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Abstract

This paper presents an implicit curve and surface design technique that uses smooth unit step functions. With the
proposed method, an implicit curve or surface can be generated by inputting a sequence of points together with the
normals at these points of the curve or surface to be designed. By choosing appropriate smooth unit step functions,
these curves and surfaces can be designed to any required degree of smoothness.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Gener-
ation

1. Introduction

A geometric shape can be represented either parametrically
or implicitly. Both have their advantages and disadvantages.
However, in the area of computer aided geometric design
and computer graphics modelling, parametric curve and sur-
face design techniques, such as B-spline curves and surfaces,
have long been used as the primary shape modelling tools.
The reasons why parametric shape design techniques are so
popular in engineering object design and computer graphics
modelling are obvious. Firstly, parametric curves and sur-
faces are much easier to manipulate when drawing, tessel-
lating, subdividing and bounding. Secondly, the most pop-
ular parametric curve and surface design techniques have
a simple and elegant description and are very easy to im-
plement. Thirdly, the spline curves and surfaces are repre-
sented by piecewise polynomials and are fast to compute.
Furthermore, parametric surfaces provide direct support to
the polygonal mesh technique for displaying objects graph-
ically. But parametric curves and surfaces have their draw-
backs. One main drawback is that it is more computation-
ally expensive to determine the distance from a point to a
parametrically represented geometric shape. In general for
a parametric curve or a parametric surface, it is impossi-
ble to know directly whether a given point is on the shape
or not. In addition, for a parametrically represented closed
curve or surface, it is hard to know whether a point lies
inside or outside the shape. Unlike parametric geometric
objects, an implicit shape in R

n is represented by a map-
ping f : R

n → R as the 0-contour of f , or as the set
A = {P : f(P) = 0,P ∈ R

n}. Implicitly represented shapes
have advantages over parametric shapes in several aspects.
Firstly, when objects are modelled as implicit surfaces, one

knows directly whether a point lies inside or outside the
shape and the problem of boundary detection can be eas-
ily solved. Secondly, the surface normals are easy to com-
pute, and two implicit shapes can be easily blended. Thirdly,
the most commonly used geometric shapes, such as spheres,
cylinders, and ellipsoids, take very simple forms. In addi-
tion, the value of an implicit function at a point can be used
to approximate the signed distance from the point to the
surface.

One of the most active implicit modelling techniques
has been the CSG [Ric73] [MS85] [Roc89] [BW90] [Hof93]
[PASS95] [PPIK02] [HL02]. With this technique, a complex
geometric object can be regarded as the result of a series
set-theoretic operations acting on a set of primitive geomet-
ric solids. Given that two objects A, B are represented by
implicit functions FA(P) ≥ 0 and FB(P) ≥ 0 respectively.
Then, the union A ∪ B of sets A and B can be represented
by the function F (P) = max{FA(P), FB(P)}, the intersec-
tion A ∩ B by F (P) = −max{−FA(P),−FB(P)}, and the
subtraction A − B by F (P) = −max{−FA(P), FB(P)}.

One major problem with the blending operation max(x, y)
is that it is not smooth. As a bivariate function, the value
of max(x, y) changes sharply along the line y = x. The
blended shapes based on this function always have a sharp
edge at the join. Many solutions have been proposed to cope
with the problem [MS85] [Roc89] [BW90] [Hof93] [PASS95]
[PPIK02]. However, two problems still remain. First of all,
most of the blending operations presented so far are not
shape preserving and the blending range controllable oper-
ations given in [HL02] and [BDS∗03] have quite complex
mathematical forms. Secondly, with present approaches, it
is hard to construct a highly smooth, say C2 or C3-smooth,
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range controllable blending operations. Recently, a novel so-
lution to these problems has been proposed in [Li04] by using
what are known as smooth unit step functions.

The aim of this paper is to develop algorithms similar to
spline parametric curve and surface design techniques which
allow CAD engineers and computer graphics practitioners
to design a rich variety of implicit shapes by simply laying
down some points together with normals at these points to
the designed shape.

