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Abstract
Stratified objects such as those found in geometry-based systems (e.g. CAD systems and animation systems) can be stepwise
constructed and manipulated through Euler operators. The operators proposed in this paper extend prior operators (e.g. the
Euler-Masuda operators) provided that they can process n-dimensional stratified subanalytic objects with incomplete bound-
aries. The subanalytic objects form the biggest closed family of geometric objects defined by analytic functions. Basically, such
operators are attachment, detachment, subdivision, and coaslescence operations without a prescribed order, providing the user
with significant freedom in the design and programming of geometric applications.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computational Geometry and Object Modeling]: Curve,
surface, solid, and object representations.

1. Introduction

In geometric modeling and design it is frequently desirable to per-
mit operations which violate the compactness condition inherent
to most academic and commercial geometric kernels. For exam-
ple, subtracting two surface-overlapping solid objects originates a
solid object with part of its surface missing, i.e. a non-compact or
boundary-incomplete solid object. To overcome this problem, most
geometric kernels use a kind of regularization operator to maintain
their geometric consistency. Also, a small geometric change of an
object might be carried out quickly if we were allowed to break
down the boundary completeness condition. Instead, that requires
its complete re-design and reconstruction. Besides, many drafting
and design activities are geometrically boundary-incomplete (or
non-compact in the usual relative topology). For example, we use
revolution axes and symmetry lines in modeling, which are not
closed nor bounded. Also, the design of an artifact sometimes starts
from an erratic set of lines, not from a raw block as in sculpture.
This discussion suggests that practical deficiencies of existing geo-
metric kernels are in general due to theoretical restrictions imposed
by their supporting mathematical models. While the pioneering ge-
ometric kernels were overconstrained by the notion of solidity, the
current geometric kernels are constrained to keep the boundary-
completeness of geometric objects.

2. Related work

Conceptually, a geometric kernel can be given a triangular archi-
tecture: geometry (shape), structure, and algebra. Geometry deter-
mines the geometric coverage of the objects. A structure has to do
with the topological coverage of these objects, as well as their con-
stituents. An algebra basically concerns the essential operators used
to build up and manipulate geometric objects.

2.1. Subanalytic geometry

Recently, the subanalytic geometry has been proposed as an ap-
propriate family of objects for geometric modeling [GMR99],
[MRG99], [MRG00]. By abuse of language, we say that the sub-
analytic geometry consists of subanalytic point sets. A subana-
lytic set X ⊆ Rm is defined by the intersecting set of a family
{x∈ Rm : f (x) ≥ 0} of sets described by analytic equalities (zero
sets) and inequalities (positive or negative sets), wheref : Rm→R
is an analytic function. Real analytic functions include polynomial,
rational, and transcendental functions. Briefly speaking, subana-
lytic sets are important by the following reasons:

• They provide a wide geometric coverage inRn, including the ge-
ometries commonly used in solid modeling and free-form mod-
eling of curves and surfaces [Gom00], i.e. the semialgebraic sets
of the first CSG and B-Rep modelers, as well as the semianalytic
sets that underpin CNRG [RR91] and SGC [RO90] representa-
tions. Although Bézier curves and surfaces —as well NURBS
(Non-Uniform Rational B-Splines)— are not zero sets, they are
also semialgebraic because Tarski and Seidenberg proved that
semialgebraicity is preserved by rational maps, i.e. ifX ⊆ Rm

is semialgebraic, andf : X → Rn is rational, then the image set
f (X) is also semialgebraic inRn [Tar51] [Sei54].

• They form a Boolean class, i.e. the set-combination of any two
subanalytic sets is always a subanalytic set [Hir73].

