
ACM Symposium on Solid Modeling and Application (2004)  
G. Elber, N. Patrikalakis, P. Brunet (Editors) 

 

Developability-Preserved Free-Form Deformation of 
Assembled Patches  

Charlie C. L. Wang 

Department of Automation and Computer-Aided Engineering, 
The Chinese University of Hong Kong, 

Shatin, N.T., Hong Kong 
cwang@acae.cuhk.edu.hk 

 

Kai Tang 

Department of Mechanical Engineering,  
The Hong Kong University of Science and Technology, 

Clear Water Bay, N.T., Hong Kong 
mektang@ust.hk

 
 Abstract 

A novel and practical approach is presented in this paper that solves a constrained free-form deformation (FFD) problem 
where the developability of the tessellated embedded surface patches is preserved during the lattice deformation. The 
formulated constrained FFD problem has direct application in areas of product design where the surface developability is 
required, such as clothing, ship hulls, automobile parts, etc. In the proposed approach, the developability-preserved FFD 
problem is formulated as a constrained optimization problem. Different from other contained FFD approaches, the 
positions of lattice control points are not modified in our algorithm – as their control is insufficient in regards to the 
developability of all the nodes in the mesh. Moreover, the optimization is performed on the parameters of the mesh nodes 
rather than directly modifying their 3D coordinates, which avoids the time-consuming inverse calculation of the 
parameters of every node in a non-parallelepiped control lattice when further deformations are required.  

Categories and Subject Descriptors: I.3.5 [Computational Geometry and Object Modeling]: Curve, Surface, solid and 
object representation; Modeling packages. J.6 [Computer- Aided Engineering]: Computer-Aided Design (CAD).  

 

1. Introduction 

The design of complex models is a key problem in 
geometric modeling. One of the most powerful tools for 
deforming a complex model is free-form deformation (FFD) 
first introduced by Sederberg and Parry [SP86]. The idea of 
the FFD method is to deform a complex object by deforming a 
simple flexible solid (called embedding volume or solid) in 
which the given object is embedded so that the deformation of 
the simple solid is propagated to the embedded object. This 
tool is very useful for designing product shapes, especially 
when the topology of the product is required to be retained. 
Usually such an FFD is constrained: a set of points on the 
original embedded object are specified and their new locations 
in space are given; the embedding volume is deformed in such 
a way that under the parametric mapping of the deformed 
embedding volume the specified set of points take the given 
new locations. 

After its introduction by Sederberg and Parry [SP86], 
many variants of the free-form deformation (FFD) method 
have been reported. The original FFD method adopts a 
trivariate parallelepiped Bézier volume as the embedding solid. 
In [Coq90, CR94], the control lattices were extended to non-
parallelepiped; in [MJ96], a further improvement was 
proposed to support lattices with arbitrary topology. Trivariate 
B-Splines or NURBS solids are the most popular types of 
embedding volume [GP89, LW94]. To overcome the difficulty 
in getting the deformed object pass through desired points 
precisely, the direct manipulation FFD methods were 
proposed. Hsu et al. [HHK92] adopted a least-square fitting 
approach to determining the movement of the control points, 
and the method of Hu et al. [HZT01] is based on a constrained 
optimization scheme. As some specified points are required to 

be on the object after deformation, the methods in [HHK92, 
HZT01] are constrained FFD approaches. The algorithm 
presented in [HML00] is another kind of constrained FFD, 
where the total volume of a solid undergoing FFD is 
preserved. 

