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Abstract
This paper introduces a new progressive multi-resolution approach for representating and processing polyhedral objects of any
dimension. Our representation, a variant of BSP trees [Nay90] combined with the Split scheme introduced in [BP96], allows
progressive streaming and rendering of solid models at multiple levels of detail (LOD). Boolean set operations are computed
progressively by reading in input a stream of incremental refinements of the operands. Each refinement of the input is mapped
immediately to a refinement of the output so that the result is also represented as a stream of progressive refinements. The
computation of complex models results in a tree of pipelined processes that make continuous progress concurrently, so that
coarse approximations of the final results are obtained nearly instantly, long before the input operands are fully processed. We
demonstrate the practical effectiveness of this approach with models constructed with our prototype system.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Modeling]: Geometric
algorithms, languages, and systems

1. Introduction

A progressive multi-resolution representation of polyhedra of any
dimension is discussed in this paper. The goal is to represent
smooth objects by a limiting series of refined polyhedral approx-
imations. Our representation is a quite simple variation of standard
BSP trees [Nay90], and allows to progressively stream and display
a curved solid object at different levels of detail, as well as to pro-
gressively compute Boolean set operations, so that the computation
proceeds by streaming subsequent refined LOD representations of
the result. A stratification of a BSP tree into an ordered family of
subtrees starting from the root is used, that flows through a com-
putational pipeline where only the portion of the tree between two
frontiers giving different levels of detail is actually stored and pro-
cessed in each time step. The proposed approach also enables a
pipelined and progressive computation of Boolean operations over
a distributed system.

Standard BSP trees are normally used as spatial indexes to ef-
ficiently represent and traverse polyhedral point sets and cell de-
compositions, and do not store topology information. A different
approach is assumed here, in order to efficiently update the ge-
ometry of solid cells at every level of detail. We locally combine
the BSP representation of bounded cells with the Split represen-
tation [BP96], based on the incidence lattice of faces of a set of
polytopal cells, that is an incremental method used to progressively
discover and update both the geometry and the topology of each
cell split by a hyperplane. The domain of our scheme contains,
but is not limited to, the set of CSG expressions of convex prim-
itives, enriched with further operators, like Cartesian product, pro-
jection and affine transformations. When computing a Boolean op-

eration between large-scale objects, the result with the Naylor’s al-
gorithm [NAT90] is only generated at the end of the whole compu-
tation, and may require an intolerable time with large-scale models.
With our approach, a continuously refined estimate of the Boolean
result is available from the very beginning. If the output appears
unsatisfactory, the task can be stopped without waiting for termina-
tion. The computation can be also terminated using a local thresh-
old for the approximation error, possibly depending on the viewer
position.

Boolean operations with solid models at interactive rates have
been attracting a great research effort in recent years, using tech-
niques based on convex sets, voxel and slice based discretization,
and oriented points. Rappoport and Spitz [RS97] present a method
for interactive display of CSG models that enables the user to inter-
actively modify the affine transformations associated with CSG sub-
objects, using graph re-writing techniques, geometric algorithms on
convex objects and a built-in hierarchical acceleration scheme. CSG
modeling and rendering is achieved at interactive rates by Chen and
Fang [CF99] by interactively generating a volume representation of
a CSG model in 3D texture memory. A volume scene tree is used
by Liao and Fang [LF02] where each leaf node represents an input
dataset or synthetic geometric model, and each interior node rep-
resents an operator such as blending or filtering. Their algorithm
uses a pipeline for volume rendering by sweeping a volume slice.
Adams and Dutré [AD03] perform interactive Boolean operations
on free-form solids bounded by surfels, oriented points in 3D space,
that approximate the local orientation of the surface they represent.

The method discussed in the present paper, according with the
standard use of BSP trees as solid representations, only works when
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the intrinsic dimension of the object, say its number of coordinates
in a chart, is equal to the dimension of the embedding space. A
possible extension of this dimension-independent method to non
regular polyhedra using ternary trees would allow to computing the
semi-algebraic set that satisfies a Boolean formula representing a
complex query concerning scalar, vector or tensor fields over man-
ifolds.

