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Abstract

Stratified objects such as those found in geometry-based systems (e.g. CAD systems and animation systems) can be stepwise
constructed and manipulated through Euler operators. The operators proposed in this paper extend prior operators (e.g. the
Euler-Masuda operators) provided that they can process n-dimensional stratified subanalytic objects with incomplete bound-
aries. The subanalytic objects form the biggest closed family of geometric objects defined by analytic functions. Basically, such
operators are attachment, detachment, subdivision, and coaslescence operations without a prescribed order, providing the user
with significant freedom in the design and programming of geometric applications.

Categories and Subject Descriptgascording to ACM CCS) 1.3.5 [Computational Geometry and Object Modeling]: Curve,

surface, solid, and object representations.

1. Introduction

2.1. Subanalytic geometry

In geometric modeling and design it is frequently desirable to per- Recently, the subanalytic geometry has been proposed as an ap-
mit operations which violate the compactness condition inherent propriate family of objects for geometric modeling [GMR99],

to most academic and commercial geometric kernels. For exam-[MRG99], [MRGOQ]. By abuse of language, we say that the sub-
ple, subtracting two surface-overlapping solid objects originates a analytic geometry consists of subanalytic point sets. A subana-
solid object with part of its surface missing, i.e. a non-compact or lytic set X C R™ is defined by the intersecting set of a family
boundary-incomplete solid object. To overcome this problem, most {x € R™: f(x) > 0} of sets described by analytic equalities (zero
geometric kernels use a kind of regularization operator to maintain sets) and inequalities (positive or negative sets), whefe™ — R

their geometric consistency. Also, a small geometric change of an is an analytic function. Real analytic functions include polynomial,
object might be carried out quickly if we were allowed to break rational, and transcendental functions. Briefly speaking, subana-

down the boundary completeness condition. Instead, that requireslytic sets are important by the following reasons:
its complete re-design and reconstruction. Besides, many draftings They provide a wide geometric coveragdiif, including the ge-

and design activities are geometrically boundary-incomplete (or
non-compact in the usual relative topology). For example, we use
revolution axes and symmetry lines in modeling, which are not
closed nor bounded. Also, the design of an artifact sometimes starts
from an erratic set of lines, not from a raw block as in sculpture.
This discussion suggests that practical deficiencies of existing geo-
metric kernels are in general due to theoretical restrictions imposed
by their supporting mathematical models. While the pioneering ge-
ometric kernels were overconstrained by the notion of solidity, the
current geometric kernels are constrained to keep the boundary-
completeness of geometric objects.

2. Related work

Conceptually, a geometric kernel can be given a triangular archi-

tecture: geometry (shape), structure, and algebra. Geometry deter-

mines the geometric coverage of the objects. A structure has to do
with the topological coverage of these objects, as well as their con-

stituents. An algebra basically concerns the essential operators used

to build up and manipulate geometric objects.

(© The Eurographics Association 2004.

ometries commonly used in solid modeling and free-form mod-
eling of curves and surfaces [GomO0Q], i.e. the semialgebraic sets
of the first CSG and B-Rep modelers, as well as the semianalytic
sets that underpin CNRG [RR91] and SGC [RO90] representa-
tions. Although Bézier curves and surfaces —as well NURBS
(Non-Uniform Rational B-Splines)— are not zero sets, they are
also semialgebraic because Tarski and Seidenberg proved that
semialgebraicity is preserved by rational maps, i.& i€ R™

is semialgebraic, anfl: X — R" is rational, then the image set
f(X) is also semialgebraic iR" [Tar51] [Sei54].

They form a Boolean class, i.e. the set-combination of any two
subanalytic sets is always a subanalytic set [Hir73].

Each topological operation such as interior (Int), frontier (Front),
exterior (Ext), closure (Clo) on a subanalytic ¥ehas a suban-
alytic set as its resultHir74]. In fact, assuming that the inte-
rior Int(X) is well-defined, it follows from the Boolean class that
the boundary BdX) = X\ Int(X), the frontier FrX) = Bd(X)U
Bd(R™\ X), and closure CK) = Int(X) UFr(X) of a subanalytic
setX in R™ is also a subanalytic set. For example, the open disc
X =D? = {(x,y) € R?: x> +y? < 1} coincides with its interior;
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hence, BdD?) = @, Fr(D?) = S* = {(x,y) e R?: X +y?> =1}, erators [GomO03]. Basically, these operators process topological and
and CI([D)Z) =D?U Fr(]D)z). Note that, in general, B&X) = Fr(X) homotopic shapes of both strata and stratified objects by using par-
only for closed sets. ticular shape invariants. For example, the dimension of a stratum
e They admit regular stratifications. A stratificati@nof a point is a topological invariant; consequently, a vertex and an edge pos-
setX is a partition ofX into subsidiary point sets called strata, sess distinct topological shapes provided that they have distinct di-
which are by definition submanifolds (e.g. cells).sfratified mensions. On the other hand, masstratum may have a number of

