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Abstract

Automatic creation of B-rep models of engineering objects from freehand sketches would benefit designers. A subgoal is to take
a single line drawing (with hidden lines removed), and from it deduce an initial 3D geometric realisation of the visible part of
the object. Junction and line labels, and provisional depth coordinates, are important components of this frontal geometry.
Most methods for producing frontal geometry use line labelling, but this takes little or no account of geometry. As a result, the
line labels produced can be unreliable.

Previously, we proposed an approach which inflates a drawing to produce provisional depth coordinates, and uses these to make
deductions about line labels. Even a naive implementation can outperform previous line labelling methods in certain cases.

In this paper, we further enhance this approach. We extend the algorithm to non-isometric-projection drawings, consider im-
proved ways of realising some of the concepts, and also consider how to combine this approach with other labelling techniques
to gain the benefits of each.

We test our approach using to be drawings of what we consider representative samples of engineering objects; these exem-
plify difficulties not considered in many previous papers on line labelling. Our results, based on this test set, show that the

enhancements result in significant benefits.

1. Introduction

Our area of interest is the process of engineering design. Studies
such as [7] have shown that designers routinely sketch their new
designs on paper before entering them into a CAD package. An
automated process for interpreting a sketch as a 3D solid model
would enable designers to spend more of their time creatively [7],
and, if done within a second or two, would give helpful feedback,
further enhancing the designer’s creativity [4].

Here we consider specifically the automated production of solid
models from line drawings which show the visible edges of poly-
hedral objects when viewed from a general position. Systems for
converting freehand skefches to line drawings (e.g. see [3]); are not
discussed.

A polyhedron is trihedral if three faces meet at each vertex. It
is extended trihedral [16] if three planes meet at each vertex; there
may be four or more faces if some are coplanar. It is fetrahedral
if no more than four faces meet at any vertex. It is a normalon
if all edges and face normals are aligned with one of three main
perpendicular axes.

Junctions of different shapes are identified by letter: junctions
where two lines meet are L-junctions, junctions of three lines
may be T-junctions, W-junctions or Y-junctions, and junctions of

four lines may be K-junctions, M-junctions or X-junctions. Ver-
tex shapes follow a similar convention: for example, when all four
edges of a K-vertex are visible, the drawing has four lines meeting
ata K-junction. We assume that vertices in typical engineering ob-
jects may be any of the trihedral or tetrahedral types, or may be one
of a few common and highly-symmetrical pentahedral or hexahe-
dral types.

We consider the correct frontal geometry to be the one which a
human would take as the most plausible interpretation of a draw-
ing. We aim to quickly find this correct frontal geometry for line
drawings of typical engineering objects. Correctness, in this sense,
is surprisingly uncontroversial—for example, the authors of the pa-
pers [19, 20] from which our test drawings are taken assume, cor-
rectly, that their readers can interpret such drawings as solid ob-
jects. This interpretation process is so easy for humans that we do
it automatically; it is only when attempting to program a computer
to replicate this human skill that we realise its difficulty (see, for
example, Palmer [15] for a summary of the current understanding
of human perception).

We believe that the reported successes of some approaches
to line drawing interpretation can be due to their considera-
tion of cases which are too specific or simple, such as tri-
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Line Drawings from Sashikumar etal [19, 20]

hedral polyhedra and normalons, rather than to a range of
realistic engineering objects. Our test data, shown in Fig-
ures 1-20 (and available as the Second Test Set from
http://ralph.cs.cf.ac.uk/Data/sketch.html),are
chosen to avoid this (see Section 7.1).

Limiting our investigations to polyhedral objects is not overly
restrictive: by far the most common non-polyhedral featuresin en-
gineering objects are cylindrical through holes [14] and blends (so
common that they are often not included in feature surveys). It
is arguably simpler to add these using a CAD package after the
main polyhedral shape has been created from the sketch. Figures 16
and 19 may not look like engineering objects in their “raw” poly-
hedral state, but would do with blends and holes added.