2. Outline of a progressive geometric framework

The aim of this section is to outline a computational framework for
progressive polyhedral approximations of geometric expressions,
that produce polyhedral point-sets of arbitrary dimension d when
evaluated. The set of tasks encoding a symbolic description of the
computation can be visualized as a graph (see Figure 1), and the
computational model closely resembles a data-flow diagram, where
processes transform the incoming data flow into the outgoing data
flow. The geometric computing provided by our prototype kernel
supports several geometric operators, including affine transforma-
tions, Boolean operations, Cartesian products, primitive generators
and others. In the remainder of this paper we discuss our approach
to progressive Booleans using progressive BSP trees, later abbrevi-
ated as PBSP.

3d-sphere

3d-cube
Scale and
rotate

Difference

Driver

Builder

Builder Transformer

Combiner

Viewer

Figure 1: Task diagram of the computation

Representations For this purpose we use an “ad hoc” variation
of the double representation of polyhedral sets. It is well known
that a convex polyhedron can be represented either as a system of
linear inequalities (on-face rep) or as the convex hull of extremal
points (on-vertex rep) [Zie95, BFM98, Pao03]. In our case we en-
force the hyperplane representation by using a progressive type of
BSP-trees, while making also use of a rich representation (describ-
ing both topology and geometry) of the face lattice of the associ-
ated weak complex, supported by the Split data structure and algo-
rithm [BP96], and discussed in the next section.

Tasks The main components of the proposed framework are four
types of processes, that we call builders, transformers, combinators
and drivers, respectively. Such components either generate, trans-
form or combine PBSP-trees, and maintain a suitable internal state,
depending on the work they must perform. A useful classification
of processes may be given depending on the cardinality of their i/o
connections. In particular:

1. A builder is a task with no input and one output. It generates
progressive polyhedral approximations, at subsequent levels of
detail, of some specific type of geometric object. Presently we
have dimension-independent builders for parallelepipeds, sim-
plexes, cylinders, cones, spheres and toruses.

2. A transformer is a task with one input and one output.
Our current transformers either apply affine transformations
(dimension-independent rotation, translation, scaling or shear-
ing) or produce the complement, projection, or extrusion of their
input.

3. A combiner is a task with more than one input and a single
output. These tasks combine the input trees to produce the out-
put tree. In particular, we have n-ary combiners for Boolean
set union, intersection, difference and symmetric difference
(i.e. xor), as well as for Cartesian product of polyhedral point
sets.

4. A driver is a task with one input and no output. The status of
a driver contains a Split data structure, and allows to compute
model properties and to visualize it. Based on the computed
properties, a driver task is able to decide which cells of its input
should be expanded, i.e. further detailed. The decision criteria
may concern suitable ratios of volumes of cells, the position of
the viewer, the approximation error, and so on. In some sense, a
driver task is the container of a progressively refined geometric
data base.

3. Background

We shortly recall here the definitions and main properties of the
reference dimension-independent data structures used by our pro-
gressive approach, say the BSP decompositive representation and
the Split data structure storing the topology and geometry of the
cell decomposition.

3.1. Binary space partition

Binary Space Partitioning (BSP) of objects support a “decompos-
itive” representation, where a solid model is partitioned into a set
of cells. More precisely, BSP trees are binary trees where each in-
ternal node has an associated boundary hyperplane of the model,
and each leaf node represents a convex cell — which may be either
full or empty — in the space partition induced by such a set of hy-
perplanes. Given a set of hyperplanes in d-dimensional Euclidean
space, a BSP-tree on such hyperplanes establishes a hierarchical
partitioning of Ed .

Each node ν of such a binary tree represents a convex and possi-
bly unbounded cell of Ed denoted as Rν. The two children of an in-
ternal node ν are denoted as below(ν) and above(ν), respectively.
Leaves correspond to unpartitioned cells, which are called empty
(OUT) or full (IN) cells. Each internal node ν of the tree is associated
with a partitioning hyperplane hν, which intersects the interior of
Rν. The hyperplane hν partitions Rν into three subsets: (a) the cell
R0ν = Rν∩hν of dimension d−1; (b) the cell R−ν = Rν∩h−ν , where
h−ν is the negative half-space of hν; (c) the cell R+