The basic idea behind the design approach presented in
this paper is implicit shape subdivision and blending. Al-
though the implicit shapes can be designed by performing
a sequence of set theoretic operations on a set of geomet-
ric primitives, the shape constructed in this way can be
very time consuming as shape complexity increases. One
approach to cope with complex implicit shape is to subdi-
vide the construction of the object. To construct a complex
object, we can first partition the object into a number of
simpler components and then design each component sepa-
rately. These individually designed objects are then merged
together. Usually, a partitioning procedure will result in a
binary space partition tree, where each node represents a
partitioned object.

The rest of the paper is organized in the following way.
In Section 2, we introduce piecewise smooth unit step func-
tions, which will allow us to construct piecewise polynomial
shape preserving blending operations up to any required de-
gree of smoothness. One way of constructing this type of
blending operation and the use of smooth unit step functions
to realize a soft partitioning of the design space is presented
in Section 3. The designing strategies are demonstrated in
Sections 4 and 5.

2. Piecewise polynomial smooth unit step functions

Definition 1 A real function µ : R → [0, 1] is said to be a
smooth unit step function, if it satisfies the following condi-
tions:

(1) µ(t) = 0, when t < −1;
(2) µ(t) = 1, when t > 1;
(3) µ(t) is continuous and nondecreasing over real line R.

A smooth unit step function can be regarded as a smooth
approximation to the Heaviside unit step function, which is
defined in the following way:

H0(t) =







0, t < 0;
1
2
, t = 0;

1, t > 0.
(1)

Smooth unit step functions can be constructed in a num-
ber of ways and represented by different types of functions
[Li04]. One particular simple and elegant technique has been
a recursive procedure for constructing piecewise polynomials
smooth unit step functions.

Let H0(t) be the Heaviside unit step function, and let

f0(t) = H0(t), (2)

fn(t) =
t

n
fn−1(t) + (1 −

t

n
)fn−1(t − 1),

n = 1, 2, 3, · · · .

Set

Hn(t) = fn(
n(t + 1)

2
), (3)

n = 1, 2, 3, · · · .

Then it can be shown that all of these Hn(t), n = 0, 1, 2, . . . ,
are nonnegative monotonic increasing function with deriva-
tives up to n − 1 order. They take values 0 when t ≤ −1,
and 1 when t ≥ 1. The smooth unit step functions defined in
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Figure 1: A C3 smooth unit step function with different
rising ranges. (a) ε = 1;(b) ε = 0.5;(c) ε = 0.2;(d) ε = 0.05.

Definition 1 will always have a support [−1, 1]. These func-
tions can be modified to have an arbitrary support.

Definition 2 Let µ(t) be a smooth unit step function with
support [−1, 1], and let ε be a positive real number. The real
function µ( t

ε
), denoted by µε(t), is called a smooth unit step

function with rising range parameter ε.

Obviously, a smooth unit step function with rising range
parameter ε has a support [−ε, ε].

A C3 piecewise polynomial smooth unit step function con-
structed from the first method is displayed in figure 1 with
different rising parameters. As can be seen later, the ris-
ing range parameter can be used to control the size of the
transition area between two blending objects.

3. The application of smooth unit step function in

blending implicit objects

The two distinctive features of parametric spline curves and
surfaces are that they are piecewise polynomial and that
they can be designed up to any required degree of smooth-
ness. To develop similar techniques for implicit curve and
surface design, two desirable properties of the designed im-
plicit shapes are that they are piecewise algebraic and that
they exhibit the necessary smoothness characteristics. Ob-
viously, the implicit shape designed should be a blend of a
set of implicit geometric primitives, which are lower degree
algebraic curves or surfaces. As with spline basis functions,
this will require, firstly, that the blending operations used
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for blending these primitive algebraic shapes should be poly-
nomial and controllable over a blending range. Secondly, the
blending operation can be designed to the required degree
of smoothness. As pointed out in [Li04], the implicit shape
blending operation constructed using piecewise smooth unit
step functions has both these properties. Next let us investi-
gate how piecewise smooth unit step functions can be used
for implicit shape design.