For simplicity, we further assume that the user is trying to draw

a real object, not trying to fool the computer by drawing one of
several well-known “impossible” objects. Also, we assume that the
object is drawn from the “most informative viewpoint”—there is
nothing hidden which could not reasonably be deduced from what
is visible.

However, we cannot assume that the drawing is perfect—our
methods must be tolerant of geometric inaccuracy in the input. In-
deed, although all of our test drawings appear acceptable to the
naked eye, none of them is mathematically perfect. Typically, the
errors in junction positions are far short of the accuracy required by
CAD packages.

The correct frontal geometry must conform as far as is geomet-
rically possible to the implications of the lines in the drawing. Sev-

(© The Eurographics Association2004.



PA.C.Varley, R.R.Martin & H.Suzuki/ Using Depth Reasoning to Label Line Drawings of Engineering Objects 193

eral methods (see [24]) exist for inferring information from a draw-
ing. These include:

e Region Identification: Division of the drawing into 2D areas
bounded by loops of lines is trivial. A region may correspond
to an entire face of the portrayed object—but they may also cor-
respond to partially-occluded faces or to the background as seen
through a hole in the object.

e Feature recognition: This is not discussed in this paper except to
note its use in Section 5.1.

o Line Labelling: Determining whether lines in the sketch corre-
spond to convex, concave or occluding edges is a major topic of
this paper.

e Grouping of parallel lines, This is a non-trivial problem, dis-
cussed in Section4.1.

o Inflation: The addition of z-coordinates to the x-y coordinates of
junctions in the sketch is the other main subject of this paper.

A complete system uses these methods in roughly the order
given, so e.g. the outputs of region identification and feature recog-
nition are available as inputs to line labelling and inflation.

A serious problem with existing approaches to line labelling is
that the results may not be geometrically realisable [24, 26]. The
“traditional” approach [2, 6] uses a catalogue of valid junction la-
bels, and treats line labelling as a local discrete constraint satisfac-
tion problem: the constraints are either 1-node (each junction label
must be in the catalogue) or 2-node (each line must have the same
label at either end). We [26] have given several examples illustrat-
ing that ignoring geometry in this way is inadequate even for some
drawings of trihedral objects, and that it is unacceptable when the
non-trihedral catalogue is used.

Previously [26], we presented an approach to labelling line draw-
ings which is geometrically-based, and showed that even a simple
implementation improves on existing methods when applied to the
restricted field of drawings of objects containing K-vertices.

We now show (a) how to make further significant enhancements
to this concept and (b) that the enhanced concept results in sig-
nificant benefits when applied to drawings representative of real
engineering objects.

Section 2 discusses line labelling: why it is needed, and some of
the methods used in previous work. Section 3 outlines our new ap-
proach. The various components of our approach are discussed in
more detail in Sections 4-6. Section 7 describes our set of twenty
test drawings in more detail and gives the results of labelling them
using our preferred implementation of this approach. Finally, Sec-
tion 8 presents our conclusions and suggests paths for future work.

2. Line Labelling

Line-labelling is a well-established preliminary stage of interpret-
ing line drawings [2, 5, 6]. All lines are labelled as either convex
(+), concave (-) or occluding (—). By convention, occluding lines
are labelled with the occluded face on the left side of the arrow.
Figure 21 shows two labelled drawings.

Here, we discuss why labelling is desirable (Section 2.1) and
outline methods for labelling (Section 2.2).
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Figure 21: Line-labelled Drawings

2.1. Why Label?

The original purpose of line labelling was as a method of identify-
ing and rejecting impossible drawings (a function which, as already
noted, does not interest us). However, labelling produces a number
of incidental benefits which justify its use in any approach for in-
terpreting line drawings.

Successful labelling provides useful information about the ob-
jectdrawn. Firstly, the line labels indicate which edges bound the
visible faces or partial faces of the object and which merely occlude
them. For example, labelling Figure 1 indicates that both of the T -
junctions are occluding, and from this it can easily be deduced that
three of the regions correspond to partially-occluded faces.

Secondly, the underlying vertex types implied by the junction
labels constrain the possibilities when attempting to reconstruct
the hidden topology of the object. In the example of Figure 1, the
minimum needed to complete the topology is that two partially-
occluded edges must be extended, and seven additional edges must
be added to complete the vertices at L-junctions.