• Each topological operation such as interior (Int), frontier (Front),
exterior (Ext), closure (Clo) on a subanalytic setX has a suban-
alytic set as its result [Hir74]. In fact, assuming that the inte-
rior Int(X) is well-defined, it follows from the Boolean class that
the boundary Bd(X) = X \ Int(X), the frontier Fr(X) = Bd(X)∪
Bd(Rm\X), and closure Cl(X) = Int(X)∪Fr(X) of a subanalytic
setX in Rm is also a subanalytic set. For example, the open disc
X = D2 = {(x,y)∈ R2 : x2 +y2 < 1} coincides with its interior;
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hence, Bd(D2) = ∅, Fr(D2) = S1 = {(x,y)∈ R2 : x2 +y2 = 1},
and Cl(D2) = D2∪Fr(D2). Note that, in general, Bd(X) = Fr(X)
only for closed sets.

• They admit regular stratifications. A stratificationΣ of a point
setX is a partition ofX into subsidiary point sets called strata,
which are by definition submanifolds (e.g. cells). Astratified
point setX = (X,Σ) distinguishes from another by imposing dif-
ferent regularity conditions on the strata. A regularity condition
determines how the strata fit together, i.e. their adjacency and in-
cidence relations. AsubanalyticVerdier stratification is a stratifi-
cation in which all strata are subanalytic submanifolds ofRn and
satisfy the Verdier condition [Ver76]. But, there are many other
ways to impose a regularity condition on incident and adjacent
strata (see [Sha91] [Gom00] [MRG00] for some criteria).

2.2. Stratified objects

Both CSGs and CNRGs represent a point setX by means of a cov-
ering of point sets in some Boolean class, while B-Reps and SGCs
represent stratified sets. Recall that CSG and CNRG boundary eval-
uators can be used to output B-Rep and SGC objects, respectively.
A theorem due to Verdier formalizes the relation between thege-
ometry(e.g. the subanalytic geometry) and thetopology(e.g. stra-
tum complex or stratification) found in the B-Rep data structures,
by stating that every subanalytic set is Verdier-stratifiable [TW99].
Thus, Verdier-stratified subanalytic objects constitute an adequate
mathematical model for B-Reps [Gom03].

Stratified sets generalize cell complexes in that ann-cell is a
particularn-stratum that is homeomorphic toRn. Unlike a cell, a
stratum need not be connected, nor bounded, nor globally homeo-
morphic to an open ball. For example, the 1-sphereS1 = {p∈ R2 :
||p||= 1} admits a stratification of a single 1-stratum, while a cell
complex requires at least two cells, e.g. a 1-cell and a 0-cell. Al-
though most B-Rep data structures represent stratified sets, not just
cell complexes, they lack generality even inR3. Usually, the con-
struction of a solid object starts with a topological surface home-
omorphic toS2 = {p ∈ R3 : ||p||= 1} stratified into a 2-cell and
a 0-cell by calling the Euler operatormvfS(make vertex, face, and
shell). This is so because the mathematical model ruled by the Euler
formula does not include strata homeomorphic to spheres; hence,
the inclusion of a vertex. In contrast, the Euler formula proposed
here admits strata homeomorphic to spheres or even tori.

3. Euler algebra

By definition, an algebra is a set of elements together with a set of
operations. In this paper our elements are stratified subanalytic sets
and the operations are Euler operators. Euler operators are shape
operators, i.e. they change the shape of an object in conformity
with some Euler formula. These objects and their strata may have
incomplete boundaries. Thus, the Euler algebra proposed here gen-
eralizes the Euler algebra introduced by Masudaet al. [MSNK89],
which in turn generalises other formulas (e.g. [Bau72], [Wei86],
[Wu89], [YK95]) underpinning manifold and non-manifold bound-
ary representations of geometric objects.

