbitrary param-
eter values between the elevation samples, we assume a piecewise
constant behaviour of the PDF, by selecting the tGMM with the
closest elevation and turbidity values. We evaluated this choice by
snapping the parameters of different skies with already fitted tG-
MMs to the next closest parameterised tGMM and measuring the
difference in produced variance. We observed that even for crude
parameter discretisation steps, e.g. 10° in elevation, the resulting
variance increase was negligible (below 0.1%).

Performance evaluation. In Tables 1 and 2 we compare the per-
formance of our tGMM model against the SAT-based sampling ap-
proach for both CPU and GPU implementations. Note that the SAT
implementation requires the full PDF and CDF tables and two bi-
nary search queries with an O(log(n)) complexity in order to draw
a sample. In contrast, our tGMM implementation has complexity
O(N), N being the number of Gaussian components (5).

On the CPU, we performed micro-benchmarks that show an es-
timate of the samples per second one can expect from the ref-
erence method implementation in PBRT for SAT-based sampling
and our own method. For the SAT-based sampling method we in-
clude measurements for both the original map size generated by
PBRT (2048 x 1024) and a scaled-down map size (512 x 256).
Given the nature of GPU devices, it is non-trivial to perform micro-
benchmarks of similar accuracy as on the CPU. The reported num-
bers show the cost of generating 256 samples in a custom CUDA
kernel launched for a 1024 x 512 pixels frame buffer, so that
any kernel launch and other computations irrelevant to the bench-
mark are proportionally amortised. The above timings are for di-
rect illumination only. When the length of the generated paths in-
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Figure 7: Qualitative comparison using scenes with different light path complexity, sky model configurations (see images in bottom row) and
optional multiple importance sampling enabled, demonstrating the variance reduction of our method relative to naive uniform sampling and

the computationally more expensive SAT-based technique.

creases, the overhead of sampling the sky dome with a SAT-based
approach, increases. Measurements are taken from our reference
implementation using analytic approximations for the inversion
method on Gaussians. Evidently, even for reduced-size SATSs, the
tGMM model outperforms the SAT-based sampling approach by a
large factor and the difference in performance becomes even more
noticeable on the GPU implementation.

In Fig. 8 we present equal-quality experiments for the three
scenes of Fig. 7. Due to the high precision of our approach, we ob-
tain similar quality to a high-resolution SAT implementation with
at most 2 extra samples, resulting in higher overall performance.

Finally, regarding the fitting process, in our current implementa-
tion, a minute is required for each sky instance, in the worst case,
running on an Intel i7 8700K.

© 2021 The Author(s)
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Method Time (us) KSamples/sec Overhead
SAT 2048 2.868 348.7 2.07X
SAT 512 2.328 429.6 1.68X
tGMM 1.833 545.6 1.33X
Uniform 1.383 721.8 1.00X

Table 1: Sampling performance comparison on the CPU reported
in kilo-samples/sec and time to generate a single sample, averaged
over a loop of 1000 iterations.

Method Time (ms)  MSamples/sec Overhead
SAT 2048 263.31 510.3 2.98X
SAT 512 213.33 630.1 2.42X
SAT 128 177.11 758.3 2.01X
tGMM 113.01 1,187.8 1.28X
Uniform 88.14 1,525.2 1.00X

Table 2: Sampling performance comparison on the GPU reported
in giga-samples/sec and measured frame times. Frame times corre-
spond to a pixel shader invocation over a 1024 x 512 frame buffer
and 256 sky samples per pixel.

Memory requirements. For each parameter selection of the
model, i.e. turbidity and elevation, only 100 bytes (25 values) are
required for nearly optimal luminance-based sampling of the sky.
Conversely, the storage requirements for the SAT sampling process
on a single sky instance and a typical map resolution of 512 %256 is
1MB for the conditional PDF and CDF plus 4K B for the marginal
1D CDF and PDF. This is a ~10500x overhead in memory con-
sumption. This overhead can be especially impactful when main-
taining and sampling multiple sky instances.

6. Discussion

In this work, we showed that the same properties and intuitions
that have led to the formulation of several analytic sky models over
the years can be successfully applied to the creation of an equally
simple and elegant PDF for sampling such models. We showcased
a process that works directly on the radiance distribution data of
the sky model to construct a very good approximation using tG-
MMs. This decouples the fitted PDF from the underlying analytic
sky model and can be therefore applied to any, similarly-behaving
model, regardless of its formulation and parameterisation. Our ex-
periments showed that this PDF is faster to sample, cheaper to store
and offers importance sampling performance very close to that of
the more expensive but robust SAT-based alternative.

The focus of our experiments was on clear-sky models, mainly
because of their characteristic behaviour. If required, due to the
generality of our model and the surface fitting process proposed,
it can be fitted with fewer or more Gaussian kernels, effectively
modelling different distributions, under diverse storage, run-time
performance and quality requirements.

As expected, when the sun elevation measured from the horizon
reaches an angle 8 > 75°, the clear quality advantage of the model
diminishes relative to a simple uniform sampling, because the sky’s
luminance distribution becomes fairly uniform.

© 2021 The Author(s)
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Figure 8: Equal quality comparison for tGMM vs SAT in the scenes
of Figure 7, showing MAE over samples per-pixel (top), equal-
quality renders (middle) and CPU timings (bottom).

In the current method implementation, we fit a tGMM separately
for each discrete (elevation, turbidity) parameter pair. As a result,
even for similar parameters and respective sky map snapshots, the
indices of the Gaussian kernels fitted may randomly switch place
from one tGMM to the next, due to the optimisation process. How-
ever, certain of the resulting Gaussian components exhibit similar
and gradually changing characteristics. For example, one Gaussian
component is almost always centred at the circumsolar region and
one or two components are "stretched" in order to cover the more
uniform regions of the sky or elongated to fit the brightening of the
horizon. An interesting next step is to attempt to correlate the Gaus-
sians across time with a similar fitted model that analytically pre-
dicts their mean and standard deviation over the parametric space,
completely dispensing with tabular data in favour of a fully analyt-
ical solution. We would also like to see how this process of tGMM
fitting could also be applied to the sky luminance functions them-
selves.

As a final word, we argue that during this shift from rasterisation
to ray tracing, where the importance of proper sampling is signifi-
cantly elevated, any future attempts at an analytic sky model should
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attempt to properly parameterise or define an analytic approach for
sampling as well.
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