point setX = (X, Z) distinguishes from another by imposing dif-  k-holes (0< k < n). The number ok-holes of a stratum is a homo-
ferent regularity conditions on the strata. A regularity condition topic invariant. Two strata with distinct numbersleholes are said
determines how the strata fit together, i.e. their adjacency and in- to have distinct homotopic shapes. The numbek-bbles is also
cidence relations. Aubanalyticverdier stratification is a stratifi- known as theth Betti number. The arrangement of strata and their
cation in which all strata are subanalytic submanifoldR®and holes in a stratified object is characterized as follows:

satisfy the Verdier condition [Ver76]. But, there are many other

ways to impose a regularity condition on incident and adjacent Theorem 1LetX = (X,Z) be a regular stratified subanalytic setin

strata (see [Sha91] [Gom00] [MRGO0] for some criteria). R3, whereX is its underlying point set anB is its Verdier stratifi-
cation (or set of strata). The Euler characteristi& i

2.2. Stratified objects X(Z) =v—(e—en) + (f — fn+ fc) — (S—sh+5¢) + Xoo(Z) (1)
Both CSGs and CNRGs represent a poinbéély means of a cov- .

ering of point sets in some Boolean class, while B-Reps and SGCsWith Xoo(Z) = — (&) + (foo — fooh) — (Sso = Sooh + Sooc), and
represent stratified sets. Recall that CSG and CNRG boundary evalVherev. e, f, andsstand for the number of boundary-complete ver-
uators can be used to output B-Rep and SGC objects, respectively!iCeS: €dges, faces, and solidsinrespectivelypoc, foo, ands

A theorem due to Verdier formalizes the relation betweengge Qenote the number of boundary-incomplete edges, faces, and solids
ometry(e.g. the subanalytic geometry) and tbeology(e.g. stra- " X €n, fn, andsy stand for the number of boundary-complete 1-
tum complex or stratification) found in the B-Rep data structures, holes through edges, faces, and solids, respectively;ands.cn

by stating that every subanalytic set is Verdier-stratifiable [Twog]. Stand for the number of boundary-incomplete 1-holes through faces

Thus, Verdier-stratified subanalytic objects constitute an adequate®"d S0lids, respectively ands indicate the number of boundary-
mathematical model for B-Reps [Gom03]. complete 2-holes for faces and solids, respectively, vhileindi-
cates the boundary-incomplete 2-holes in solids, respectivel¥.
Stratified sets generalize cell complexes in thathazell is a

particularn-stratum that is homeomorphic RJ'. Unlike a cell, a According to (1), avertexhas no holes. Ardgeadmits 1-holes
stratum need not be connected, nor bounded, nor globally homeo-(e,). For example, a ring is an edge with a 1-hole. An edge with
morphic to an open ball. For example, the 1-spiﬁ7& {pe R?: a single 1-hole (¢= 1) has the homotopy type of a l-sph@Je

||p|| = 1} admits a stratification of a single 1-stratum, while a cell i.e. it can be continuously deformed to a circlefatemay present
complex requires at least two cells, e.g. a 1-cell and a O-cell. Al- several 1-holes (i.e. through holes) and a 2-hole (i.e. a void). In the
though most B-Rep data structures represent stratified sets, not justatter case, a face is homotopy-equivalent to the 2-syfferia the

cell complexes, they lack generality evenH. Usually, the con- formula (1), f;, and f¢ stand for 1-holes and 2-holes of faces, re-
struction of a solid object starts with a topological surface home- spectively. Another example of a face with a 2-hole is the toroidal
omorphic toS? = {p € R®: ||p|| = 1} stratified into a 2-cell and surfaceT?. It also has two 1-holes because we can draw two imag-
a O-cell by calling the Euler operatarvfS(make vertex, face, and  inary loops on it, which are not contractible to a point, nor con-
shell). This is so because the mathematical model ruled by the Eulertractible to each other. It is then said tifthas the homotopy type
formula does not include strata homeomorphic to spheres; henceof St x S, i.e. two loops or rings intersecting at a single point. This
the inclusion of a vertex. In contrast, the Euler formula proposed means thaff? can be formed by sweeping the first ri8§ along
here admits strata homeomorphic to spheres or even tori. the second touching rir@l. Filling in T? with an open solid torus
(3-manifold) one obtains a closed solid torus (closed 3-manifold).
This filling operation makes the 2-hole Bf disappear along with
one of its 1-holes (the sweeping riig). That is, only one 1-hole