However, under an FFD many geometrical surface 
properties of the embedded object will have some change, very 
often undesirable. Among these properties one particularly 
important one is the developability of a surface. Informally, a 
surface is developable if it can be flattened into a plane 
without any distortion [Car76]. This is a highly desirable 
property in sheet manufacturing industry, where the stretch or 
compression in the sheet material is not wanted, as they make 
the product more prone to damage since internal strains and 
stresses are generated. As an example shown in Figure 1a, the 
original design of the duct has a developable shape which can 
thus be rolled by a metal sheet. After redesigning it by FFD, its 
shape becomes the one as shown in Figure 1b which is non-
developable. The elastic energy maps of the duct surface 
before and after the FFD are given in Figure 1c and Figure 1d 
respectively. As clearly shown, a great amount of elastic 
energy is generated because of the FFD which will translate 
into stretch and compression if the newly designed duct is to 
be manufactured by metal sheet. Manufacturers thus require 
eliminating this kind of stretch and compression at the design 
stage. This requirement exists in many applications (e.g., 
clothing, ship hulls, ducts, shoes, aircraft and automobile 
parts). This leads to the concept of developability-preserved 
FFD which is the theme of this paper. 

No prior research on developability-preserved FFD has 
been found in literature. In our approach, the original given 
surface to be deformed is developable and has been tessellated 

http://www.eg.org
http://diglib.eg.org


into triangular mesh surface patches. The developability of a 
surface relates to every point on it, by this simplification, we 
only need to consider about the developability at the mesh 
vertices – the triangles linking them are of course developable. 
The mesh patches are assembled together by sharing some 
triangular edges. After analyzing the developability property of 
a tessellated surface, the developability-preserved FFD 
problem is formulated as a constrained optimization problem, 
where the parameters of each triangular node inside the 
embedding volume are chosen as variables to be optimized.  

Different from other constrained FFD approaches 
[HHK92; HML00; HZT01], in our approach the positions of 
the lattice control points of the embedding volume are not 
modified. This is because changing the positions of the lattice 
control points can only lead to coarse-scale modification; 
however, the developability preservation needs fine-scale 
modification of the deformed surface. Furthermore, we do not 
directly optimize the positions of triangular nodes either, based 
on the reasoning that usually successive deformations are 
performed and they require inversely computing the 
corresponding parameters of the relocated nodes, which is 
extremely tedious and very time-consuming. The constrained 
optimization problem is numerically solved by a penalty 
function based scheme, and the optimization scheme is further 
enhanced to maintain the continuity between the assembled 
patches. A NURBS solid is adopted as the embedding volume 
function in our implementation; however, our method can be 
easily extended to any lattice-based free-form deformation 
functions. 

  
(a) original shape with 
lattice 

(b) deformed shape with lattice 

 
 

(c) elastic energy map of 
the original duct 

(d) elastic energy map of the 
newly shaped duct 

Figure 1: example I – a deformed duct leads to stretch in 
manufacturing 

 
2. Mathematical Formulation 

In this section, the mathematical formulation of the 
developability-preserved free-form deformation for assembled 
tessellated surface patches is presented. 

2.1. Deformation volume 

Deforming a shape via embedding it into a (usually 
uniform) volume such as a NURBS volume and then 
modifying its control points is a popular approach. Here, we 
utilize a NURBS solid ),,( wvuQ  with a control net of 
uniformly distributed control points kjiP ,,  as the deformation 

volume. The object to be deformed is denoted by O  which is a 
set of assembled surface patches iM . Each surface patch iM  
is a piecewise linear triangular mesh either provided by the 

user or generated using a standard tessellation algorithm, and 
the surface patches are assembled together by sharing some 
common triangular edges (as shown in Figure 2). All patches 
of the object O  are embedded in ),,( wvuQ  by determining 
the parameters ),,( wvu  of every triangular node on O  with 
reference to ),,( wvuQ . Then, after adjusting the control 
points, weights, or knot vectors of the NURBS volume 

),,( wvuQ , and substituting the parameters ),,( wvu  of every 
point on O  into the adjusted ),,( wvuQ , the object O  is 
deformed. The parameters ),,( wvu  can be quickly derived 
through simple linear transformation if the contribution of the 
control points is uniform and paralleled. 

  
assembled surface patches mesh representation 

Figure 2: Assembled surface patches after tessellation 

2.2. Developability of a tessellated surface patch 

Let us first recall the following theorem in differential 
geometry [Car96]. 

Theorem 2-1 At any regular point, the Gaussian curvature 
of a developable surface is identically zero. 

