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Abstract
In this paper, we present a subdivision-inspired scheme to construct generalized Sierpinski polyhedron. Unlike usual Sierpinski
polyhedra construction schemes, which create either an infinite set of disconnected tetrahedra or a non-manifold polyhedron,
our robust construction scheme creates one connected and manifold polyhedron. Moreover, unlike the original schemes, this
new scheme can be applied to any manifold polyhedral mesh and based on the shape of this initial polyhedra a large variety
of Sierpinski polyhedra can be obtained.Our basic scheme can be viewed as applying simplest subdivision scheme [23] to an
input polyhedron, but retaining old vertices. The porous structure is then obtained by removing the refined facets of the simplest
subdivision.

1. Motivation

Fractal geometry has emerged as one of the major mathematical
approaches for designing unusual 3D shapes during the last two
decades. Examples of such shapes introduced by fractal geometry
include the Sierpinski tetrahedron, the Menger sponge, the Man-
delbrot set and Julia sets [20].

Fractal geometry shapes are artistically intriguing and aestheti-
cally pleasing [20]. Moreover, they provide unique challenges for
the development of robust and computationally efficient shape con-
struction approaches. Most shape construction algorithms for frac-
tal geometry are given by a set of rules that are applied to an initial
shape. However, the limit shapes are often independent of initial
shapes and the algorithms are geometric in nature and hard to gen-
eralize.

Subdivision schemes provide a fresh alternative to fractal con-
struction algorithms. They are conceptually similar to fractal con-
structions, i.e., they are also given by a set of rules that are applied
to an initial shape. However, the subdivision schemes have three ad-
vantages: (1) their underlying rules (remeshing schemes) are mesh
topological in nature, (2) the rules can simply be applied to any
manifold polygonal mesh, (3) the limit shapes depend on initial
shapes.

In this paper, we present a computationally efficient, robust and
simple to implement subdivision scheme that allows construction
of connected & manifold polyhedra that have the Sierpinski prop-
erty. Two shapes created by using our approach are shown in Fig-

† Corresponding Author: Address: Visualization Laboratory, 216 Langford
Center, College Station, Texas 77843-3137. email: ergun@viz.tamu.edu.
phone: +(979) 845-6599. fax: +(979) 845-4491.

ure 1. As seen in this figure, our scheme is dependent on the ini-
tial shapes, i.e., different initial shapes give different (but similar
looking) limit shapes. Moreover, some of these shapes cannot be
constructed by geometrically combining affine copies of a Sierpin-
ski tetrahedron. For instance, although the shape in Figure 1(B) can
be assembled from affine copies of (A), (C) is topologically differ-
ent from the Sierpinski polyhedron in (A) and cannot be created by
affine copies of (A).

(A) (B) (C)

Figure 1: Two shapes created by using our approach. Initial shapes
are (A) a tetrahedron (B) a cube and (C) an octahedron.

2. Introduction

A large class of fractal geometrical shapes, including the Sierpinski
tetrahedron are self-similar. Such shapes can be constructed with a
simple procedure that exploits their self-similarity property (intro-
duced by Barnsley [7]). The most common approach is to repet-
itively take the union of transformed (e.g. scaled, rotated, trans-
lated and mirrored) copies of an initial shape. For instance, if a
self-similar Fractal shape can be given as

S = UK
k=0 Ak S
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whereAk is a 4× 4 transformation matrix in homogenous coor-
dinate system andU is the union operator, then, an algorithm to
construct such a shape involves creating a series of shapes starting
from an initial shapeS0 as

Sn = UK
k=0 Ak Sn−1

In practice, it is possible to ignore the union operation since using
disconnected copies will visually give the same results. As a result,
the number of the copies increasesK times in each iteration. Since
the number of copies increases very quickly, after a few iterations
a good approximation ofScan be obtained. Because of its simplic-
ity, this approach is widely used to create fractal shapes. Another
important property of this approach is that it is dimension indepen-
dent, i.e. the same conceptual algorithm can be used both for 2D
and 3D shape construction. Moreover, this algorithm is indepen-
dent of the way the shape is represented, e.g,S0 can be a set of
points, an implicit surface, a polygonal surface, or a NURBS sur-
face. Regardless of the type of the initial shape, the same algorithm
can be used.

