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Abstract 
This paper proposes a new algorithm to generate a disconnected, three-dimensional (3D) skeleton and an application of such a 
skeleton to generate a finite element (FE) mesh sizing function of a solid.  The mesh sizing function controls the element size 
and the gradient, and it is crucial in generating a desired FE mesh.  Here, a geometry-based mesh sizing function is generated 
using a skeleton.  A discrete skeleton is generated by propagating a wave from the boundary towards the interior on an octree 
lattice of an input solid model.  As the wave propagates, the distance from the boundary and direction of the wave front are 
calculated at the lattice-nodes (vertices) of the new front.  An approximate Euclidean distance metric is used to calculate the 
distance traveled by the wave.  Skeleton points are generated at the region where the opposing fronts meet.  The distance at 
these skeleton points is used to measure both proximity between geometric entities and feature size, and is utilized to generate 
the mesh size at the lattice-nodes.  The proposed octree-based skeleton is more accurate and efficient than traditional voxel-
based skeleton and proves to be great tool for mesh sizing function generation.  

Categories and Subject Descriptors (according to ACM CCS) [ J.2 Physical Sciences And Engineering ]- engineering 
 

1. Introduction 
Because mesh size is crucial in obtaining accurate analysis results, 
there is a great demand for automatically generating a desired FE 
mesh sizing function.  A FE mesh is a discretization of a 
continuous domain, and is used in analyzing complex structures 
and continua in various scientific and engineering fields using a 
versatile and powerful numerical procedure called the finite 
element method (FEM).  As the accuracy of the analysis results 
depends on the quality of the graded mesh and the quality of the 
graded mesh mainly depends on the sizing function, generating a 
desired mesh sizing function is crucial.   
A geometry-adaptive graded mesh contains significantly fewer 
elements (~10 times less in Figure 1) while maintaining the mesh 
quality by having fine elements at small features; therefore reduces 
computation time and memory usage during analysis without 
sacrificing the accuracy.  In the geometry-adaptive mesh, the mesh 
size is adapted based on the geometry of the input solid.   
The mesh sizing function mainly depends on the geometric factors, 
such as the proximity between the geometric entities, feature size, 
and surface curvature.  These geometric factors are used to 
generate an initial high quality graded mesh, which gives 
sufficiently accurate preliminary FE analysis results in a short 
duration.  The accuracy of analysis can be later improved by 
refinement and coarsening the initial geometry-adaptive mesh 
based on the error maps of preliminary analysis. 
In this paper a “skeleton” refers to a set of disconnected points that 
provides local thickness information and is generated using the 
concepts of medial axis transform (MAT).  The MAT is defined as 
the locus of the center of the maximal sphere as it rolls inside a 
solid, along with the associated radius function [Blu67].  Even 

though the radius function of MAT is an accurate tool to measure 
proximity, it is computationally expensive to generate the 
continuous MAT.  As FE mesh itself is a discretization of a 
continuous domain, here a set of accurate enough disconnected 
skeleton points is generated, using a less expensive, easy to 
implement algorithm.  The skeletons have proved to be useful tool 
in many diverse applications including mesh generation [SNT*92, 
GP92, QRP*01].  This paper describes a new application of a 
skeleton in generating 3D finite element mesh sizing function. 

 
Figure 1 Uniform and geometry-adaptive mesh 

2. Literature review  
In this section, literature on both the mesh sizing function and 
skeleton generation is briefly discussed.  
2.1 Finite element mesh sizing 
As the FE meshing algorithms do not see the complexity of 
geometry upfront, it is worthwhile to split the meshing process into 
two steps: (1) Generate the mesh sizing function and (2) Generate 
FE mesh using the mesh sizing function.  Even though 
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much research has been done in developing automatic FE mesh 
generation algorithms, in many of these algorithms only some 
aspect of mesh sizing are integrated.  In the following paragraphs 
previous mesh sizing approaches are briefly compared with the 
proposed method. 
Cunha et al. [CCS97] and Zhu et al. [ZBS02] estimated proximity 
by first representing the curves and surfaces with few sample 
points and then distance between all combinations is calculated.  
Researchers [She88] have used cell (cube) size of an quadtree and 
octree as the means for mesh sizing.  Octree is orientation sensitive 
and it is difficult to control the sizing gradient.  There is a very 
high probability of having small size cubes adjacent to a relatively 
large cube, resulting in abrupt gradients in sizing function.  The 
disconnected skeleton proposed in this paper is less expensive and 
more accurate in measuring proximity and feature size, and 
generates a smooth sizing function. 