3.1. Euler formula

Understanding the shape of point sets, either stratified or not, is
essential in the design of B-Rep data structures and their Euler op-

erators [Gom03]. Basically, these operators process topological and
homotopic shapes of both strata and stratified objects by using par-
ticular shape invariants. For example, the dimension of a stratum
is a topological invariant; consequently, a vertex and an edge pos-
sess distinct topological shapes provided that they have distinct di-
mensions. On the other hand, ann-stratum may have a number of
k-holes (0≤ k≤ n). The number ofk-holes of a stratum is a homo-
topic invariant. Two strata with distinct numbers ofk-holes are said
to have distinct homotopic shapes. The number ofk-holes is also
known as thekth Betti number. The arrangement of strata and their
holes in a stratified object is characterized as follows:

Theorem 1Let X = (X,Σ) be a regular stratified subanalytic set in
R3, whereX is its underlying point set andΣ is its Verdier stratifi-
cation (or set of strata). The Euler characteristic ofΣ is

χ(Σ) = v− (e−eh)+( f − fh + fc)− (s−sh +sc)+χ∞(Σ) (1)

with χ∞(Σ) = −(e∞) + ( f∞ − f∞h)− (s∞ − s∞h + s∞c), and
wherev,e, f , andsstand for the number of boundary-complete ver-
tices, edges, faces, and solids inX, respectively;e∞, f∞, ands∞
denote the number of boundary-incomplete edges, faces, and solids
in X; eh, fh, andsh stand for the number of boundary-complete 1-
holes through edges, faces, and solids, respectively;f∞h ands∞h
stand for the number of boundary-incomplete 1-holes through faces
and solids, respectively;fc andsc indicate the number of boundary-
complete 2-holes for faces and solids, respectively, whiles∞c indi-
cates the boundary-incomplete 2-holes in solids, respectively.�

According to (1), avertexhas no holes. Anedgeadmits 1-holes
(eh). For example, a ring is an edge with a 1-hole. An edge with
a single 1-hole (eh = 1) has the homotopy type of a 1-sphereS1,
i.e. it can be continuously deformed to a circle. Afacemay present
several 1-holes (i.e. through holes) and a 2-hole (i.e. a void). In the
latter case, a face is homotopy-equivalent to the 2-sphereS2. In the
formula (1), fh and fc stand for 1-holes and 2-holes of faces, re-
spectively. Another example of a face with a 2-hole is the toroidal
surfaceT2. It also has two 1-holes because we can draw two imag-
inary loops on it, which are not contractible to a point, nor con-
tractible to each other. It is then said thatT2 has the homotopy type
of S1×S1, i.e. two loops or rings intersecting at a single point. This
means thatT2 can be formed by sweeping the first ringS1 along
the second touching ringS1. Filling in T2 with an open solid torus
(3-manifold) one obtains a closed solid torus (closed 3-manifold).
This filling operation makes the 2-hole ofT2 disappear along with
one of its 1-holes (the sweeping ringS1). That is, only one 1-hole
(the revolution ring ofT2) remains in the closed solid torus.

It is assumed that, as a topological space, ann-dimensional
manifold (or, simply, ann-manifold) is a point set topologized by
the usual topology inRn. Thus, everyn-manifold is open inRn,
not necessarily bounded, with possibly manyk-dimensional holes
(0 ≤ k < n). Unbounded, or equivalently boundary-incomplete,
strata appear with the subscript∞. For example, in Figure17(d),
with the exception of the vertexv1 all strata are unbounded. Be-
sides, as suggested by (1), unbounded strata may also have holes.
The Euler characteristic (1) regulates the manifold strata of a strati-
fied object, as well as their homotopic shapes (k-dimensional holes)
via Betti numbers. Thus, formula (1) provides us with a shape un-
derstanding at the stratum level. To describe the shape of a stratified
object as a whole, we use the global Euler characteristic as follows:
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(b) n=1 (c) n=2 (d) n=3(a) n=0

mvC

kvC

Ø

meCh

keCh

mfCc

kfCc

valid in higher

dimensions

Figure 1: The operator msnHn.

(b) n=1 (c) n=2 (d) n=3(a) n=0

Ø

meehCCf

Ø

keehCCf

mffcCCc

kffcCCc

valid in higher

dimensions

Figure 2: The operator msnhn
nH0Hn.