ν = Rν ∩ h+
ν ,

where h+
ν is the positive half-space of hν. For each node ν in a

BSP tree, the cell Rν is the intersection of the closed half-spaces on
the path from the root to ν. The cell described by the ν node is

Rν =
\

e∈E(ν)

h±e (1)

where E(ν) is the edge set on the path from the root to ν and h±e is
the half-space associated with the e edge.
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Figure 2: Progressive computation of different levels of detail of a 3D model

Figure 3: (a) Set difference between two cubes represented as BSP
trees; (b) cells of the space partition induced by the boundary
planes; (c) full (IN) cells after tree pruning

3.2. Split representation

In our approach to progressive combination and visualization of
geometric expressions, we make use of the representation of poly-
topal cell complexes [Zie95] introduced by Bajaj and Pascucci and
named Split data structure [BP96]. This representation allows one
to solve in a localized way the problem of splitting such kind of
complex with a hyperplane.

In particular, the set F(c) of faces of a c polytope, including c
and ∅, is a lattice, partially ordered with respect to the inclusion
relation. The polytopal cell complex generated by a pruned BSP

tree (see Figure 3c) is called weak complex by [BP96], and defined
as follows:

Definition 3.1 (Weak complex) A weak complex C is a set of poly-
topes, such that if c ∈ C then F(c) ⊆ C, and, for each pair c,d ∈ C,
it is either c∩d = ∅ or

c∩d = ∂c∩∂d = f1∪·· ·∪ fk,

where { f1, . . . , fk} = F(c)∩F(d).

Closure of splitting The set of weak complexes is closed with re-
spect to the Splitting of a polytopal cell with a hyperplane. This
local splitting property does not hold for standard cell complexes.
It is easy to show that the set of cells of the space partition produced
by a BSP-tree is a weak complex (see Figure 3c). A weak complex,
in particular, is generated when a BSP-tree is pruned according to
the Naylor’s approach. If pruning is not allowed, a standard poly-
topal complex† is associated to the tree, but every standard poly-
topal complex is also a weak complex. In other words, the set of
BSP-trees and the set of weak complexes are isomorphic.

Weak complex representation Using the Split data struc-
ture [BP96], a weak complex C = {ci} can be represented as an
undirected graph S(C) = (N,A), where

N =
[

ci∈C
F(ci),

and

A= {(ci,c j) | ci ≺ c j ∨ c j ≺ ci}
where ci ≺ c j means that ci is directly contained within the bound-
ary ∂c j of c j, i.e. does not exists another face ck such that ci ⊂ ∂ck
and ck ⊂ ∂c j. Notice that, for each (ci,c j) ∈ A it is

|dimc j−dimci| = 1.

Split algorithm

The aim of the generic step of the Split algorithm is to subdivide
the face complex F(c) of a c polytope with a single h hyperplane.

† Where the intersection of any pair of cells is either empty or is a face for
both.
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As in the original formulation [BP96], let us consider two different
cases:

(1) the splitting hyperplane does not contain any of c vertices, and,
as a consequence, does not contain any of higher-dimensional
faces of c;

(2) the splitting hyperplane does contain some of c vertices.

In the (1) case, the splitting of a d-cell c is quite simple and
robust. It can be summarized as follows: (a) classify the c vertices
with respect to the h subspaces, thus adding either a + or a − label
to each vertex; (b) for each k-cell f , 1 ≤ k ≤ d, look at the set of
(k− 1)-cells contained in f and, if such set contains both + and
− labels, then (i) split f and substitute it by its parts f+ and f−,
such that f+ ⊂ h+, f− ⊂ h−, (ii) create a (k− 1)-cell f= such
that f+ ∪ f= ∪ f− = f , (iii) suitably link f+, f=, f− to both their
super- and sub-cells.

The case (2) above is numerically unstable. Three types of la-
bels are used for vertex classification, labeling a vertex as v= when
it is contained on the h hyperplane. No problems would arise in a
computation with infinite precision. Unfortunately, real computers
are not infinitely precise, so that some vertex classification can be
inexact. In order to recover from wrong vertex classifications and
to consistently compute the split complex, further information con-
cerning topological structure must be used.