Even though MAT has been used in mesh generation, no work has 
been done specifically in generating the 3D mesh sizing function.  
Researchers [SNT*92, GP92, QRP*01] have used MAT to 
decompose the domain into simpler sub-domains and to control the 
nodal spacing or element size.  But these approaches do not 
specifically generate the mesh sizing function.   
Authors [QSO03] presented an approach for generating 3D mesh 
sizing function using skeleton generated from a voxel model of the 
input solid.  The voxel-based approach works well with bulky 
objects that contain no small features; however, for complex 
industrial models, the voxel needs a huge memory and is 
computationally expensive.  To overcome these limitations, the 
Point-Region-Octree (PR-Octree) based method [QSO03] was 
developed.  Recently, Tchon et al. [TKG*03] presented a similar 
work,  but for generating anisotropic metric rather than generating 
sizing function using octrees and skeletons;  in their approach a 
digital skeleton consisting of set of octree cells was generated 
using the concepts from digital topology.  In this paper, a new, 
computationally efficient, easy to implement, octree-based 
skeleton algorithm that captures intricate features is proposed, and 
this skeleton has been used specifically in generating geometry-
adaptive 3D FE mesh sizing function. 
 
2.2 Skeletons 
In the literature, properties of MAT have been explored in 
developing various algorithms for the generation of the continuous 
and discrete skeletons.  One of the important properties used is 
that, the medial exists where the grass fire propagated from the 
boundary meet.  As the proposed approach relies on this property, 
the algorithms developed based on this property are discussed in 
the following paragraphs. 

Thinning algorithms [LLC92, ZW93] have been used on pixel and 
voxel image data in the areas of pattern recognition and image 
processing to generate digital skeletons.  Thinning or erosion 
operations are performed in a layer by layer manner from the 
boundary to generate a set of pixels/voxels, which forms the digital 
skeleton.  Thining algorithms tend to produce excessive erosion 
and have to be constrained.  These skeletons do not completely 
represent the initial image.  These voxel-based approaches 
consume huge memory and are not suitable for complex industrial 
models containing small features. 

Another class of skeleton schemes is based on the distance map 
transformations.  These algorithms [Dan80, Rag93] exploit the fact 
that the medial points coincide with the singularities of Euclidean 
distance function to the boundary.  Siddiqi and Bouix   [SB99] 
used differential equations to simulate the inward progress of the 

wave and medial points were generated if the mean flux entering 
the neighborhood of a point is positive.  In these approaches, the 
numerical detection of singularities is a non-trivial problem, and 
ensuring homotopy with the original object is difficult.  

The proposed approach combines the concepts of the thinning 
process, the generation of distance maps, and the bisector property 
(medial point exists at an equal distance from at least two points 
on the boundary).  Unlike, traditional thinning where voxels are 
removed in a layer by layer pattern, here octree lattice-nodes 
(vertices) are removed incrementally from the wave front and new 
adjacent nodes are inserted.  Like distance map approaches, 
distance traveled and direction of wave is calculated at each 
internal lattice-node.  The skeleton points are generated where the 
opposing fronts meet, using the distance and direction stored at the 
opposing lattice-nodes, such that the skeleton point is 
approximately equidistant from the boundary. 

3. Statement of the problem 
The goal of this paper is to develop an algorithm to generate a 
discrete 3D skeleton, and to use that skeleton in generating a 
geometry-adaptive FE mesh sizing function.  The geometry-
adaptive mesh sizing function that depends on proximity, feature 
size, and curvature, has to meet certain requirements: the mesh 
size should be bounded between the minimum size (dmin) and the 
maximum size (dmax); the gradients should be within the 
predefined limit α. A more formal statement is given below. 

Given a solid S ⊆ R3and the bounds of mesh size dmax and dmin,  
1. Generate a set of disconnected skeleton points M(S) 
2.Generate a geometry-based FE mesh sizing function s on an 
Octree O(S) by interpolating M(S), such that, 

• Mesh size d = s (p) where p(x,y,z) ∈ S and dmin ≤ d ≤ dmax. 

• s  is α-Lipschitz, i.e., for any two points p1 , p2  ∈ S 

| s(p1) – s( p2) | ≤ α || p1 -  p2  ||. 

4. Overview of the algorithm 
The steps involved in generating the FE mesh sizing function 
using a disconnected skeleton are shown in Figure 2 and are 
described in the following paragraphs.  Figure 2(a) shows a typical 
industrial input CAD model.  In this paper a B-rep solid model, 
such as ACIS sat file, is considered.  Other input formats, such as 
faceted models, meshed models, and volume data can be handled 
with slight modifications.  Figure 2(b) shows the PR-Octree of the 
solid model generated using the graphics facets of the solid (details 
are given in Section 5).   