Theorem 2Let X = (X,Σ) be a regular stratified subanalytic set in
R3. The Euler characteristic ofX is

χ(X) = (C−Ch +Cc)+χ∞(X) (2)

with χ∞(X) =−(E∞)+ (F∞−F∞h)− (S∞−S∞h +S∞c), and
whereC, Ch, andCc stand for the number of boundary-complete
components, 1-holes, and 2-holes ofX, respectively;E∞, F∞,
and S∞ denote the number of boundary-incomplete components
for edges, faces, and solids, respectively;F∞h and S∞h denote
the number of boundary-incomplete 1-holes through face compo-
nents and solid components, respectively, andS∞c the number of
boundary-incomplete 2-holes in solid components. �

Note that the global or homotopic shape of the whole spaceX
underlyingX can be described by the number of 0-holes (or object
components), 1-holes, ...,k-holes, which are denoted byH0, H1,
..., Hk, 0≤ k≤ n, respectively. Then-dimensional counterparts of
(1) and (2) can be found in [Gom00].

3.2. Euler operators

Recall that a stratum needs not be boundary-complete. Therefore,
there is no prescribed order in attaching or detaching a stratum to or
from an object. That is, unlike the conventional boundary represen-
tations, it is no longer necessary to follow the precedence principle
that attaching a stratum must be done after attaching its frontier
strata. This makes it possible to proceed to local shape changes on
an object without rebuilding the whole object up.

Global hole shapers. There are two classes of operators to generate
a global hole through or inX. The first uses astratum attachment
technique, while the second uses astratum detachmenttechnique.

Let us now consider the first class of Euler operators that create
a global hole by attaching a stratum:

(i) msnHn. This operator creates a globaln-holeHn in X by attach-
ing ann-stratumsn to Σ (Figure1). For example,meCh = ms1H1

is a particular case for dimensionn = 1, which creates a 1-hole
through an object by attaching a 1-stratum to it. The attachingn-
stratum must be homeomorphic toRn. Its inverseksnHn undoes
ann-hole by detaching ann-stratum.

(ii) msnhn
nH0Hn. This operator is similar to the previous one, but

the attachingn-stratumsn must possess ann-holehn
n, i.e. it is not

homeomorphic toRn; the subscript of then-dimensional holehn
n

denotes the dimension of its ambient stratumsn (Figure2). For
example, the operatorm f fcCCc = ms2h2

2H0H2 adds a 2-sphere

kemC

mekC

kfmCh

mfkCh

ksmCc

mskCc

(b) n=1 (c) n=2 (d) n=3(a) n=0

Figure 3: The operator ksnmHn−1.

kffhmCCh

mffhkCCh

ksscmCCc

mssckCCc

(b) n=1 (c) n=2 (d) n=3(a) n=0

Figure 4: The operator ksnhn−1
n mH0Hn−1.

to an object, which locally is a facef with a 2-holefc, and glob-
ally a surface componentC with a 2-holeCc.

Let us now consider the Euler operators that create a global hole
by detaching a stratum:

(i) ksnmHn−1. This operator generates a global(n−1)-holeHn−1

in X by detaching ann-stratumsn from Σ (Figure 3). For ex-
ample,k f mCh = ks2mH1 creates a 1-hole through an object by
detaching a 2-stratum. The detachingn-stratum must be homeo-
morphic toRn. Its inversemsnkHn−1 eliminates a global(n−1)-
hole by attaching ann-stratum.

(ii) ksnhn−1
n mH0Hn−1. This operator is similar to the previous one,

but the detachingn-stratumsn possesses a(n−1)-holehn−1
n , i.e.

it cannot be homeomorphic toRn (Figure4). For example, the
operatork f fhmCCh = ks2h1

2mH0H1 removes a facef with a 1-
hole fh from an object, globally originating the appearance of a
new componentC and a new 1-holeCh through the object.

Stratum subdividers. Unlike the previous operators, no stratum
subdivider changes the global shape of an object. A subdivider is
an Euler operator that subdivides ann-stratum into twon-strata by
a new(n− 1)-stratum, called the subdividing stratum. There are
three generic stratum subdividers/coalescers:

(i) msn−1sn. This operator subdivides ann-stratum into two by a
new(n−1)-stratum (Figure5). The subdividing(n−1)-stratum
must be homeomorphic toRn−1. This operator applies to both
boundary-complete and boundary-incomplete strata. For exam-
ple, the operatormve in Figure5 subdivides an edge indepen-
dently of whether its boundary is complete or not. Its inverse
operatorksn−1sn coalesces twon-strata into one by merging one
of their adjacent(n−1)-strata to which they are incident.