Actually, a consistency problem only arises when some vertices
are classified at the same time in each of the three classes, i.e. when
both v+i , v

−
j and v

=
k vertices contemporary exist. In fact, if vertices

are only of v+i and v
=
i type (or v

−
j and v

=
k ) the cell is not split.

4. Progressive trees

First we give the definitions of progressive binary space partition-
ing trees and some related concepts, then we introduce a conver-
gence property to be satisfied by useful progressive algorithms. For
the sake of brevity, we often denote a BSP-tree as BSP, and more in
general, we omit the -tree specification, that should be understood
from the context.

4.1. Definitions

In particular, a new definition of BSP, with three kind of leaves, is
given below.

Definition 4.1 (BSP) A BSP is a complete binary tree, made by
three different types of nodes, that are labeled white, black and gray
(for either OUT or IN or UNDECIDED), respectively.

Notice that we do not enforce the usual constraint that the BSP
leaves contain a final information (IN or OUT label) about the spa-
tial region they describe. A convex cell associated to a leaf node
may be not yet detailed, and in this sense is UNDECIDED. Thus we
introduce the following definition.

Definition 4.2 (PBSP) a PROGRESSIVE BSP (PBSP for short) is a
non-empty sequence T = (T0,T1, . . . ,Tk, . . .) of BSP trees ordered
by reversed inclusion and with the same root, i.e. such that:

T0 ⊂ T1 ⊂ ·· · ⊂ Tk ⊂ ·· ·

It may be useful to see the index k ∈ {0,1,2, . . .} as a discrete time
index.

Definition 4.3 (Frontier) the k-frontier of the T PBSP, denoted as
F(Tk), is the set of leaves of the Tk BSP.

Notice that every k-frontier, k ∈ {0,1,2, . . .}, is a weak complex,
and that F(Tk+1) is a refinement of F(Tk), for every k, where some
UNDECIDED cell is split.

Definition 4.4 (Support) the support |F(T )| of the BSP T is the
point-set union of the cells Rν, associated to the leaves ν ∈ F(T ).
In formal terms

|F(T )| =
[

ν∈F(T )

Rν,

where Rν is defined by (1).

Making use of the Requicha’s definition [Req80] of a represen-
tation scheme as a mapping s : M → R between a set of models
M and a set of representations R , we distinguish between m ∈ M
as a point set, and its computer representation. In our approach, the
model m is approximated by the limit, for k → ∞, of the support
sets of the frontiers of a PBSP. In this sense, a progressive scheme is
an ordered parametrization of a set of mapsM→ R. More formally,
we can write:

sk(m) := F(Tk)

such that

m= lim
k→∞

|sk(m)|.

4.2. Convergent approximations

Only a subset of PBSP trees are really useful as progressive solid
representations. In particular, a progressive scheme is meaningful
iff it satisfies the convergence property discussed below.

By definition, each tree in a PBSP T = (T0,T1, . . . ,Tk, . . .) gives a
partition of the embedding space E

d with convex cells of non-zero
volume in the relative topology. Let us assume that the modeling
space S= |T0| ⊂ E

d is bounded. In particular, assume, without loss
of generality, that S is a hyper-cuboid that contains the object m to
be modeled. This assumption will allow us to considered only cell
decompositions Tk where all cells have bounded volume.

First notice that in such bounded modeling space S, the sum
of volumes of empty, full and undecided cells is constant, and is
equal to vol S. Then consider a weak complex Ck := F(Tk) that
gives a partition of S at some time k. At the very beginning, with
C0 = {c | c := S}, c is UNDECIDED, i.e. the root of T0 is gray. By
definition, in each transition between F(Tk) and F(Tk+1), the vol-
ume of gray cells diminishes, while the sum of volumes of white
and black cells increases. Notice also that the empty (OUT) and full
(IN) cells are not further detailed in subsequent trees (see Figure 6).
On the limit, the IN volume goes to volm, whereas the OUT volume
goes to vol (S−m).