By this theorem, one can easily detect whether a surface is 
developable according to its overall Gaussian curvature. 
However, Gaussian curvature is not well defined 
mathematically on a piecewise linear polygonal mesh surface. 
An extension of theorem 2-1 is required to detect whether a 
piecewise linear polygonal surface patch is developable. Thus, 
the following proposition arises for this purpose. 

Proposition 2-1 At any internal point of a developable 
piecewise linear surface, the summed inner angle is 
identically π2 . 

Proof. For a point qi on a developable triangular mesh 
surface patch M, if jθ  is an inner angle adjacent to qi before 

flattening and F
jθ is the corresponding inner angle flattened 

on the 2D plane, as illustrated in Figure 3, the inner angles 
satisfy F

jj θθ =  if the surface at this point can be flattened 

without stretching. In the 2D plane, ∑ j
F
jθ  equals π2  for an 

internal vertex. When M is developable, which makes 
F
jj θθ =  at every point on M, we have πθ 2=∑ j j . 

F
jθ

jθ

 
Figure 3: The inner angles before and after flattening the 
triangles around a vertex 

 Charlie C. L. Wang, Kai Tang / Developability-Preserved Free-Form Deformation of Assembled Patches232



The approximation Gaussian curvature formula in 
[KBB00] on an internal triangular node iq  is 

∑
∑−

=

j j

j j

q
A

i

3
1

2 θπ
κ ,                       (2-1) 

where jθ  are the inner angles adjacent to iq , and jA  are the 
corresponding triangle areas. When utilizing the above 
approximation of Gaussian curvature to detect the 
developability of the given surface patch M , by Theorem 2-1, 
we have 0=

iqκ , which also leads to πθ 2=∑ j j .     Q.E.D. 

For an internal vertex, we call it a developable point when 
πθ 2=∑ j j  is satisfied at this point; otherwise, it is called a 

non-developable point. Using Proposition 2-1, we can detect 
whether a given mesh patch M  is developable by checking 
every internal vertex. However, simply stating whether a 
surface is developable or not is insufficient to quantify the 
degree of developability of the surface. Thus, we define the 
developability function on a tessellated surface to describe it. 

Definition 2-1 The developability function of a tessellated 
surface patch M  is defined as 

∑ −=
i qisum i

Aq
A

MD ))(2(1][ θπδ  

where )(tδ  is the impulse function, ∑=
j jq AA

i 3
1  is the 

sum area of the adjacent triangle of a vertex iq  on M , and A  
is the area of M . )( isum qθ  is either the sum of inner angles 
adjacent to iq  when iq  is an internal vertex, or set to π2  
when iq  is on the boundary of M . 

The value of the developability function gives a 
progressive estimate of the developable property of a surface 
patch. When D[M]=1, all internal vertices on this surface are 
developable points; in other words, M is developable. When 
D[M]=0, it means that we cannot find any developable point 
on the surface – M is absolutely non-developable. For any 

)1,0(][ ∈MD , there are some developable points on M. The 
larger the value of D[M], the more developable the surface M 
is. 

2.3. Problem definition 

For a given surface M  with n vertices and D[M]=1, the 
parameters of the n vertices form a 3×n  matrix 

T

n

n

n

w
v
u

w
v
u

w
v
u

X















=

−

−

−

1

1

1

1

1

1

0

0

0
L  

when it is embedded in the control lattice Q. After M is 
deformed into a new M ′  when Q is changed to Q′ , the 
developability function value ][MD ′  usually decreases if the 
same X is kept. For an embedded object with multiple patches, 
the parameters of all vertices on the object comprise the final 
X. The problem we are to solve here is to find a new matrix X* 
so that an optimized M* is determined by Q′  and this X*. The 
M* should be developable (i.e., 1*][ =MD ), and the 
difference between *M  and M ′  should be minimized. 