The next challenging step is to propagate a wave from the 
boundary towards the interior on the non-uniform PR-Octree 
lattice to generate a trimmed disconnected skeleton, which is 
shown in Figure 2(c) and is explained later in detail in Section 6.  
The complete medial formed when the wave collides (see Figure 
6) is trimmed for mesh sizing application.  The radius function or 
distance traveled by the wave at the skeleton points is shown using 
color scale in Figure 2(c).  The skeleton points where the wave has 
traveled the nearest and furthest are shown in red and blue, 
respectively.    

In the last step, the radius function of the skeleton points, which 
measures proximity and feature size, and the minimum principal 
radius of curvature, which measures surface curvature, are used to 
interpolate the mesh size over the PR-Octree lattice.  Figure 2(d) 
shows the interpolated size on the PR-Octree using a color scale 
and Section 7 gives the details of the interpolation.  The PR-Octree 
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is an efficient means for storing the mesh sizing function and it 
reduces the computational cost of determining the size at a point 
during mesh generation.    

 
(a) Input B-rep solid model (b) PR-Octree lattice  

 
(c) Disconnected 3D skeleton  (d) Interpolation on octree 

Figure 2  Overview of the algorithm 

5. Pr-Octree lattice generation 
PR-Octree is selected over other types of octree (a hierarchical 
spatial data structure) [Sam95], because it provides a suitable 
lattice for the propagation of wave while generating skeleton and 
serves as an efficient mechanism to store the mesh sizing function.  
By definition, the PR-Octree contains cells which are either empty, 
or contain only one point.  Therefore the cell (cube) size depends 
on the density of the input points.  The vertices and centroid of the 
facets of the solid are given as the input points while generating 
PR-Octree. Smaller facet edges exist at small features and high 
curvature regions.  Therefore the density of facet points will be 
higher at these regions as shown in left side image of Figure 3. 
Thus small-sized octree cells are generated in these regions as 
shown in the right side image of Figure 3.  As larger facets may 
exist at planar regions, the PR-Octree is subdivided completely till 
a user specified minimum depth (min_depth), which determines 
the max size of the cell.  Now to establish a smooth transition in 
the cell size, the larger cells are further subdivided until only 1-
level of depth difference is maintained between the adjacent cells.  
Thus a suitable lattice is prepared for wave propagation in 
generating a disconnected skeleton. 

One disadvantage of the PR-Octree is that maximum depth 
depends on the minimum distance between any two points; 
therefore maximum depth (max_depth) of the PR-Octree is taken 
as a user input.  This reduces the memory usage and the 
computational cost. 

5.1 Data structures for octree lattice 
Finding adjacent cells in an octree usually requires traversing up 
till the desired parent cell and then descending down the tree in 
search of neighboring cell [Sam89].  This is an expensive process.  
To overcome this problem, each lattice-node stores eight pointers 
(cells[2][2][2]) to store the incident cells.  Using these pointers, 
adjacent cells can be easily found and thus reduces the 

computational time while ensuring 1-level of depth difference 
between the adjacent cells. 

The lattice-nodes of the octree are stored using a graph data 
structure.  Each lattice-node will contain eight pointers to the 
adjacent lattice-nodes.  The graph data structure reduces the time 
complexity of the wave propagation, which is discussed in section 
6.2.   

 
Figure 3 Facet vertices and centroid, and PR-Octree 

6. Skeleton generation 
A disconnected skeleton is generated by propagating a wave from 
the boundary towards the interior on the PR-Octree.  The three 
important phases of wave propagation are initiation of the wave, 
propagation of the wave front, and termination of the wave.  The 
details of these three phases are described in the following 
subsections. 

6.1 Initiation of the wave 
Because the wave must propagate from the boundary, a set of 
lattice-nodes representing the initial front at the boundary are 
generated by intersecting octree lattice with the facets.  Finding the 
intersection point is necessary for marking the lattice-nodes and 
accurately calculating the distance travelled by the wave from the 
boundary, at the lattice-nodes of the initial front.  All the lattice-
nodes are initially marked UNVISITED.  After the intersection, 
the two lattice-nodes of the lattice segments that intersect with the 
facets are marked.  If the lattice-node is outside the solid, i.e., 
lattice-node is in positive half space of facet, then that lattice-node 
is marked VISITED_EXT.  If the lattice-node is inside the solid, 
and it is not already marked VISITED_EXT, then it is marked 
VISITED_INT.  After the marking of lattice-nodes, a layer of 
VISITED_INT lattice-nodes exist just inside the boundary, which 
forms the initial front and are shown with arrows in Figure 4.  Rest 
of the internal lattice-nodes remain UNVISITED and during wave 
propagation these will be marked VISITED_INT.  