(ii) msn−1hn−1
n−1s

nhn−1
n . In this case, the subdividing(n−1)-stratum

has an(n− 1)-hole, which means that it is not homeomor-
phic toRn−1 (Figure6). For example, the operatormeeh f fh =
ms1h1

1s2h1
2 subdivides a facef into two faces by an edgee with

a 1-holeeh, leaving the original face with a 1-holefh.

(b) n=1 (c) n=2 (d) n=3(a) n=0

mve

kve

mve!

kve!

mef

kef

mef!

kef!

mfs

kfs

mfs!

kfs!
valid in higher

dimensions

Figure 5: The operator msn−1sn.
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meehffh

keehffh

mffcmssc

kffcmssc

(b) n=1 (c) n=2 (d) n=3(a) n=0

Figure 6: The operator msn−1hn−1
n−1s

nhn−1
n .

meehfkfc

keehfkfc

(b) n=1 (c) n=2 (d) n=3(a) n=0

valid in higher

dimensions

Figure 7: The operator msn−1hn−1
n−1s

nkhn
n.

(iii) msn−1hn−1
n−1s

nkhn
n. In this case, both strata have holes. This oper-

ator subdivides an-stratum with ann-hole by an(n−1)-stratum
with an (n− 1)-hole (Figure7). For example,meeh f k fc =
ms1h1

1s2kh2
2 subdivides a facef with a 2-hole fc by an edgee

with a 1-holeeh; this is equivalent to subdividingS2 by S1.

Local hole shapers. They do not change the global shape of an
object. They change the shape of strata by merging a stratum into
another of higher dimension. The stratum of lower dimension has
no holes. There are two sorts of local shapers:

(i) ksdhn−1−d
n . This merges ad-stratum into an incidentn-stratum

(n > d), which causes the disappearance of a(n− 1− d)-hole
from the ambient higher dimensional stratum (Figure8). For ex-
ample, the operatorkv fh = ks0h1

2 eliminates a 1-holefh from a
face by merging a vertexv (which fills in fh) into it. Thus, the
n-stratum loses an(n− 1− d)-hole. This operator works inde-
pendently of whether then-stratum is boundary-complete or not.

(ii) ksdmhn−d
n . In this case, then-stratum acquires a(n− d)-hole

(Figure 9). For example,kvm fc merges a vertexv into a face,
which then closes onto itself, i.e. it acquires a new 2-holefc. This
operator also works for boundary-incomplete strata. For exam-
ple, in Figure9(h),ke∞msc merges an edge with a vertex miss-
ing into a solid having a vertex filling in one of its holessc.

Stratum attachers. These Euler operators allow us to attach (re-
spectively, detach) boundary-incomplete strata to (respectively,
from) an object. The attaching (detaching)n-stratum must be
homeomorphic toRn. There is only one class of these operators:

(i) msn∞Sn
∞. This operator attaches a boundary-incompleten-

stratumsn
∞ and its corresponding boundary-incomplete stratum

(f) d=1, n=1 (g) d=1, n=2 (h) d=1, n=3(e) d=1, n=0

(b) d=0, n=1 (c) d=0, n=2 (d) d=0, n=3(a) d=0, n=0

mvsc

kvsc

mvsc

kvsc

mvfh

kvfh

mvfh

kvfh

mesh

kesh

me!s!h

ke!s!h

Figure 8: The operator ksdhn−1−d
n .

kvmfc

mvkfc

(b) d=0, n=1 (c) d=0, n=2 (d) d=0, n=3(a) d=0, n=0

valid in higher

dimensions

kvmeh

mvkeh

(f) d=1, n=1 (g) d=1, n=2 (h) d=1, n=3(e) d=1, n=0

kemsc

meksc

kemfh

mekfh

ke!mfh

me!kfh

ke!mf!h

me!kf!h

ke!msc

me!ksc

ke!ms!c

me!ks!c

(j) d=2, n=1 (k) d=2, n=2 (l) d=2, n=3(i) d=2, n=0

kfmsh

mfksh

kf!ms!h

mf!ks!h

Figure 9: The operator ksdmhn−d
n .