Thirdly, the junction labels constrain the geometry of any edges
to be extended or added. In Figure 1, these constraints, combined
with the results of inflation, make it obvious where these nine
edges meet. It is clear that this minimum reconstruction is the best
one, and that Figure 1 can be interpreted on the basis of a cor-
rect labelling and some straightforward deductions based on that
labelling.

Determining how to combine the additional edges required to
complete Figure 4 is not so straightforward—but it is clear that
interpreting a drawing such as this would be much harder without
the several clues provided by labelling.

We have also shown that labelling can be a useful input to the
process of inflation [23, 24]. The method described there can also
be used to improve provisional frontal geometries obtained using
our new method.

However, we believe that the most important function performed
by labelling is that of distinguishing occluding 7-junctions from
non-occluding 7-junctions. The differences, both topological and
geometric, between the two ways of interpreting 7-junctions are so
fundamental to reconstruction that they must be made at an early
stage in the process. For example, no topology canbe deduced from
an occluding T-junction (all we know is that a line is partially-
occluded) since there is no vertex at the xy-coordinates of an oc-
cluding T-junction; we can deduce the presence of a non-trihedral
vertex (either extended-trihedral or K-vertex) at the xy-coordinates
of a non-occluding 7-junction. Geometrically, the occluded and
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occluding lines have different z-coordinates at an occluding 7-
junction, but have the same z-coordinates at a non-occluding 7'-
junction

Even if no other labelling is performed, this distinction must be
made in order to create a sensible frontal geometry. We investi-
gate an alternative approach: distinguishing occluding from non-
occluding T-junctions without labelling, elsewhere [27].

2.2. Line Labelling History

The usual method of labelling line drawings is by means of a list
of valid junction labels, or junction catalogue [2, 6]. Combinations
of labelled lines meeting at a junction which do not produce a valid
junction label can be rejected. The task is thus translated into a
discrete constraint satisfaction problem: each line must have the
same label throughout its length, and each junction a label in the
catalogue.

The Clowes-Huffman [2, 6] catalogue for trihedral polyhedra
(such as those in Figures 1 and 2) is well-established. Although
the limitation to trihedral verticesis somewhat restrictive, Clowes-
Huffman line-labelling has been used successfully in applications
similar to our own [4].

However, real engineering objects are often not trihedral (Fig-
ures 6,7, 11, 13, 14, 15 and 17 are not). Various extended junction
catalogue have been proposed, including ones for simple curved
objects [13], for extended trihedral vertices (e.g. [16]), and for all
tetrahedral vertices [22]. See [24] for more details of these, and for
an overview of non-catalogue-based approaches.

Atthe core of our labelling methods is the following algorithm,
which derives from Kanatani [8]:

o (Initialisation):

e For each junction, candidate labels = set of all valid labels for
that junction type;

e For each line, candidate labels = {occluding, such that outside is
occluded} if the line is on the drawing boundary, {occluding to
left, occluding to right, convex, concave } otherwise

o (Processing)

e Loop

e — For each junction with no unique label, eliminate from the

sets of candidate labels for neighbouring lines any line la-
bels inconsistent with the remaining candidate labels for this
junction

— For each line with no unique label, eliminate from the sets
of candidate labels for the neighbouring junctions any junc-
tion labels inconsistent with the remaining candidate labels
for this line

— Exit the loop if a unique labelling has been obtained

— Exit the loop if the set of candidate labels for any junction
or line is empty (no valid labelling can be obtained given the
starting conditions)

— Exit the loop if no candidate labels were eliminated in this
iteration (it is likely that there will be multiple valid labellings
compatible with the starting conditions)

e End Loop.

Given the “most informative viewpoint” assumption, if there is
no non-trihedral junction visible in the drawing, we believe it rea-
sonable to attempt to label the drawing using this algorithm and the

Clowes-Huffman catalogue (see Table 2, first column). If this fails,
or if the drawing contains non-trihedral junctions, an approach
which can label drawings of non-trihedral objects is required.