Unlike some of the previous approaches [LLC92], here a more 
accurate distance metric is used instead of the Manhattan distance 
metric while calculating the distance travelled by the wave.  At 
each VISITED_INT lattice-node of the initial front, the distance is 
set equal to the minimum length perpendicular drawn from the 
lattice-node to the associated facets.  The distance of 
VISITED_EXT lattice-nodes are set to -1.0. 

Surface ID (identity number) and direction of wave (reversed facet 
normal) are also stored at the lattice-nodes of the initial front.  The 
normal stored is used in calculating the distance at the lattice- 
nodes of subsequent fronts, which is explained in next section (see 
Equation 1). Surface ID is used in deleting certain discrete 
skeleton points, which is explained in Section 6.3.  
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Figure 4 Direction of wave at initial front  

6.2 Propagation of the wave front 
Wave propagation on a non-uniform octree lattice is more 
challenging than traditional voxel-based approaches [LLC92, 
ZW93] and is described in Algorithm 1.  The propagation starts 
from the initial front, which consists of a set of VISITED_INT 
lattice-nodes at the boundary.  A heap data structure is used to 
store the lattice-nodes of the initial front.  As the wave propagates, 
the top lattice-node of the heap (‘ntop’ in Figure 4) is popped out 
one at a time as given in Algorithm 1, and the valid adjacent 
lattice-nodes of the popped out lattice-node are pushed into the 
heap in Function Visit_Node.  The top of the heap (‘ntop’ in Figure 
4) is always the lattice-node where the wave has traveled the least 
from the boundary.  The distance traveled by the wave, surface ID, 
and normal, at the adjacent lattice-nodes added to the front are 
calculated, and the new lattice-nodes are marked VISITED_INT.  
The wave fronts meet at the skeleton points and no additional 
points are pushed into the heap.  Thus all the interior lattice-nodes 
are popped out and visited only once in an incremental manner.  
The wave propagation ends when the number of lattice-nodes in 
the current front becomes zero.  

Algorithm 1:  Wave propagation on PR-Octree Lattice 
Input: A list of VISITED_INT lattice-nodes B of the initial front 
and octree lattice O. 
Output: Find distance and normal of lattice-nodes, and generate 
skeleton points.  
Begin 
Insert all VISITED_INT lattice-nodes into a priority queue H.   

While (|H| ≠ 0)  

    ntop ← H.Pop() 

    Visit_Node(ntop,  H ) 

End 

In Function Visit_Node, either wave is propagated forward by 
adding the adjacent node (nadj) of top node (ntop) into the heap or 
wave is terminated by generating skeleton points.  If nadj,  is not 
NULL, is not VISITED_EXT, and has Surface ID equal to NULL 
(not yet visited by wave), then distance (dist_nadj) at nadj is 
calculated as given in Equation 1.  If the dist_nadj is less than or 
equal to distance at ntop, then nadj is not added into the heap to 
avoid the backward or sidewise movement of the wave.  
Otherwise, the nadj is added into the heap, and wave is propagated 
forwards.  The termination of the wave and generation of the 
skeleton points are discussed in detail in next section.  

dist_nadj←dist(ntop) +(coord(nadj)-coord(ntop)).normal (ntop)  (1) 

6.3 Termination of the wave 
Possible cases in which the fronts meet are examined here.  In 
Figure 5 the path traced by the propagated wave on the lattice is 
shown in dashed lines.  The paths are classified based on the 
number of lattice-nodes visited during propagation.  Cases I, II, 
and III contain zero, one, and two or more, lattice-nodes (q in 
Figure 5) respectively.  

The position and radius of the skeleton points in all three cases are 
calculated in order to keep the skeleton point approximately 
equidistant from the surfaces, whose ID is stored at the opposing 
lattice nodes.  Note that the opposing lattice-node (q) will have the 
ID of closest surfaces, because in Function Visit_Node, the surface 
ID at new lattice-node is updated based on minimum distance from 
the facet.  In Figure 5 and Equations 2 and 3, ‘di’ denotes the 
distance (approximated minimum distance from closest surface) at 
lattice-node qi, and ni denotes the facets’ normal, stored at the 
lattice-node qi.  The intersection points between facet and lattice-
segment is represented by p1 and p2.  The position vector mq, and 
radius rq, of the skeleton point in Cases II and III, are given by 
Equations 2 and 3 respectively.  Case I can be converted into Case 
II by inserting a virtual lattice-node q at the mid point of the line 
segment connecting p1 and p2.  
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Figure 5 Possible cases of termination of wave front 