One of the problems with this shape construction approach is
that the algorithms are specific to the target (limit) shapes. Each
algorithm approaches its target shape regardless of the shape of
the initial object. These algorithms do not allow construction of
different target shapes from different initial shapes.

Fortunately, this approach is not the only method for construct-
ing fractal shapes. These alternative approaches are usually not di-
mension independent and are hard to implement in 3D, so they have
not been widely used in 3D applications. However, several of these
approaches allow construction of a variety of fractal shapes from
different initial shapes. A notable example is one of Mandelbrot’s
alternative Sierpinski triangle constructions that relies upon “cut-
ting out ‘tremas’” as defined by Mandelbrot [20].

2.1. Generalization of Mandelbrot’s Alternative Sierpinski
Triangle Construction

We observe that an attractive property of the above construction is
that the initial shape does not have to be a uniform triangle (Man-
delbrot did not explicitly mention it [20]). The initial shape can be
a convex polygon by simply restating the construction algorithm
asfrom each convex polygon cut a convex polygon that is created
by connecting the midpoints of each edgeas shown in Figure 2.
After first application of this algorithm, all polygons become trian-
gles. The algorithm also works for non-convex polygons, however,
some parts of the initial polygon can be removed by cut opera-
tion as shown in Figure 3. If we interpret the “cut” operation as an
“exclusive-or” operation instead of a set-difference, we can safely
apply this construction to even non-convex shapes as shown in Fig-
ure 4.

2.2. Extension to 3D

It is hard to extend this algorithm to three dimensions using set
operations. To construct a generalized Sierpinski polyhedron, we
need to take a set-difference (or ex-or) of the initial polyhedron
with a polyhedron that is constructed by connecting midpoints of
each edge in the original polyhedron. There exist two problems:

1. Unlike the union operation, which can be visually implied with-
out any implementation as such (we simply have to render all the

Figure 2: Generalization of Mandelbrot’s alternative Sierpinski
triangle construction to convex polygons.

objects), the set difference operation needs to be implemented.
In this particular case set difference is particularly hard to im-
plement since it creates non-manifold shapes [18].

2. Construction of a polyhedron by connecting the midpoints of
each edge of the initial polyhedron can also be hard in solid
modeling. In the case of a tetrahedron, the problem is easy since
the shape that is constructed is an octahedron; i.e. the faces are
triangular and therefore planar. But for most cases, the faces
may not be triangular and hence may not be planar, complicating
the set-difference procedure even further.

Figure 3: Mandelbrot’s alternative Sierpinski triangle construction
for non-convex polygons.

Figure 4: Mandelbrot’s alternative Sierpinski triangle construction
for non-convex polygons by using “Exclusive-Or” instead of “set-
difference”.

In this paper, we present an algorithm that provides a 3D
version of the generalized Sierpinski triangle construction. Our
3D construction scheme is very similar to subdivision schemes
[12, 10, 14, 23, 13, 25, 21], although we do not construct a smooth
shape, .

• Like every subdivision scheme, our algorithm is based on a sim-
ple remeshing scheme.

• Similar to subdivision schemes, our algorithm can be applied to
any polygonal manifold mesh

• Subdivision schemes create locally regular regions that approach
parametric surfaces such as cubic B-Spline surfaces. Our algo-
rithm also creates regular regions that approach Sierpinski tetra-
hedra.
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• Similar to subdivision schemes, our scheme has extraordinary
points. Initial valence-nvertices continue to exist as a part ofn-
sided pyramids. The newly created pyramids are all 3-sided, i.e.,
tetrahedral.