The tetrahedral catalogue in principle permits catalogue-based
line labelling to be used for drawings of objects with tetrahedral
vertices. When using the trihedral catalogue, the proportion of valid
junction labellings is so low that most trihedral drawings have only
one valid labelling. However, this proportion is much higher when
using the tetrahedral catalogue, resulting in a dramatic increase in
the number of valid labellings. For example, Figure 1 has only one
valid labelling if the Clowes-Huffman catalogue is used, and Fig-
ure 2 has two (the central depression is either a pocket or a through
hole), but Figure 6 has 337 valid labellings if the catalogue for K-
vertices is added (and nearly 1.4 million if the full tetrahedral cata-
logue is used).

Our experience is that the time taken by traditional labelling al-
gorithms depends more on the number of valid labellings than on
the theoretical order of the algorithm. For an interactive system,
algorithms which generate all valid labellings are impractical.

We have experimented with two ideas based on the core algo-
rithm presented above. The first is that whenever the core algorithm
terminates with the “multiple labels” condition, we use heuristics
to select the most promising of the available options to investigate
first, and to discard entirely the least promising options. This de-
pendence on heuristics is unsatisfactory, and also this idea can be
very slow. The second is to replace the boolean condition (label is
possible/impossible) by a probability measure, and boolean elimi-
nation by probability multiplication. The resulting probabilistic re-
laxation algorithm is fast but comparatively unreliable (see Table 2,
second column) and the optimal initial probability values are diffi-
cult to explain. See [24] for a more detailed analysis of these two
approaches.

3. Outline of Approach

We have previously [26] outlined a method which produces both
a provisional frontal geometry and suggested line labels which we
now summarise, then discuss in more detail:

e We assume that the three main axes (i, j, k) of the object cor-
respond to identifiable groups of (almost-)parallel lines in the
drawing. Attempt to identify these groups of lines, as described
in Section 4.

e Create three sets of linear equations (vertex i-, j- and k— co-
ordinates) based on line lengths along these axes, as described
in Section 5. Solve the three sets of equations to obtain vertex
positions in (i, j, k) space.

e Determine the best transformation from (i, j, k) space to (x,,z)
space by minimisation of least-square (x,y) differences, given
that we now know vertex coordinates in (i, j, k) space and the
equivalent junction coordinates in (x,y) space. Use this to deter-
mine a z-coordinate for each vertex (assuming for now that all
junctions correspond to vertices).

e There is the possibility that z-coordinates have the wrong sense.
Test for this as follows: consider the edges running from the
drawing boundary inwards. These ought, in general, to be com-
ing towards the viewer. If they are not, negate the z-coordinates.

e Find a best-fit plane corresponding to each region (again assum-
ing for now that all junctions correspond to vertices and that
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there is no occlusion). As it is uncertain whether 7-junctions
are in the plane of the face, we use a lower weighting for these
than for other junctions (a tuning constant in the range 0-1 for
T -junctions, 1 for other junctions).

e If, at a line mid-point, one region is clearly further from the
viewer (using the plane equations) than the other, the line is
(most probably) occluding. Otherwise, determine whether the
line is (most probably) convex or concave from the two region
normal vectors.

e Use the probabilities so determined to bias the initial prob-
abilities in a relaxation algorithm for producing line la-
bels [24, 25, 26].

Rather than directly use the labels provided by our new
approach, we have found it preferable to use them to bias
the initial probability values for a probabilistic relaxation la-
beller [24, 25, 26]. The relaxation labeller acts not only as a la-
belling approach in its own right, but also as a way of collating the
predictions made by other labelling approaches. For each predic-
tion made by one of the support functions, we add to the existing
probability value the product of (i) a measure of the confidence the
support function has that the prediction is right and (ii) a measure
of the confidence the collation function has in the support function.
This approach is similar to that in [9] of combining evidence from
support functions.

One benefit of this information collation structure is that it avoids
the need for each information source to always provide sensible
information: information sources are allowed to fail. For exam-
ple, we can use both the new approach described here, and “tra-
ditional” Clowes-Huffman trihedral line labelling, as information
sources whose output is collated by the relaxation labeller. Clowes-
Huffman line labelling fails if the object is not trihedral; the linear
systems in Section 5 may also have no solutions. As long as they
provide no information, rather than incorrect information, we are
no worse off than the current state of the art (i.e. the relaxation
labeller using its default values).