In other words, every point in S− ∂m, at some time k, will nec-
essarily belong to some cell that is either IN or OUT. In this sense
we may state that our progressive representation converges to the
(interior of) curved object m.
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4.3. Cell representation

With standard BSP trees, a cell Rν of the space decomposition in-
duced by a BSP is implicitly described by the the tree path connect-
ing the ν node to the root. In our progressive approach, a cell of the
current frontier is explicitly stored in a geometry database using the
Split representation, and is represented by a pair of pointers to (a)
its boundary geometry and to (b) the PBSP node associated to the
cell. This one may be either a leaf or a non-leaf node. In the first
case it is characterized by a label in the set {IN,OUT}; in the second
one it is a triple tν = (h, t−ν , t+ν ), where h is the hyperplane splitting
Rν, and t−ν , t+ν are the pointers to the trees decomposing R−ν and
R+
ν , respectively. Formally, we can write:

〈tree〉 ::= 〈leaf〉 | 〈non-leaf〉
〈leaf〉 ::= IN | OUT | UNDECIDED

〈non-leaf〉 ::= (h,〈tree〉−,〈tree〉+)

5. Progressive Booleans

The supported operations are union, intersection, difference, xor
(symmetric difference) and complement. The unary complement is
trivial and just requires to change the leaf labels from IN to OUT and
vice-versa. The other operations are n-ary, i.e. may be applied to an
arbitrary number of input objects. The n-ary difference is defined
as

difference(a,b,c, ...)

:= difference(a,union(b,c, ...))

5.1. Preview

The proposed algorithm for Boolean combination of PBSP trees
works by recursively merging the roots of its argument trees as
shown by Figure 4. The basic case of recursion, i.e. the termina-
tion condition, depends on the value of the executed

〈op〉 ∈ {union, intersection,difference,xor}.

A further simplification step allows to speed-up the algorithm,
and also depends on the executed operation. The simplification and
termination conditions are discussed in the following subsection.
Then we give a formal description of the whole algorithm. It is
very important to understand that not all the generated nodes are ex-
panded, but only those requested by the driver task, that knows the
geometry associated to each node, and solves the decision problem
if its cell should be either split or not, depending on the involved
linear inequalities .

There are two main differences with the standard BSP ap-
proach [NAT90]. First of all, the combinatorics of the Boolean al-
gorithm is completely separated from the representation of topol-
ogy and geometry. Furthermore, the construction and detailing of
the space decomposition proceeds by (subsets of) levels of the re-
sulting PBSP tree, instead than in a depth first search way.

5.2. Termination and simplification rules

First of all, we distinguish between the simple cases corresponding
to (a) the basic recursion case and (b) the simplification of input
arguments, and (c) the combinatorial step.

Figure 4: Complete binary trees produced by the combination of 2
or 3 nodes

Basic case of recursion

It is pretty simple, and consists in checking the 〈op〉 arguments
looking for values inducing the algorithm termination. A termina-
tion is induced when either a IN or a OUT node may be produced.
Consider the operation

〈op〉(a1,a2, . . . ,an)

where a1,a2, . . . ,an are BSP trees. Then we have:

Union If at least one of the arguments a1,a2, . . . ,an is IN, then
return a IN node;

Intersection If at least one of the arguments a1,a2, . . . ,an is OUT,
then produce a OUT node;

Difference If at least one of the arguments a2, . . . ,an, but not a1,
is IN, then produce a IN node; if the a1 argument is OUT, then
the result is also OUT.

Two “special” cases require a transformation of the operation 〈op〉
into an operation 〈op′〉:

XorIf the ai argument is IN, then

XOR(a1,a2, . . . ,ai, . . . ,an) →
COMPLEMENT(UNION(
a1,a2, . . . ,ai−1,ai+1, . . . ,an))

DifferenceIf the a1 argument is IN, then

DIFFERENCE(a1,a2, . . . ,an) →
COMPLEMENT(UNION(a2, . . . ,an))

Simplification of arguments

In this step we search the 〈op〉 arguments, to see if some of them
do not change the result, so that they can be simplified. For the sake
of space, we give the simplification rules without proof.

Union Simplify the arguments with OUT value; if all are simpli-
fied, then the output node is OUT;
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Intersection Simplify the IN arguments; if all the arguments are
simplified, then the output node is IN;

Difference Simplify the OUT arguments, but not the first one; if
only the first argument is not simplified, then return a copy of
the first argument;

Xor Simplify the arguments with OUT value; if all are simplified,
then the resulting node is OUT.