3.1. Smooth piecewise polynomial blending

operations

Piecewise unit step functions can be used to construct
smooth piecewise polynomial shapes that preserve blending
operations. Let δ > 0 and let µε(t) be a piecewise polyno-
mial smooth unit step function with rising range parameter
ε, and let

f(t) =
x2

2δ
+

δ

2
. (4)

g0(t) = 1 − µε(t + δ)

g1(t) = µε(t + δ)(1 − µε(t − δ))

g2(t) = µε(t − δ).

Then g0(t), g1(t), g2(t) will be polynomials of the same order
when ε ≤ δ and they satisfy

g0(t) + g1(t) + g2(t) = 1.

The shapes of the three functions are plotted in figure 2.
Using these three functions, the function abs(t) = |t| can
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Figure 2: The functions g0(t), g1(t), g2(t) for δ = 0.5 and
ε = 0.2.

be approximated with the following piecewise polynomial
smooth function:

Sabs(t, δ, ε) = −g0(t)t + g1(t)f(t) + g2(t)t. (5)

This function approximates the properties: Sabs(t) = −t
when t ∈ (−∞, δ]; Sabs(t) = t when t ∈ (δ,∞]; Sabs(t) =
f(t) when t ∈ (−δ, δ], where f(t) is part of a parabola tan-
gent to both s(t) = −t and s(t) = t. It can be shown that
Sabs has the same degree of smoothness as the piecewise
smoothness unit step function µε. Sabs can be regarded as
a smooth approximation to the absolute function s(t) = |t|,
where δ is used to control the range of smoothness of the
function. In practice, ε can be set to any positive number
smaller than δ, say, 0.5δ. Figure 3 shows the shapes of such
a function with different δ. With function Sabs, the following
smooth function can be defined to approximate max(x, y):

Smax(x, y, δ, ε) =
x + y − Sabs(x − y, δ, ε)

2
. (6)

For two implicit shapes A : FA(P) ≥ 0 and B : FB(P) ≥
0, the union, intersection, and subtraction of the two
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Figure 3: The shapes of Sabs(t) with different δ. (a)δ = 0.1;
(b)δ = 0.5; (c)δ = 1.0.

implicit shapes can be defined by Smax(FA(P), FB(P)),
−Smax(−FA(P),−FB(P)), and −Smax(−FA(P), FB(P)) re-
spectively.

The key features of the blending operations defined using
Smax(x, y) are that: (1) The blending of algebraic shapes
will still be algebraic; (2) The blending of smooth algebraic
shapes will still be smooth if the smooth unit step function
used is smooth enough.

3.2. Building soft space partitioning

Smooth unit step functions can also be used to construct
implicit shapes based on soft space partitioning.

Definition 3 A mapping b : R
n −→ [0, 1] is called a base

function with respect to a region D in Euclidean space R
n if

b(t) takes value 1 within the region D and the value 0 outside
the region, except for those points close to the boundary of
the region. A base function b(P) is said to be simple if, for
each number α ∈ [0, 1], the α-level set bα defined in the
following way is a simply connected set in R

n:

bα = {P : b(P) ≥ α, P ∈ R
n}.

For a general base function, all its α-level sets should be
topologically identical. The characteristic function of a re-
gion is a special type of base function.

Definition 4 Let G = {bi : i = 0, 1, · · · , m − 1} be a set of
base functions on real Euclidean space R

n. G is said to be a
partitioning of R

n, if for each P ∈ R
n, we have

m−1
∑

i=0

bi(P) = 1.

For a given partitioning of space R, a smooth soft parti-
tioning can be defined directly using the smooth unit step
functions.

For example, if we have three primitives described in fig-
ure 4, where the arrows correspond to the outside of each
partitioning. Suppose each of these lines is described implic-
itly as G1(P) = 0, G2(P) = 0, G3(P) = 0 respectively, then
a partition can be defined using the following three func-
tions:

b1(P) = µ(G1(P)), b2(P) = µ(G2(P)), (7)

b3(P) = µ(G3(P))

where µ is a piecewise polynomial smooth unit step function.
The four base functions corresponding to the four areas are:

1 − b1, b1(1 − b2), b1b2(1 − b3) b1b2b3. (8)
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Figure 4: The 2D plane is partitioned into four areas using
three lines G1, G2, G3.
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Figure 5: The 2D plane is partitioned into nine areas using
four lines.