(b) n=1 (c) n=2 (d) n=3(a) n=0

me E
! !

ke E
! !

mf F
! !

kf F
! !

ms S
! !

ks S
! !

Figure 10: The operator msn∞Sn
∞.

componentSn
∞ to an object (Figure10). Its inverseksn∞Sn

∞ de-
taches a boundary-incompleten-stratum from an object.

Unfilled hole shapers. They generate boundary-incomplete holes
for strata. There are three unfilled hole shapers inR3 (Figure11).
They are in the following dimension-independent class:

(i) mhd
∞nHd

∞n. It makes ad-hole hd
∞n (d ≤ n−1) in a boundary-

incompleten-stratum, which in turn produces a globald-hole
Hd
∞n in its stratum component. For example, the operator

m f∞hF∞h = mh1
∞2H1

∞2 makes a 1-holef∞h through a face
and, consequently, a 1-holeF∞h through its face component.

Local stratum compacters. There is only one dimension-
independent stratum compacter:

(i) ksn∞msn. This operator transforms a boundary-incompleten-
stratumsn

∞ into a boundary-complete stratumsn (Figure12). For
that, we have only to change its boundary-completeness state.
For example, in Figure12(b), attaching a vertex to a boundary-

(f) d=2, n=1 (g) d=2, n=2 (h) d=2, n=3(e) d=2, n=0

(b) d=1, n=1 (c) d=1, n=2 (d) d=1, n=3(a) d=1, n=0

mf!hF!h

kf!hF!h

ms!hS!h

ks!hS!h

ms!cS!c

ks!cS!c

Figure 11: The operator mhd∞nHd
∞n.
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(b) n=1 (c) n=2 (d) n=3(a) n=0

ke!me

"

me!ke

kf!mf

mf!kf

ks!ms

ms!ks

Figure 12: The operator ksn∞msn.

(f) d=2, n=1 (g) d=2, n=2 (h) d=2, n=3(e) d=2, n=0

(b) d=1, n=1 (c) d=1, n=2 (d) d=1, n=3(a) d=1, n=0

kf!hmfh

mf!hkfh

ks!hmsh

ms!hmsh

ms!cksc

ks!cmsc

Figure 13: The operator khd∞nmhd
n.

incomplete edge is done by callingke∞me= ks1∞ms1 to change
the boundary-completeness state of the original edge.

A stratum compacter is invoked whenever attaching or detaching
a stratum changes the boundary-completeness of its neighboring
strata. Note that the compactification of a stratum requires various
Euler operators. For example, compacting the face in Figure12(c)
starts by calling the operatormvC, and then the stratum compacters
for such a face and its boundary-incomplete edge.

Local hole compacters. Local holes can also be compacted. This
is done by filling it in with an appropriate stratum as follows:

(i) khd
∞nmhd

n. It transforms a boundary-incomplete holehd
∞n of a

n-stratum into a boundary-complete hole after filling it in with
a stratum of dimension less thann. For example,k f∞hm fh =
kh1
∞2mh1

2 transformsf∞h into a boundary-complete face hole
fh after filling it with a vertex. (This vertex is attached by calling
the operatormvC.)

Global stratum compacters. The local compactification of a stra-
tum sn

∞ leads to the global compactification of its associated com-
ponentSn

∞. Thus, a global compacter of a stratum serves to com-
pact the global shape of a stratum. There are three families of global
compacters inR3:

(i) kCn
∞Hn−1. It compacts ann-stratum componentCn

∞ by delet-
ing a global(n− 1)-hole Hn−1. Consequently, such a compo-
nent becomes part of the boundary-complete subset of the object,
decreasing so the number of boundary-incomplete components.
For example, the operatorkE∞C = kC1

∞H0 in Figure 14(b)
compacts an edge componentE∞ by deleting the componentC
of the compacting vertex attached to the object in the meanwhile.