The reason we do not contemplate computing an optimized 
M* by directly changing the positions of control points in Q′  

is that such a modification is always of coarse-scale nature. 
The density of control points on the FFD lattice is usually 
much less than that of the triangular mesh vertices. Thus, by 
the NURBS properties of the deformation volume, when the 
position of a control point in Q′  is adjusted, it changes the 
positions of more than one mesh vertices on M ′ . However, 
the developability-preserved optimization needs fine-scale 
modification of M ′  to eliminate some non-developable points 
locally. When the parameters of one mesh vertex iq  are 
adjusted, only the position of this vertex is modified – there is 
no effect on the developability of other vertices not adjacent to 

iq . A fine-scale modification is thus achieved. 

Another question to answer is why not directly changing 
the positions of vertices on M ′  to get M*? When a new 
deformation is required after the positions of the vertices on 
M ′  are altered, we need to compute the new parameters of 
these vertices in a non-parallelepiped control lattice. This 
inverse calculation is extremely difficult and very time-
consuming. Furthermore, trying to optimize the positions of 
vertices on M ′  may lead some vertices moving outside the 
deformation volume. In such a case, no further deformation 
can be expected. 

When determining the optimized X* of M* to achieve 
1*][ =MD , we attempt to minimize the surface discrepancy 

between M ′  and M* since the shape of M ′  is what the 
designer wants. An elastic energy *)(XE  is defined below to 
quantify this change, 

( )∑ −=
j jejsj lXqXqXE

20
,, *)(*)(*)(         (2-2) 

where j is the index of a triangular edge, Mq sj ∈,  and 

Mq ej ∈,  are the vertices of the edge, and 0
jl  is the length of 

the triangular edge j on M ′ . This energy function simulates a 
spring network in which every spring follows along a 
triangular edge on M*. The energy measures the change of 
length on every triangular edge between M* and M ′ . Our goal 
is to find a new configuration X*, which preserves the 
developability of the embedded surface patch while at the 
same time minimizes the incurred discrepancy between M* 
and M ′ . Therefore, we formulate the problem as a 
constrained optimization problem, where we search for the 
minimum energy configuration of X subject to the constraint of 
developability preservation: 

min *)(XE  subject to 1*][ =MD .             (2-3) 

In the definition of the developability function, there is an 
impulse function which may lead to irregularity during the 
optimization. Here, we define a new developability detect 
function ][LG  to take place of the developability function 

][LD  as 
2

)))(((][ ∑= i i XqgXG                        (2-4) 

where )(Xqi  is the position of a triangular vertex Mqi ∈  
determined by the parameter configuration X, and the function 

)( iqg  is a vertex developability detect function given as 







Β∈

Β∉−
= ∑

)(0
)(2)(

i

ik k
i

q
qqg θπ                 (2-5) 

where Β  is the set of triangular vertices on the boundary of 
the given mesh patch M. It is not hard to verify that when 

0*][ =XG , the sum of the inner angles at every internal 
vertex equals π2 , hence 1*][ =MD  is satisfied. Thus, we 

 Charlie C. L. Wang, Kai Tang / Developability-Preserved Free-Form Deformation of Assembled Patches              233



replace the developability constraint by this new one and the 
constrained optimization problem is redefined as 

min *)(XE  subject to 0*][ =XG .             (2-6) 

It is important to state that the optimization formulation of 
(2-6) pertains to a single patch Mi on the embedded object O. 
Since O is usually made of several surface patches assembled 
together, the continuity constraint should also be added when 
these patches are optimized individually. This will be 
discussed in the following section. 