Another more direct way of partitioning a space is to divide
the space into a relatively regular grid using straight lines
(2D) and planes (3D). In figure 5, 2D space is partitioned
into nine areas using four straight lines parallel to the co-
ordinate axes. In the figure, if we define x0 and y0 to be
−∞, and x3 and y3 to be ∞ and define µ(∞) = 1, then the
corresponding soft partitioning can be represented by the
following nine base functions.

bi,j(x, y, ε) = b1D(x, xi, xi+1, ε)b1D(y, yj , yj+1, ε), (9)

where (i = 0, 1, 2; j = 0, 1, 2), and b1D(t, t0, t1, ε) is a func-
tion defined by a smooth unit step function µ as

b1D(t, t0, t1, ε) = µ((t − t0)/ε)µ((t1 − t)/ε). (10)

If a piecewise polynomial smooth unit function is used in
(10), then b1D(t, t0, t1, ε) will also be a piecewise polynomial
as will each base function in (9). If a cubic smooth unit
step function is used, then each bi,j(x, y, ε) will be a bi-cubic
piecewise polynomial.

4. Implicit curve design

In this section, we introduce two implicit curve design tech-
niques using the smooth unit step functions. With these
techniques, designers need only place a sequence of shape
control points and shape control normals. All these tech-
niques can be directly implemented to produce an interac-
tive implicit shape design package.

4.1. Design of implicit curves using blending

operations

For the shape to be designed, let {Pi,ni}
m
i=0 be a set of

m+1 control points and control normals at these points. To
design an implicit curve using this information, we attach
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Figure 6: Interactive curve design by sequentially inputting
of a control point and a control normal.

to each of these control points Pi a primitive implicit curve
which passes through the control point and has a normal ni.
In the simplest situation, a straight line can be used. Using a
straight line as the shape primitive to each point will result
in a convex shape. To increase the flexibility in designing
a rich set of implicit shapes, more general primitives can
be used. For example, instead of using straight lines as the
primitive shape, parabolas with parameters controlling pa-
rameters concerning changing rate and orientation can be
used. The algorithm is described as follows.

F = Shape(P0,n0, shapeParameters);

for(i = 1; i ≤ m; m + +){

F = blend(F, Shape(Pi,ni, shapeParameters))};

To avoid an unbounded curve, we can begin with a simple
base shape such as an ellipse. Figure 6 shows how the design
proceeds. The designer first lays down the first control point
and the control normal for the curve using a mouse. The
primitive shape used here is a parabola and the length of
the normal to the parabola is used to control its bending
degree. A shorter normal corresponds to a relatively shallow
parabola. The length of the normal can be defined to vary
within a certain range. For instance, when the length is 1,
the primitive corresponds to a straight line and a length
larger than 1 corresponds to a convex shape and a length
smaller than 1 corresponds to a concave shape (see figure
7).

4.2. Design of implicit curves by space partitioning

Another way of designing implicit curves is based on space
partitioning. To design an implicit pattern with this method,
we first partition the space into several areas. The implicit
shape can then be designed area by area. In each area, we
can apply the technique provided in the previous section to
design the part of the implicit curve lying in this area. For
example, with the partitioning given in figure 4, we can de-
sign the shape presented in figure 9 in the following way.
We design the shape corresponding to the area of A1 as a
circle, and design the shape in the area of A2 as a line, and
so on. In general, let us assume that we have a soft parti-
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Figure 7: Design primitives with controllable location, ori-
entation and blending degree.
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Figure 8: Implicit curve designed with four pairs of control
points and normals.

tion {bi(P)}m−1
i=0 for a 2D plane, where bi(P) corresponds

to region Di. Let the implicitly designed shape within the
region Di be Fi(P), then the overall design can be expressed
implicitly as F (P) = 0, where

F (P) =

m−1
∑

i=0

bi(P)Fi(P). (11)

If we regard each bi(P) as a blending basis function and
each Fi(P) as a control design primitives, we have obtained
a design method very similar to the parametric spline curve
and surface design.