5.3. Algorithm

As we already said in the preview section, the Combine algo-
rithm to return a specified Boolean combination 〈op〉 of BSP trees
a1, . . . ,an is very simple, and correspond to orderly execute (a) a
check for termination, (b) a simplification of arguments, and (c)
the recursive merging of the input trees, calling itself on the leaf
nodes of the output BSP tree. The build_merge function just combi-
natorially produces a complete binary tree of depth n starting from
n nodes, without taking into account neither the operation 〈op〉 to
execute nor if the current node is incompatible (does not have so-
lutions). The merging process is graphically displayed in Figure 4;
the Combine algorithm is given in Figure 5.

5.4. Geometric data base

A driver process, at the end of the computational pipeline, produces
an expanded binary tree to store the topological and geometrical
data structure, based on the frontier of the progressively generated
BSP tree and on a lattice-based Split data structure of the cell de-
composition. At the same time the driver pulls the computation, by
deciding what UNDECIDED nodes of the current PBSP frontier to
expand and make more detailed.

In particular, the Split algorithm starts with an input tree con-
stituted by the only root node. the bounding box B := [min−
real,max− real]d of the whole space E

d is initially stored within
the node, so that we have:

tree= (root,B)

When the root node has been completed by the other pipeline pro-
cesses as

root := non_lea f (h, tree−, tree+)

then it become possible for the Split process to really subdivide
the B cell according to the h hyperplane, so generating the B−
and the B+ cells, as well as their lower-dimensional faces, and to
store B− with tree− and B+ with tree+. At this point it is possi-
ble to continue recursively the computation on the expanded nodes
(tree−,B−) and (tree+,B+).

The basic cases of the recursion clearly deal with IN and OUT
cells. A IN cell should not be (usually) further split, and can be
used for either visualization purposes or other computational tasks.
When a cell is OUT, its expanded node is not used anymore, and the
corresponding store may be garbage collected. Notice that the com-
putation may proceed in parallel by using a distributed pipeline,
either multi-process or multi-host.

6. Examples

A progressive Boolean result is only produced when combining two
or more progressively generated arguments. Hence we provided

some progressive constructors, including the generator of the d-
dimensional sphere discussed below. The generation of d-cylinders
is by Cartesian product of a (d−1)-sphere times a 1D interval com-
plex, toruses are produced by product of circles followed by pro-
jection, and so on.

Progressive d-sphere

The d-dimensional sphere Sd of unit radius can be generated by
applying d reflections about coordinate hyperplanes followed by
unions‡, to the circular sector described by the chart (Ud ,φd),
where

Ud = {x≥ 0 | (x−0)2 ≤ 1} ⊂ E
d

and

φd :Ud → [0,1]×
[
0,

π
2

)d−1
,

with φ−1d defined inductively as

φ−12 (r,α1) =

r

(
cosα1

[
1
0

]
+ sinα1

[
0
1

])
,

φ−1d (r,α1, . . . ,αd−1) =

r

(
cosαd−1

[
xd−1
0

]
+ sinαd−1

[
0d−1
1

])
,

where xd−1 = φ−1d−1(1,α1, . . . ,αd−1) ∈ ∂Ud−1, and where 0d−1 is
the origin of E

d−1.

Three snapshots of the union of translated 2D spheres with same
radius are given in Figure 6. The first picture shows with differ-
ent gray tones the IN and UNDECIDED cells of the union after few
progressive steps. The second and third pictures show the refined
models after some more steps. Notice that the IN cells previously
computed are not further detailed, ie that the computation proceeds
only within the undecided region.

Other examples

Other snapshots of the progressive generation of the classic CSG
example given by the difference and union of a cube with three
orthogonal cylinders are shown in Figure 7.

The ray-traced and textured rendering of approximations at dif-
ferent levels of detail of a CSG ”temple“ made by union and differ-
ences of parallelepipeds and cylinders are given in Figure 8. It may
be interesting to notice that our progressive method may automati-
cally generate LOD nodes of virtual environments.