3. Numerical Scheme 

Recall our constrained optimization problem: 
min *)(XE  subject to 0*][ =XG , 

we can convert it into an unconstrained optimization problem 
by adding the constraint as a penalty term on the objective 
function [MS92]. As a result, the objective function to be 
optimized becomes 

2*))((
2

*)(*)( XGXEXJ
ρ

+=                    (3-1) 

where ρ  is the coefficient to balance the weight between 
*)(XE  and *)(XG . The choice of ρ  is by no means trivial; 

for smaller ρ , the computing procedure converges slowly to 
0*][ =XG ; for larger ρ , the shape of the surface patch after 

optimization usually deviates too much from the one before 
optimization. For any starting optimization point X0, the 
procedure begins to minimize J(X0) with 

∑=
j j

e
l

XGn
20

20
)(

])[(
1ρ , where en  is the number of 

triangular edges. After applying the conjugate gradient method 
to minimize the value of J(X) with a fixed number of iteration 
steps (which is empirical and is 5 in our implementation), we 
obtain a new point X1. Then, we use X1 as a starting guess for 

the minimum of J(X) with ∑=
j j

e
l

XGn
20

21
)(

])[(
1ρ  and 

obtain X2, and so on. In actual computation, we stop the 
process either when the constraint violation is less than a given 
threshold or when changes in J(X) become insignificant. 
Theoretically, we arrive at X* in the limit as ρ  tends to 
infinity. 

In the object O  consisting of assembled mesh patches iM  
( mi ,,1L= ), a vertex shared by more than one patches is 
called an assembling vertex. Associated with an assembling 
vertex pq , we define a linked vertex set 

pqL which contains 

all the mesh vertices in O  coincidental at pq ; also, for any 

vertex 
pqq Lq ∈ , there is an associated linked vertex set 

qqL  

where we have 
qqp Lq ∈ . The cardinality of the linked vertex 

set of a vertex is exactly the number of patches sharing the 
vertex. By means of these linked vertex sets, the connectivity 
information of assembled patches is stored. However, this 
connectivity is ignored when the shape of every OM i ∈  is 
optimized individually – for two coincidental triangular nodes 
belonging to two different patches, their (u, v, w) parameters 
are adjusted independently since the parameters are in different 
rows in X; consequently, cracks will appear at places where 
two patches originally met. For example, in Figure 4, the 
object with assembled patches is deformed from the shape in 
(a) to the one in (b). (The color map on the surface indicates 
the value of vertex developability detection function )(Lg  at 
each triangular node – called developability detection map; a 

linear interpolation is utilized to compute the values at non-
vertex points on the surface. The blue color indicates full 
developability while other colors symbolizes non-
developability in different degrees.) After applying the 
conjugate gradient method to determine the optimized X, a 
crack appears on the optimized shape, as shown in Figure 4c; 
an enlarged mesh about this crack is given in Figure 4d. 

The numerical scheme then needs to be enhanced to take 
into consideration of preserving the position continuity of O. 
The basic idea is to make the linked vertices consistent during 
the optimization. To achieve this consistency, the formulas of 
computing gradients at the assembling vertices are modified. 
When changing the position of an assembling vertex qa, the 
positions of vertices in 

aqL  should be maintained the same as 

qa. Thus, the gradient of E with respect to qa relates to not only 

( )∑ −
20

ajja lqq  but also all the other terms 

( )∑ −
20

pqqp lqq  (
aqq Lq ∈ ) in E. Also, the numerical 

gradient of G  with respect to aq  should be changed to  

h
hqGhqG

q
G aPAaPA

a 2
)()( −−+

=
∂
∂  

instead of 
h

hqghqg
q
G aa

a 2
))(())(( 22 −−+

=
∂
∂ , where 

∑∑ ++=
j jq qaaPA qgqgqgqG 222 ))(())(())(()(  

with jq  being either the adjacent vertices of aq  or the 

adjacent vertices of qq  (
aqq Lq ∈ ). 

When calculated with the above prescribed method, the 
gradients of the linked vertices become consistent with each 
other. Therefore, while searching the optimum along the 
conjugate direction, the update of their positions is also 
consistent, which in turn then ensures the position continuity 
(e.g., the result shown in Figure 4e and 4f). 

   
(a) (c) (d) 

  
(b) (e) (f) 

Figure 4: Example II – optimization without vs. with 
continuity preservation: (a) before FFD; (b) after FFD; (c) 
result without preserving continuity; (d) mesh view – crack 
occurs; (e) result with preserving continuity; (f) mesh view – 
continuity preserved. 