By definition, an algebra is a set of elements together with a set of (the revolution ring ofEZ) remains in the closed solid torus.
operations. In this paper our elements are stratified subanalytic sets

and the operations are Euler operators. Euler operators are shape It is assumed that, as a topological space,nasimensional
operators, i.e. they change the shape of an object in conformity manifold (or, simply, am-manifold) is a point set topologized by
with some Euler formula. These objects and their strata may havethe usual topology iRR". Thus, everyn-manifold is open irR",
incomplete boundaries. Thus, the Euler algebra proposed here gennot necessarily bounded, with possibly maagiimensional holes
eralizes the Euler algebra introduced by Masetial. [MSNK89], (0 < k < n). Unbounded, or equivalently boundary-incomplete,
which in turn generalises other formulas (e.g. [Bau72], [Wei86], Strata appear with the subscrigt. For example, in Figuré7(d),
[Wu89], [YK95]) underpinning manifold and non-manifold bound- ~ with the exception of the vertex, all strata are unbounded. Be-
ary representations of geometric objects. sides, as suggested by (1), unbounded strata may also have holes.
The Euler characteristic (1) regulates the manifold strata of a strati-
fied object, as well as their homotopic shapeditkensional holes)

via Betti numbers. Thus, formula (1) provides us with a shape un-
Understanding the shape of point sets, either stratified or not, is derstanding at the stratum level. To describe the shape of a stratified
essential in the design of B-Rep data structures and their Euler op-object as a whole, we use the global Euler characteristic as follows:

3. Euler algebra

3.1. Euler formula

(© The Eurographics Association 2004.
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mvC meCy mfC,

(%] L] C Q @ @ valid in higher
kvC keC,, kfC, dimensions
(a) n=0 (b) n=1 (¢) n=2 (d)n=3
Figure 1: The operator m¥d".
mee,CCy mff.CC.
4 Q 2 _ O valid in higher
kee,CCy kff.CC. dimensions
(a) n=0 (b) n=1 (c) n=2 (d) n=3

Figure 2: The operator m#IHOH".

Theorem 2Let X = (X, X) be a regular stratified subanalytic set in
R3. The Euler characteristic of is

X(X) = (C—Ch+Cc) 4+ Xoo (X) 2

With Xoo (X) = —(Esc) + (Fac — Fach) — (S — Swch + Ssec), and
whereC, Cy,, andC; stand for the number of boundary-complete
components, 1-holes, and 2-holes Xf respectively;Exo, Foo,

and S, denote the number of boundary-incomplete components
for edges, faces, and solids, respectivély;, and S, denote

the number of boundary-incomplete 1-holes through face compo-
nents and solid components, respectively, Sad the number of
boundary-incomplete 2-holes in solid components. |

Note that the global or homotopic shape of the whole space
underlyingX can be described by the number of 0-holes (or object
components), 1-holes, .k:holes, which are denoted bBy°, H®,

.. HK 0<k<n, respectively. Th@-dimensional counterparts of
(1) and (2) can be found in [GomO00].

3.2. Euler operators

317

kemC . kfmC,, ksmC,

C

Figure 3: The operator KdmH" 1.

@ kj],,mCC,,Q kss.mCC.,
MfkCC, O ms.xll\'CCLO

(c) n=2 (d) n=3

0=x0 O

mekC o mfkC), mskC,

(a) n=0 (b) n=1 (c) n=2 (d)n=3

(a) n=0 (b) n=1

Figure 4: The operator K3~ mHH" 1,

to an object, which locally is a fackwith a 2-holefc, and glob-
ally a surface componef@with a 2-holeCe.