However, unlike subdivision schemes, we change the topology of
the initial mesh. Unlike popular algorithms for self-similar fractals,
we do not create distinct surfaces. Instead each connected compo-
nent in our initial manifold mesh remains connected. After the first
iteration, each iteration increases the genus of the shape four times.

Our approach is based on topological mesh modeling, in which
we guarantee topological manifold property of the meshes, but we
do not keep any geometric information about the shape except the
positions of the vertices. The faces and edges can have any shape,
but, since we do not have to deal with their shapes, our algorithms
become simple and allow us to provide real-time interaction. Since
we largely ignore the geometry of the shapes, we do not have
to deal with hard problems such as self-interactions or set oper-
ations. Moreover, we can represent non-manifold looking shapes
with manifold meshes. This particular problem and our solution il-
lustrate that some hard solid modeling problems can have simple
solutions using topological mesh modeling.

3. Topological Mesh Modeling

Akleman and Chen introduced Topological Mesh Modeling along
with the Doubly Linked Face List (DLFL) data structure [2, 11, 1].
Their INSERTEDGE and DELETEEDGE [2] operators can effec-
tively change the topology of a manifold mesh by inserting and
deleting handles. They can be used effectively to implement sub-
division schemes and allow topology change during subdivision
modeling [3, 4]. Akleman, Chen and Srinivasan have recently de-
veloped a user interface [5] and theoretically shown [6, 11] that all
and only orientable 2-manifold structures can be created using the
two simplest Euler operations MVFS (make a surface with a single
vertex and a single face) and KVFS (inverse of MVFS) [19] along
with INSERTEDGE and DELETEEDGE. Moreover, these four op-
erators can be efficiently implemented [11] on almost every mesh
data structure including winged-edge, [9], half-edge [19] and quad-
edge[17]. Using only these four operators, software development
for mesh modeling with a topologically guaranteed orientable man-
ifold property can be greatly simplified.

For the algorithm presented in this paper, we only need two oper-
ators: SUBDIVIDE EDGE and INSERTEDGE. The former, the SUB-
DIVIDE EDGE operator, is not a part of the minimal operator set,
but it can be implemented by minimal operators. It simply subdi-
vides a given edge into two smaller edges, inserting a new vertex
at the midpoint. The later, INSERTEDGE, is a part of the minimal
operator set and needs a detailed explanation since it is crucial for
our algorithm.

INSERTEDGE(c1,c2,e) inserts a new edgee to the mesh struc-
ture between two cornersc1 andc2. Formally, acorner is a sub-
sequence of a face boundary walk consisting of two consecutive
edges plus the vertex between them. But, we can consider a corner
as a {vertex, face} pair or as a sequence of three vertices belonging
to a face. For example iff = {v1,v2,v3,v4} is a face,v1,v2,v3 is
a corner referring to the vertexv2 in face f and{v3,v4,v1} is the
corner referring to the vertexv4 in face f .

If I NSERTEDGE inserts an edge between two corners of the same

face, the new edge divides the face into two faces, as shown in Fig-
ure 5(A). On the other hand, if INSERTEDGE inserts an edge be-
tween corners of two different faces, the new edge merges the two
faces into one as shown in Figure 5(B). This operation changes the
topology of the mesh. if the two faces belong to the same surface,
INSERTEDGE increases the genus of the surface. If the two faces
belong to two disconnnected surfaces, then INSERTEDGE connects
these two surfaces.

(A) (B)

Figure 5: Inserting an edge between two corners of the same face
(A) divides it into two faces and deleting an edge between two faces
merges the two faces into one. On the other hand, inserting an edge
between two different faces (B) merges the two faces and deleting
an edge with both sides in the same face splits the face into two.

4. Sierpinski Subdivision Algorithm

LetV be the list of vertices,E the list of edges andF the list of faces
in the original mesh. Moreover, let an edge whose end points (ver-
tices) are the same be referred to as aself-loop. Then the algorithm
is given as follows:

1. For every edgeei in E that is not a self-loop, subdivideei at
its mid-point. LetVm be the list of all newly created edge mid-
points.