So far, the prescribed optimization process is applied 
indiscriminately to the parameters of all vertices on the given 
object O. However, it is intuitive to conjecture that, as also 
observed in some of our experiments, usually only a subset of 
the vertices need to be optimized. For example, in the object 
shown in Figure 4, after free-form deformation, the area with 
blue color (which indicates full developability) takes more 

 Charlie C. L. Wang, Kai Tang / Developability-Preserved Free-Form Deformation of Assembled Patches234



than half of the object’s total area. By this observation, we 
further improve the algorithm as follows: the parameters of a 
vertex iq  are inserted into X only if its λ>)( iqg  or it is 
adjacent to a vertex whose developability detection function 

)(Lg  returns a value greater than λ . In all of our testing 
examples in this paper the λ  is set to 10-8. 

  

  
 

before optimization     after optimization 

Figure 5: Example I – a duct: using our new approach, the 
developability of resultantant surface is preserved. 

   

  

 

(a) before FFD (b) after 
traditional FFD 

(c) after developability 
preserved FFD 

Figure 6: Example III – the style modification of lady dress: 
the developability is preserved in our FFD. 

4. Experimental Result 

We have implemented the proposed optimization 
algorithm and tested it on a number of examples of which four 
are given here. Figure 5 shows the optimization result of 
example I. In example III and IV, real samples from apparel 
industry are used. Garment pattern assembly and cloth 
simulation techniques have been studied for a long time 
[VCM95, CK02] and recently people have been exploring the 
use of the free-form deformation technique in style design of a 
cloth model with assembled 3D patterns. However, as 
aforementioned at the beginning of this paper, the FFD 
technique applied here ought to be constrained to preserve the 
developability of the assembled surface patches. Figure 6 – 7 

show the experimental results of our approach in this regard. 
The computational statistics is listed in Table 1. 

During the iteration of optimization, the value of constraint 
function decreases while the number of iteration increases. 
Here, these two factors are utilized together to give the 
terminal criterion of iterations. Thus, our terminal condition is 

either ε<− − ][/][][ 01 XGXGXG ii  or the iteration number 

is greater than Nmax, where G[Xi] is the value of the constraint 
function in the ith iteration (current value), G[X0] is the value 
of the constraint function before optimization, Nmax is the 
maximum iteration number, and ε  is a small number (we 
choose %01.0=ε  in all of our testing examples). 

Table 1    Computation statistics of the examples  

Developability Example 
G[X0] G[X*] 

Node 
No. 

Time 
Cost 

Total 
Steps 

I (Fig.1, 5) 0.0541 0.0129 328 21s 200 
II (Fig.2, 4) 0.0257 0.0005 149 5s 175 
III (Fig. 6) 0.4778 0.0396 1170 104s 200 
IV (Fig. 7) 0.1930 0.0139 1494 135s 200 

*All with Nmax=200 on a PIII 900 PC with a program in C++. 
 

5. Conclusion and Discussion 

In this paper, we consider the problem of preserving the 
developability of a surface under FFD and propose a practical 
solution to it. In our approach, the developability-preserved 
FFD problem is formulated as a constrained optimization 
problem, where the parameters of each node on the mesh of 
the embedded surface are chosen as variables for optimization. 
Optimizing by modifying the parameters rather than the 
position of each mesh node benefits the successive 
deformation – the time-consuming process of determining the 
parameters of the nodes in a non-parallelepiped control lattice 
is avoided. The popular NURBS solid is adopted as the 
deformation function in our implementation; however, our 
method can be easily generalized to any variants of lattice-
based free-form deformation. 

Since our main objective is to model the developability 
preservation problem in the FFD as a functional optimization 
problem, the adoption/development of the exact numerical 
solution for solving such an optimization is rather pedagogical 
and a very simple one is used in our current implementation. 
But even using this very primitive numerical method, the 
speed of our developability preserved free-form deformation 
has already been seen to be acceptable (see Table 1), at least 
for design purpose. It is believed that with more efficient and 
elaborate numerical optimization algorithms (e.g., projected 
polyhedron algorithm [PM02] or GPD-based optimization 
approaches [BFG03]) and with the increasing processing 
power available on the desktop, the running time can be 
further shortened. Also the multi-level optimization can be 
considered. Transforming a surface to a developable one 
will destroy some desirable geometric characteristics of 
the surface (e.g., smoothness). This work could be taken 
into account in our future reseach. 