Let us now consider the Euler operators that create a global hole
by detaching a stratum:

(iyks'mH"~L. This operator generates a glola— 1)-hole H"~*
in X by detaching am-stratums” from X (Figure 3). For ex-
ample,kfmG, = k?mH! creates a 1-hole through an object by
detaching a 2-stratum. The detachmgtratum must be homeo-
morphic toR". Its inversem$'’kH" ! eliminates a globaln— 1)-
hole by attaching an-stratum.

(ii) k"N~ mHCH"~L. This operator is similar to the previous one,
but the detaching-stratuns” possesses(@— 1)-holeh] %, i.e.
it cannot be homeomorphic ®" (Figure4). For example, the
operatork f f,mCG, = ks>hmHCH* removes a facé with a 1-
hole f, from an object, globally originating the appearance of a
new component and a new 1-hol€&;, through the object.

Stratum subdividers. Unlike the previous operators, no stratum
subdivider changes the global shape of an object. A subdivider is
an Euler operator that subdivides mstratum into twan-strata by

a new(n— 1)-stratum, called the subdividing stratum. There are

Recall that a stratum needs not be boundary-complete. Therefore three generic stratum subdividers/coalescers:

there is no prescribed order in attaching or detaching a stratum to or
from an object. That is, unlike the conventional boundary represen-
tations, it is no longer necessary to follow the precedence principle
that attaching a stratum must be done after attaching its frontier

strata. This makes it possible to proceed to local shape changes on

an object without rebuilding the whole object up.

Global hole shapers. There are two classes of operators to generate
a global hole through or iX. The first uses atratum attachment
technique, while the second usestetum detachmertechnique.

Let us now consider the first class of Euler operators that create
a global hole by attaching a stratum:

(iyms'H". This operator creates a globaholeH" in X by attach-
ing ann-stratuns” to = (Figure1). For examplemeG, = ms-H?
is a particular case for dimension= 1, which creates a 1-hole
through an object by attaching a 1-stratum to it. The attaching
stratum must be homeomorphiclis. Its inverseks’"H" undoes
ann-hole by detaching an-stratum.

(i) m$'hIHCH". This operator is similar to the previous one, but
the attaching-stratums” must possess anholehp, i.e. it is not
homeomorphic tR"; the subscript of the-dimensional holén
denotes the dimension of its ambient stratsihfFigure2). For
example, the operaton f :CC;c = m&h3HOH? adds a 2-sphere

(© The Eurographics Association 2004.

0] md' 1" This operator subdivides amstratum into two by a
new (n— 1)-stratum (Figuré). The subdividingn— 1)-stratum
must be homeomorphic @" L. This operator applies to both
boundary-complete and boundary-incomplete strata. For exam-
ple, the operatomvein Figure5 subdivides an edge indepen-
dently of whether its boundary is complete or not. Its inverse
operatork§‘_lsn coalesces twa-strata into one by merging one
of their adjacen{n — 1)-strata to which they are incident.

(i) m' 0= 1"M1 L. In this case, the subdividing — 1)-stratum
has an(n— 1)-hole, which means that it is not homeomor-
phic toR" 1 (Figure6). For example, the operatoreg f fj, =
ms'his?h} subdivides a facé into two faces by an edgewith
a 1-holes,, leaving the original face with a 1-holg.

C
CC O

(a) n=0

mve,, mef,,

<o

. =~ @
mfs
: @

(c)n=2

kve,, kef.,
valid in higher

mef dimensions

kef

(b) n=1 (d) n=3

Figure 5. The operator m% 1.
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I — — — kemf), kems,
Figure 6: The operator nfs *h?~ "1, i O O
mekf; meks,
mee,fkf, ke mfy ke, ms,
valid in higher O O
keeyfK, dimensions me, kf, me. ks,
(a) n=0 (b) n=1 () n=2 ) n=3 kemf. : ke ms,..
me.kfop me_ ks, O

Figure 7: The operator nis~*h1~1s"kH). ©d=1, 10 M d=1, n1 @d=1, =2 by d=1, 13
@ kfms, @
mfks),

(iiiy m€" 21~ 1s"kHR. In this case, both strata have holes. This oper-

ator subdivides a-stratum with am-hole by an(n— 1)-stratum e
with an (n— 1)-hole (Figure7). For examplemeg fkfc = mfks.n
ms'his?kh3 subdivides a facd with a 2-holefc by an edgee (M d=2n0 B d=2, =1 0 d=2, n=2 (M d=2.n=3

with a 1-holesy; this is equivalent to subdividi by St. .
&h q r®2 y Figure 9: The operator k‘émtﬂ’d.