2. For every vertexvi in V

a. For every cornerci = {a,vi ,b} which points tovi , insert
an edge (shown as blue edges in Figure 6.B) between the
corners{c,a,vi} and{vi ,b,d}, where{c,a,vi ,b,d} forms a
sub-sequence of vertices defining a face in the mesh.

This will subdivide each facef in the original mesh into as many
triangles as the number of vertices inf plus one central face
(shown as yellow faces in Figure 6.D) which will have the same
number of vertices asf .

3. For each vertexvi in Vm

a. Find the cornersc1 andc2 pointing tovi that are also part of
one of the central faces created in the previous step.

b. Insert an edge (shown as red edges in Figure 6.C) between
c1 andc2.

After step 3 in the above process, all the central faces created in
step 2 will no longer exist and we will have holes in their place. The
restriction on edges not being self-loops in step 1 is necessary for
recursive operation, since the edges inserted in step 3 above will all
be self-loops.

The most important part of this algorithm is that the back faces
(shown as white faces Figure 6.D) are automatically created. Each
one of these faces has one self-loop on each one of its own vertices.
Since (in practice) the self-loop edges have zero length, resulting
faces look like they haven number of sides instead of 2n. For in-
stance a triangle looking face is actually a hexagon as shown in
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(A) (B) (C) (D)

Figure 6: Visual presentation of the algorithm. (A) is the initial
mesh, in (B), each edge is subdivided and midpoints are connected
by inserting edges (shown as blue) to create new faces. In (C), an
edge (shown as red) is inserted between two corners of each mid-
point vertex. The yellow faces are automatically eliminated and
new (white) faces are created.

Figure 7(A) and (B). (Self-loops do not form separate faces, but
they belong to the triangle looking backfaces. Holes can appear -
becomes visible- only after all the self-loops are intserted.)

These self-loops act like boundaries that allows connection of
each pyramid to another. The topological structure of one such
connection between two hexagons (that look like triangles) is il-
lustrated in Figure 7(C). Since these self-loops cover zero area, the
resulting shapes look like non-manifolds, although they are mani-
folds.

(A) (B) (C)

Figure 7: (A) and (B) are two topological renderings of a hexago-
nal face that looks like a triangle. (C) shows how to create a non-
manifold looking manifold structure by appropriately connecting
triangle-looking hexagonal faces in (A) and (B). .

Note that this algorithm does not provide a set-difference or an
exclusive-or operation. It gives acceptable results only for this par-
ticular problem. The algorithm is attractive mainly because of its
computational efficiency and simplicity.

5. Implementation and Results

The algorithm above is implemented and included in our existing
2-manifold mesh modeling system [5] as an option. Our system is
implemented in C++ and OpenGL, FLTK [15]. All the examples in
this paper were created using this system.

Although we assume that the faces and edges can have any
shape, in practice, their shapes are defined by OpenGL; i.e., edges
are straight lines and faces are hardware rendered polygons. There-
fore, although the algorithm can be applied to any manifold mesh,
the quality of the results depends on properties of the initial mani-
fold mesh.

In the discussion of the evaluation of the results, we ignore self-
loops since they are only useful for simplification of the algorithm
and otherwise invisible to viewers. For instance, we would call a
face a triangle even if it is actually a hexagon with three self-loops.

To evaluate the results, we have classified vertices into 5 cate-
gories. Our classification of a vertex is based on the pyramid cre-
ated by the straight edges (ignoring self-loops) that share that par-
ticular vertex: (1)Convex vertex. The tip of the pyramid is convex.
(2) Star vertex. The tip of the pyramid is star. (3)Concave vertex.
The tip of the pyramid is concave. (4)Planar vertex. The tip of the
pyramid is flattened. (5)Saddle vertex. The tip of the pyramid is
saddle shaped. Based on this classification, we identified the fol-
lowing cases.