(ii) kCn
∞mHn. It generates a globaln-holeHn by compacting ann-

stratum componentCn
∞. For example,kE∞mCh = kC1

∞mH1 in
Figure15(b) generates a global holeCh through the object by
attaching a compacting vertex to an edge componentE∞.

(iii) kHn−1
∞n C. This operator applies to boundary-incomplete stra-

tum components with holes. It compacts a global non-compact
(n−1)-holeHn−1

∞n of an-stratum after filling it in with a stratum
of dimension less thann (Figure 16). Consequenly, the filling
stratum form a componentC which is then merged with some
component of the boundary-complete subset of the object, de-
creasing so the number of components of the whole object.

(b) n=1 (c) n=2 (d) n=3(a) n=0

kE!C

mE!C

kF!Ch

mF!Ch

kS!Cc

mS!Cc

Figure 14: The operator kCn∞Hn−1.

(b) n=1 (c) n=2 (d) n=3(a) n=0

kE!mCh

mE!kCh

kF!mCc

mF!kCc

valid in higher
dimensions

Figure 15: The operator kCn∞mHn.

4. Examples

Let us now illustrate the construction of some stratified objects:

Example 1. The stratified Cartan umbrella, whose underlying point
setx2 = zy2 is semialgebraic (Figure17) can be built up through the
following Euler operators:

• mvC. It creates the vertexv1 at the origin(0,0,0). This vertex
embodies a single componentC of the object.

• me∞E∞. It is used twice to create two unbounded edgese1 and
e2 (i.e. the negative and positive z-axes), and their corresponding
boundary-incomplete edge componentsE∞, attached tov1.

• m f∞F∞. It is applied twice to create the two unbounded sheets
f1 and f2, as well as their corresponding boundary-incomplete
face componentsF∞, attached toe1 ande2, respectively.

Example 2. Let us now construct the compact non-manifold strati-
fied object pictured in Figure18:

• meehCCh. It creates the edgee1 with a 1-holeeh through it. The
result is an object with a componentC having a 1-holeCh.

• m f kCh. The global holeCh produced before disappears by filling
it in with the facef1.

• m fCc. Attaching the new facef2 to e1 produces a voidCc.
• mv fh. Attaching the new vertexv1 to f1 produces a new 1-holefh

through f1. The global shape of the object remains unchanged.
• meCh. Finally, attaching the new edgee2 to v1 produces a new

global holeCh through the final object.

Note that these objects cannot be constructed by using other Eu-
ler operators found in the literature because they cannot handle un-
bounded strata (e.g. edges and faces of the Cartan umbrella in Fig-
ure17) and edges with holes (e.g. the edgee1 in Figure18).

5. Conclusions

The Euler operators that have been proposed in this paper are
dimension-independent and can cope with boundary-incomplete
stratified objects. This has enabled the construction of objects with-
out a pre-defined order in attaching and detaching strata to and from

(b) n=1 (c) n=2 (d) n=3(a) n=0

kF!hC

kF!hC

kS!cC

mS!cC

valid in higher
dimensions

Figure 16: The operator kHn−1
∞n C.
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Figure 17: Stratified Cartan umbrella.

e2

f1

f2
(c) (d)

mvfhmfkCh mfCc meCh
v1

(b)

e1
Ø

(a)

meehCCh

(e) (f)

Figure 18: A compact non-manifold stratified object.

them, respectively. Thus, the precedence principle of conventional
boundary representations no longer needs be satisfied. This is use-
ful for many geometry-based applications where significant free-
dom is required in the design of geometric artifacts. Finally, the
fact that these Euler are dimension-independent facilitates the im-
plementation and maintenance of the geometric kernel.
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