References 

[BFG03] Bolz J., Farmer I., Grinspun E., Schröder P.: Sparse 
Matrix Solvers on the GPU: Conjugate Gradients 
and Multigrid, SIGGRAPH 2003. 

[Car76] do Carmo M.P.: Differential Geometry of Curves 
and Surfaces, Englewood Cliffs, N.J.: Prentice-Hall, 
1976. 

 Charlie C. L. Wang, Kai Tang / Developability-Preserved Free-Form Deformation of Assembled Patches              235



[CK02] Choi K.J., Ko H.S.: Stable but resposive cloth, 
SIGGRAPH 2002 Conference Proceedings, pp.604–
611, 2002. 

[Coq90] Coquillart S.: Extended free-form deformations: A 
sculpting tool for 3D geometric modeling, Computer 
Graphics, 24(4): 187-196, 1990. 

[CR94] Chang Y.K., Rockwood A.P.: A generalized de 
Casteljau approach to 3D free-form deformation, 
Computer Graphics, 28(4): 257-260, 1994 

[GP89] Griessmair J., Purgathofer W.: Deformation of solids 
with trivariate B-splines, EUROGRAPHICS '89, 
pp.137-48, Amsterdam, Netherlands, 1989. 

[HHK92] Hsu W., Hughes J., Kaufmann H.: Direct 
manipulations of free-form deformations, Computer 
Graphics, vol.26, no.2, pp.177-184, 1992. 

[HML00] Hirota G., Maheshwari R., Lin M.C.: Fast volume-
preserving free-form deformation using multi-level 
optimization, Computer-Aided Design, 32(8-9): 499-
512, 2000. 

[HZT01] Hu S.M., Zhang H., Tai C.L., Sun J.G.: Direct 
manipulation of FFD: efficient explicit solutions and 
decomposible multiple point constraints, The Visual 
Computer, 17(6): 370-379, 2001. 

[KBB00] Kobbelt L.P., Bischoff S., Botsch M., Kähler K., 
Rössl C., Schneider R., Vorsatz J.: Geometric 
modeling based on polygonal meshes, 
EUROGRAPHICS 2000 Tutorial.  

[LW94] Lamousin H.J., Waggenspack W.N.: NURBS-based 
free-form deformation, IEEE Computer Graphics 
and Application, 14(6): 59-65, 1994. 

[MJ96] MacCracken R., Joy K.: Free-form deformations 
with lattices of arbitrary topology, Computer 
Graphics, 30(4): 181-189, 1996. 

[MS92] Moreton H.P., Sequin C.H.: Functional optimization 
for fair surface design, Computer Graphics, vol.26, 
no.2, July 1992, pp.167-76. 

[PM02] Patrikalakis N.M., Maekawa T.: Shape interrogation 
for computer aided design and manufacturing, 
Berlin; New York: Springer, 2002. 

[SP86] Sederberg T., Parry S.: Free-form deformations of 
solid geometric models, Computer Graphics, vol.20, 
pp.151-160, 1986. 

[VCM95] Volino P., Courchesne M., Magnenat-Thalmann N.: 
Versatile and Efficient Techniques for Simulating 
Cloth and Other Deformable Objects, 
SIGGRAPH’95 proceedings, pp.137-144, 1995. 

 

    

 

before FFD 

    

 

after traditional FFD 

    

 

after developability preserved FFD 

Figure 7: Example IV – the style modification of lady pants: using our new approach, the developability of resultant surface is 
preserved comparing to the traditional FFD approach. 

 Charlie C. L. Wang, Kai Tang / Developability-Preserved Free-Form Deformation of Assembled Patches236