In Table 1 we show the timing of the three examples given in this
paper, executed on a IBM Intellistation M-Pro Pentium 4 3GHz.
Each record refers to the time spent to compute the progressive
geometry of the models, without considering the display time.

‡ In the actual implementation, set unions are substituted by tree merges,
since the various parts of the assembly are quasi-disjoint.
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Algorithm Combine (〈op〉, a1:BSP, a2:BSP, ..., an:BSP)
BspTree tree;

# STEP 1: check for termination ...
for (i=0; i<n; i++) do
if (termination(〈op〉, i, ai)) then
# compute leaf depending on 〈op〉 and on arguments
...
return tree;

fi
done

# STEP 2: simplification of arguments ...
for (i=0; i<n; i++) do
if (simplification(〈op〉, i, ai) then
return Combine(〈op〉,a1,a2, . . . ,ai−1,ai+1, . . . ,an)

fi
done

# STEP 3: merge of nodes; recursively generates new tree levels
tree = build_merge(a1,a2„...an)
tree.leaf[0] = Combine(〈op〉,a−1 ,a

−
2 , . . . ,a−n )

tree.leaf[1] = Combine(〈op〉,a−1 ,a
−
2 , . . . ,a+

n )
...
tree.leaf[2n−1] = Combine(〈op〉,a+

1 ,a
+
2 , . . . ,a+

n )
return tree

end

Figure 5: Algorithm for progressive Boolean combination of PBSP trees

Figure 6: Progressive union of 2D spheres at different resolutions. Both IN and UNDECIDED cells are displayed

7. Conclusion

In this paper a progressive approach to Boolean operations on poly-
hedra of any dimension is proposed, using a pipelined version of
standard BSP, named PROGRESSIVE BSP tree, which takes into
account the combinatorial aspect of the Boolean operations, and
stores a Split representation of topology and geometry of the cor-
responding weak polytopal complexes. The computation may pro-
ceed in parallel, by using a distributed pipeline, either multiprocess
or multi-host.

The approach is very different from the Naylor’s one. No geo-
metric comparison of hyperplanes is executed to decide if either
splitting or not the current node. Furthermore, the Combine algo-
rithm knows nothing about the object geometry. It only combines

some labeled tree nodes according to the rules we discussed in the
previous section. This approach has several advantages. In particu-
lar, the driver process may pull the computation by deciding about
what nodes to expand, and with what resolution, depending on spe-
cial decision rules, e.g. on the viewpoint position and distance from
the cell.

The main open problem concerns the geometric robustness of the
approach. Since the undecided cells are more and more splitted, and
their volume continuosly decreases, the computation of degenerate
splitted cells due to floating errors becomes more common. Our
current efforts are devoted to cope with topological inconsistencies
and to find new builders. A further problem concerns the produc-
tion of local artifacts corresponding to UNDECIDED cells, usually
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Figure 7: Progressive construction of the mechanical joint with perpendicular cylindrical holes

Table 1: Timings of the progressive execution of given examples.
(a) 2d circle union (b) mechanical part (c) temple

1 0.0010

2 0.0025

3 0.0050

1 0.0005

2 0.0300

3 0.1035

4 0.2350

5 0.3205

6 0.6150

1 0.0640

2 0.2105

3 0.3550

4 0.7105

5 1.2040

6 4.1035

displayed as IN cells. Such visual effect clearly decreases as the
computation goes on.

The approach introduced here is the first prototype implemen-
tation of a new distributed kernel to be used by the PLaSM lan-
guage for symbolic geometric design [PPV95, Pao03]. Such pro-
totype kernel already supports several geometric operators, includ-
ing affine transformations, Boolean operations, Cartesian products,
primitive generators and others. Before being appropriate as a gen-
eral purpose geometry engine, it should also support embedded
polyhedra of any dimension by using ternary space partition trees,
where cells are intersection of linear equalities and inequalities, and
progressive polyhedral approximation of curved manifold, prob-
ably by using the new Peters’ efficient technique, named sleeve,
for linearizing curved spline geometry [Pet03]. In few world, our
mid-term goal is to implement a progressive geometry engine that
should be able to refine with increasing detail semi-algebraic multi-
dimensional curved manifolds embedded in higher-dimensional
spaces.
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