Local hole shapers. They do not change the global shape of an
object. They change the shape of strata by merging a stratum into . / s
another of higher dimension. The stratum of lower dimension has R C i e

; m KE. m o ks S, 9

no holes. There are two sorts of local shapers: keE,

. _1_— . . . . (a) n=0 b) n=1 n=2 (d) n=3
() kh2 =19 This merges a-stratum into an incidem-stratum Y © ©

(n > d), which causes the disappearance ¢ha- 1— d)-hole Figure 10: The operator ni, S .

from the ambient higher dimensional stratum (Fig8yeFor ex-

ample, the operatdev f, = ksh3 eliminates a 1-hold, from a

face by merging a vertex (which fills in f,) into it. Thus, the

n-stratum loses afn — 1 — d)-hole. This operator works inde- component), to an object (Figurd0). Its inverse&ksl, Sy, de-
pendently of whether the-stratum is boundary-complete or not. taches a boundary-incomplatestratum from an object.

(i) k'mH 9. In this case, the-stratum acquires & —d)-hole
(Figure 9). For examplekvmt merges a vertex into a face,
which then closes onto itself, i.e. it acquires a new 2-Hgl&his
operator also works for boundary-incomplete strata. For exam-
ple, in Figure9(h), ke-cms merges an edge with a vertex miss- (i) mr,HL,,,. It makes ad-hole i, (d < n— 1) in a boundary-
ing into a solid having a vertex filling in one of its holes incompleten-stratum, which in turn produces a glotshole

Hgon in its stratum component. For example, the operator

MfoohFooh = ML ,HL , makes a 1-holef.p through a face

and, consequently, a 1-hdtej, through its face component.

Unfilled hole shapers. They generate boundary-incomplete holes
for strata. There are three unfilled hole shaperﬁerr(Figurell).
They are in the following dimension-independent class:

Stratum attachers. These Euler operators allow us to attach (re-
spectively, detach) boundary-incomplete strata to (respectively,
from) an object. The attaching (detachingjstratum must be

homeomorphic t@®". There is only one class of these operators: | gcal stratum compacters. There is only one dimension-
()mL. S . This operator attaches a boundary-incomplate  independent stratum compacter:
stratumsl, and its corresponding boundary-incomplete stratum (i) k. m<". This operator transforms a boundary-incomplate

stratumsy,, into a boundary-complete stratigh(Figure12). For
that, we have only to change its boundary-completeness state.

mvfy mvs,
O @ O O For example, in Figurd2(b), attaching a vertex to a boundary-

kvfy kvs,

O = O
ms,;S,,
fos, 1S

Co D)
ks.onS.
(a) d=0, n=0 (b) d=0, n=1 (¢) d=0, n=2 (d) d=0, n=3 Koo wh el

o mesj O (a)d=1, n=0 (b) d=1, n=1 (c)d=1, n=2 (d)d=1, n=3
kes),

v

e mfonFon ;

[V

MS oS
me.s.p
00 SESE~
2 ke, s, 3
(e)d=1, n=0 () d=1, n=1 (g)d=1, =2 (hyd=1, n=3 () d=2, n=0 (f) d=2, n=1 (@) d=2, n=2 (h)d=2,n=3

Figure 8: The operator ki —1-9, Figure 11: The operator mfy,HS. .
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C ke,me C Kfoomf O ks ms
o me_ ke O mf . kf ms. ks O
(a) n=0 (b) n=1 (c) n=2 (d) n=3
Figure 12: The operator K& mg'.
AT Kamfi TN ksams
v :] i L) :‘
" ki - SIS
(a)d=1, n=0 (b) d=1, n=1 (c)d=1, n=2 (d)d=1, n=3
kS..cms,
ms,.cks, 9
(e) d=2, n=0 () d=2, n=1 (g) d=2, n=2 (h) d=2, n=3

Figure 13: The operator kﬁonmkﬁ.

incomplete edge is done by callikg-cme= kstomst to change
the boundary-completeness state of the original edge.

A stratum compacter is invoked whenever attaching or detaching

a stratum changes the boundary-completeness of its neighboring

strata. Note that the compactification of a stratum requires various
Euler operators. For example, compacting the face in FigB(e)
starts by calling the operatarvGC and then the stratum compacters
for such a face and its boundary-incomplete edge.