• If the initial mesh consists of only 3-valence convex vertices such
as in a dodecahedron or a cube [24], after the first iteration of the
algorithm, the resulting mesh consists of only tetrahedral shapes.
Since in a tetrahedral shape, each face is a triangle there is no
problem in rendering. The faces of the convex polyhedron with
3-valence vertices do not have to be planar.as shown in Figure 8.

(A) (B)

Figure 8: (A) An initial mesh (deformed cube) that consists of only
3-valence convex vertices with non-planar faces (B) the resulting
shape after 4 iterations.

• If the initial mesh includes some non-3-valence convex vertices
such as in an icosahedron or an octahedron [24], the result-
ing mesh always includes non-triangular faces. The planarity of
these faces depends on the vertex positions in the initial mesh.
This is not a grave problem since with each iteration such non-
planar faces become more and more planar even if they were not
planar initially.

• If the initial mesh includes some star vertices, the resulting mesh
always includes star shaped faces. Even if these faces are planar,
hardware rendering can sometimes create visual problems when
star shapes are converted to triangles. However, again this is not
an important issue since many interactive renderers do not create
any problems. as shown in Figure 9.

• If the initial mesh includes some concave vertices, each one of
these concave vertices creates a geometrically inverted pyramid,
i.e. normal vectors points inside of the pyramid instead of out-
side. This problem is not easy to see and can be corrected easily
by inverting normals.

• If the initial mesh includes some planar vertices, each one of
these planar vertices creates a flattened pyramid. This problem
can be visually annoying but cannot be corrected. Unfortunately,
the number of flattened pyramids increases with each iteration.
as shown in Figure 10. Therefore, it is better to avoid planar ver-
tices.

• If the initial mesh includes some saddle vertices, each one of
these saddle vertices creates a self-intersecting pyramid. This
problem can also be be visually annoying and cannot be cor-
rected. However, the number of self-intersecting pyramids stays
the same in each iteration and in every iteration they become
smaller and less annoying.

One of the advantages of our approach is that our algorithm
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(A) (B)

Figure 9: (A) An initial mesh that includes both star and concave
vertices (B) the resulting shape after 4 iterations.

(A) (B)

Figure 10: (A) An initial mesh that includes some planar vertices
(B) the resulting shape after 4 iterations.

produces connected and manifold polyhedra. If we smooth these
polyhedra by applying Doo-Sabin or Catmull-Clark [12, 10], the
smoothed shape remains connnected as shown in Figure 11. We
have used Doo-Sabin scheme since it is particularly useful for
smoothing such non-manifold looking manifold meshes (see [3, 4]
for detailed discussions). The Figure 12 shows examples of other
subdivision schemes that can effectively smooth these Sierpinsky
polyhedra.

6. Conclusion and Future Work

In this paper, we have presented a new subdivision scheme to con-
struct very high genus polyhedra that have Sierpinski property. Our
new scheme is robust, computationally efficient and simple. The
scheme can be applied to any manifold polyhedral mesh. A large
variety of Sierpinski polyhedra can be obtained based on the shape
of the initial polyhedra. Although, our underlying data structure
is DLFL, as shown in [11] the algorithm presented in this paper
can be implemented by using any common data structure such as
winged-edge,[9], half-edge [19] or quad-edge[17]. This approach
illustrates that topological mesh modeling can provide simple and
efficient solutions to some hard solid modeling problems.
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Figure 13: A detailed example of smoothed Sierpinski polyhedra:.
We have applied 3 iterations of our Sierpinski subdivision to a
tetrahedron and then smoothed it using Doo-Sabin subdivision.

Figure 14: A detailed example of smoothed Sierpinski polyhedra:.
We have applied 3 iterations of our Sierpinski subdivision to a cube.
then smoothed it using Doo-Sabin subdivision.
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