With the presented techniques, the designer can decom-
pose a complex shape into some simpler geometric prim-
itives. When the type of primitive has been selected, the
designer need only specify the location and orientation of
the selected implicit shape by placing a control point and a
control normal. The geometric primitive is then localized by
multiplying the base function corresponding to the design
region.

Figure 10 presents some more examples for this tech-
niques. The whole 2D design area has been sub-divided into
nine region using four straight lines. The geometric primitive
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Figure 9: Different shapes can be freely laid in the four ar-
eas (represented as dotted lines). These shapes are combined
using corresponding base functions (shown as solid line).
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Figure 10: Design implicit shapes by laying down a few
points and the normals to the designed shape

used in each region is just a straight line. The rising range
parameter ε can be used to control the smooth transition
among those locally designed shapes. Figure 11 shows that
with the increase in the rising range parameter, the shape
transition from one to another becomes smoother. However,
smaller rising parameters are required if we do not want a
big change in the locally designed shapes.

4.3. Implicit surface design

Techniques similar to the implicit curve can be directly gen-
eralized for implicit surface design. Here we just provide a
simple example to demonstrate how to design an implicit
surface by inputting a few points plus the normals at these
points to the designed surface. The implicit objects pre-
sented in figure 13 are obtained by just partitioning the
space into eighteen parts (see figure 12). Cubic piecewise
polynomial smooth unit step functions have been used to
construct the blending basis functions and implicit planes
are used for each subspace. Therefore all the surfaces shown

c© The Eurographics Association 2004.

241



Qingde Li & Roger Phillips / Implicit curve and surface design using smooth unit step functions

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

rising parameter=0.01

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

rising parameter=0.3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

rising parameter=0.5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

rising parameter=1.5

Figure 11: Modification the smoothness in shape transition
by using different rising range parameters.

Figure 12: An example of partitioning 3D space.

in the figure are piecewise algebraic. As can be seen, a rich
set of implicit surface can be directly generated using this
technique when higher degree of algebraic surfaces are used
as design primitives.

5. Conclusion

In this paper, we have presented a curve and surface design
technique concerning space partition. The technique pre-
sented is quite similar to the parametric spline curve and sur-
face technique. The potential applications of the presented
technique include parallel computing in implicit design, im-
plicit surface shading and implicit surface parameterization.

References

[BDS∗03] Barthe L., Dodgson N. A., Sabin M. A.,

Wyvill B., Gaildrat V.: Two-dimentional po-
tential fields for advanced implicit modeling op-
erators. Computer Graphics Forum 22, 1 (2003),
23–33.

[BW90] Bloomenthal J., Wyvill B.: Interactive tech-

Figure 13: Design implicit surface by placing a few control
points and normals at these points to the designed shape.

niques for implicit modeling. Symposium on In-
teractive 3D Graphics 24, 2 (1990), 109–116.

[HL02] Hsu P. C., Lee C.: The scale method for
blending operations in functionally-based con-
structive geometry. Computer Graphics Forum
22, 2 (2002), 143–158.

[Hof93] Hoffmann C. M.: Implicit curves and surfaces
in cagd. IEEE Computer Graphics and Appl 13
(Jan 1993), 79–88.

[Li04] Li Q.: Blending implicit shapes using smooth unit
step functions. Short Communication Papers Pro-
ceedings of WSCG’2004 (2004), 297–304.

[MS85] Middleditch A. E., Sears K. H.: Blend sur-
faces for set-theoretic volume modelling systems.
Proceedings of SIGGRAPH 85 (1985), 161–170.

[PASS95] Pasko A. A., Adzhiev V., Sourin A.,

Savchenko V. V.: Function representation in ge-
ometric modeling: concepts, implementation and
applications. The Visual Computer 11, 8 (1995),
429–446.

[PPIK02] Pasko G., Pasko A. A., Ikeda M., Kunii T. L.:
Bounded blending operations. Proc. of Shape
Modeling International (2002), 95–104.

[Ric73] Ricci A.: A constructive geometry for computer
graphics. Computer Journal 16, 3 (May 1973),
157–160.

[Roc89] Rockwood A. P.: The displacement method for
implicit blending surfaces in solid models. ACM
Transactions on Graphics 8, 4 (1989), 279–297.

c© The Eurographics Association 2004.

242