Local hole compacters. Local holes can also be compacted. This
is done by filling it in with an appropriate stratum as follows:

0] khgonmfﬂ. It transforms a boundary-incomplete hdn%on of a
n-stratum into a boundary-complete hole after filling it in with
a stratum of dimension less than For examplek f,onmf, =
khi ,mh transformsf_..p, into a boundary-complete face hole
f, after filling it with a vertex. (This vertex is attached by calling
the operatomvC)

Global stratum compacters The local compactification of a stra-
tum s, leads to the global compactification of its associated com-
ponentS,. Thus, a global compacter of a stratum serves to com-
pact the global shape of a stratum. There are three families of global
compacters ifR>:

() kCLH" L. It compacts am-stratum componer@’, by delet-
ing a global(n— 1)-hole H L, Consequently, such a compo-
nent becomes part of the boundary-complete subset of the object
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C kE.C C kE,Cy kS..C,
& mEC O m&C/O ms,,qo
(a) n=0 (b) n=1 (c) n=2 (d)n=3
Figure 14: The operator k& H" "1,
Q kE.mCj, : : kF.mC, valid in higher
A . @ dimensions
mEkCy mF,kC,
(@) n=0 (b) n=1 ©n=2 (& n=3
Figure 15: The operator k& mH".
4. Examples

Let us now illustrate the construction of some stratified objects:

Example 1. The stratified Cartan umbrella, whose underlying point
set® = zy2 is semialgebraic (Figur&7) can be built up through the
following Euler operators:

mvC It creates the vertey at the origin(0,0,0). This vertex
embodies a single componebf the object.

mex Exo. It is used twice to create two unbounded edgeand

e (i.e. the negative and positive z-axes), and their corresponding
boundary-incomplete edge componelits, attached ta.

mf.F. It is applied twice to create the two unbounded sheets
f1 and f,, as well as their corresponding boundary-incomplete
face componentB8, attached t@; ande,, respectively.

Example 2. Let us now construct the compact non-manifold strati-
fied object pictured in Figur&8:

e megCG,. It creates the edge with a 1-holeg, through it. The
result is an object with a componddthaving a 1-hol&y,.

mfkG,. The global hol&y, produced before disappears by filling
it in with the facef;.

e mfC. Attaching the new facé, to e; produces a voi€..

e mvf,. Attaching the new vertex; to f; produces a new 1-holig
throughf;. The global shape of the object remains unchanged.
meG,. Finally, attaching the new edg® to v, produces a new
global holeC;, through the final object.

Note that these objects cannot be constructed by using other Eu-
ler operators found in the literature because they cannot handle un-
bounded strata (e.g. edges and faces of the Cartan umbrella in Fig-
'ure17) and edges with holes (e.g. the edgén Figure18).

decreasing so the number of boundary-incomplete components.

For example, the operatdE..C = kC3,H® in Figure 14(b)
compacts an edge componéit, by deleting the compone
of the compacting vertex attached to the object in the meanwhile.
(i) kC3, mH". It generates a globakholeH" by compacting am-
stratum componer@?, . For examplekEsomG, = kCi,mH? in
Figure 15(b) generates a global halg through the object by
attaching a compacting vertex to an edge compoBEent
(iii) KHYSXC. This operator applies to boundary-incomplete stra-
tum components with holes. It compacts a global non-compact
(n—1)-holeH25:! of an-stratum after filling it in with a stratum
of dimension less than (Figure 16). Consequenly, the filling
stratum form a compone@ which is then merged with some
component of the boundary-complete subset of the object, de-
creasing so the number of components of the whole object.

(© The Eurographics Association 2004.

5. Conclusions

The Euler operators that have been proposed in this paper are
dimension-independent and can cope with boundary-incomplete
stratified objects. This has enabled the construction of objects with-
out a pre-defined order in attaching and detaching strata to and from

O0:z00

Figure 16: The operator ki;:C.

kF.,.,C
L kS...C valid in higher

dimensions

kF..;,C mS,.C

(a) n=0 (b) n=1 (c)n=2 (d) n=3
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Figure 17: Stratified Cartan umbrella.
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Figure 18: A compact non-manifold stratified object.

them, respectively. Thus, the precedence principle of conventional
boundary representations no longer needs be satisfied. This is use-
ful for many geometry-based applications where significant free-
dom is required in the design of geometric artifacts. Finally, the
fact that these Euler are dimension-independent facilitates the im- [RR91]
plementation and maintenance of the geometric kernel.
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