 

 
Figure 6 Complete skeleton formed by adjacent and non-adjacent 

edges/surfaces 
For mesh sizing function generation, only a subset of skeleton 
points are considered.  Figure 6 shows the complete 2D and 3D 
skeleton.  As the radius of skeleton points formed by adjacent 
edges goes to zero at convex vertices/edges, these points will 
generate a fine mesh.  The surface ID and the facet normal stored 
at the lattice-nodes of the opposing wave front are used in 
trimming the skeleton, which is shown in Figure 2(c).   
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7. Interpolation of mesh size 
In this section the details of interpolating mesh size on the PR-
Octree using source points is described.  First the source points 
due to the skeleton are generated.  Later additional source points 
based on surface curvature and user specified size can be 
generated.  A source point is defined by: size, s; position, p[x,y,z]; 
scope radius, rad; and local sizing function , f.  The s, p, and rad of 
a skeleton source point are set equal to the radius, center, and 
radius of corresponding skeleton point respectively; and a linear 
function has been used for f.  

The size at a VISITED_INT lattice-node is determined by 
interpolating the size of the source points containing that lattice-
node.  The interpolation method used to calculate the size, sn at an 
lattice-node, n from a set of m source points of particular type 
(skeleton, curvature, or user specified) is given in Equation 4.  
Average of the normalized weights, due to inverse square distance 
and inverse square size, is used as the weight at every source point. 

(a) Input CAD model 

∑
=

=
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Wsize , and d is the 

distance between the centre of ith source point and the lattice-node 
n.   

The sizing function due to skeleton, curvature, etc. are combined 
and smoothed to meet the sizing requirements given in Section 3.  
Minimum of the interpolated size due to each type of source point 
determines the size at a lattice-node as shown in Figure 7.  The 
maximum and minimum sizes given as user input are used to limit 
the sizing function.  Note that individual sizing functions may not 
cover all the VISITED_INT and VISITED_EXT lattice-nodes.  At 
these lattice-nodes, the average of known sizes of adjacent lattice-
nodes is used.  Smoothing techniques are applied iteratively to 
eliminate the abrupt gradient present in the minimum of all the 
sizing function and to satisfy α-Lipschitz criterion. 

 
Figure 7 Minimum of all sizing functions 

Tri-linear interpolation is used to calculate the final mesh size at a 
point, p using lattice-nodes of the cell containing p. One advantage 
of storing sizing function on an octree over background mesh 
[OS97] is that the query time during mesh generation is 
O(max_depth).   

 

 

 

 

 
Figure 8 Stages of the proposed approach  
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8. Results
this paper has been implemented in 

s an added advantage 

Table 1   

max_depth (sec) points radius 
 

radius 

 and discussion 

in_depth

The algorithm described in 
C++ in CUBIT, mesh-generator software of Sandia National 
Laboratories.  The algorithm has been tested on many industrial 
models and one such model with the stages involved in the current 
approach is shown in Figure 8.  The mesh sizing command takes 
the arguments, m  (int=4), max_depth (int=7), 
overall_scale (0.0 to 1.0 = 0.75), and interpolation_scheme (0 to 
5=2).  The numbers inside the parenthesis show the default values. 

The min_depth and max_depth can be used to control the accuracy 
and density of the skeleton.  From Table 1, it is clear that as the 
max_depth increases, the accuracy and density of the skeleton 
increases.  Figure 9 shows one such skeleton with 8341 points 
generated from a PR-Octree of min_depth, 4 and max_depth, 7 on 
a model consisting of 5,038 facets.  It is seen that octree-based 
skeleton captures intricate and fine features. 

The skeleton-based mesh sizing function ha
in layered mesh generation.  In mold flow simulation of thin 
section solids, layers of elements are preferred along the flow 
direction.  The proposed approach can create single and multiple 
layered meshes by controlling the overall_scale.  Figure 9 shows 
the multi layer mesh generated by setting overall qual to 
0.3.   

_scale e

Density and accuracy of skeleton shown in Figure 9

 
Figure 9 Skeleton nd multi layered mesh 
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Time No. of Maximum  Minimum

6 2. 4,332 031  9.728348 0.554324 
7 3. 8,341  9.724072 0.50 172 
8 3.344 10,786  9.721934 0.352418 
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skeleton has been
in generating a 3D FE mesh sizing function is also presented.  The 
proposed approach is more accurate and efficient than the 
traditional voxel-based approaches in generating the skeleton of 
industrial models containing fine features.  The skeleton-based 
mesh sizing function captures proximity and feature size 
accurately with smooth gradients in mesh size, and is a good tool 
for layered meshing.   
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