Another advantage is that it allows the junction-catalogue la-
belling method to perform its traditional function of rejecting im-
possible interpretations. Typically, in those cases where the provi-
sional frontal geometry is nearly, but not exactly, correct, the con-
fident predictions will be accepted but inconsistent weaker predic-
tions will be overruled.

At present, we have only examined combinations using a limited
set of information providers. In view of its success with a limited set
of drawings, and the fact that it makes no predictions for drawings
outside its scope, Clowes-Huffman trihedral labelling is an obvious
candidate: if it gives a unique solution, we increase the merits of the
junction and line labels it predicts. We have included this as a pos-
sible information provider. Similarly, if Clowes-Huffman trihedral
labelling fails but extended trihedral labelling results in a unique
solution, we increase the merits of its predicted junction and line
labels.

The only other information providers we include at present are
the hypotheses of cofacial configurations [25], configurations of
junctions which imply hole loops corresponding to bosses, pock-
ets or through holes, and those of simple slot feature configura-
tions [25]. Labellings matching the predictions of these hypothesis
are to be favoured, and thus the initial probabilities of junction and
line labels matching these predictions are increased as before.
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4. Choice of Axes

To identify from a 2D drawing which lines are parallel to the main
axes of an object, we must choose how we believe these 3D axes
are represented in 2D. The simplest choice of axes is to assume a
standardisometric projection, with +k being vertically downwards,
corresponding to the y-axis in 2D, and +i and +;j being 120° from
itin either direction, exactly as shown in Figure 22.

+i

-3 -1
+k

Figure 22: Three Perpendicular Axesin 2D

This is simple, as well as being robust and comprehensible—
even if it goes wrong, it is usually obvious why. Our initial investi-
gations [26] used this assumption with some success.

However, standard isometric projection often fails to meet the
requirements of general position: vertices and edges may acciden-
tally coincide. To avoid such coincidences, it is often necessary
deliberately to deviate from this projection—as is the case for all
drawings in this paper. Thus, we next consider a more sophisticated
choice of axes based on analysis of lines in the drawing.

We can immediately reject using the longest lines in the draw-
ing to determine the main axes. In practice, it is often diagonal
lines which are longest. For similar reasons, using the line with the
longest vertical range to determine +k can also be rejected. (Fig-
ure 13 illustrates both points).

Assuming for now that we can identify which lines in the draw-
ing correspond to parallel edges in 3D (this is not easy: see Sec-
tion 4.1), we could also base our 3D axes on the three groups of
parallel lines in the drawing which contain either (i) most lines or
(ii) the largestsums of line lengths.

If we use this method for the i- and j-axes, it is worth consider-
ing whether or not we should use this approach for the k-axis too.
Lipson and Shpitalni [12] have suggested that a line which is ver-
tical in the drawing (y-axis) should correspond to an edge which is
vertical in 3D space (k-axis), and it may be preferable to keep this
idea even if we use more sophisticated methods for i and j.

Another starting point which leads to similar conclusions is to
note that that objects are frequently drawn as if resting on a pla-
nar surface such as a table. With the exception of Figure 15, all of
the test drawings can be imagined to be viewed “atrest”. This pla-
nar surface contains our i- and j-axes, and leads to the conclusion
that when choosing groups of lines for these two axes, we should
not consider groups of lines which are “obviously” vertical. Taking
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this idea further leads to another way of choosing a group of par-
allel lines which represent the k-axis: after finding the i- and j-axis
directions, find the two directions bisecting them, decide which is
nearer vertical, and then choose the line group closestto this direc-
tion to give the k direction.

This gives seven methods for comparison:

1. simple method for i, j, k;

2. three most populous groups of lines for 7, j and k;

3. simple method for k, two of the three most populous groups for
i and j (discarding the one closest to vertical);

4. three geometrically longest groups for i, j and k.

5. simple method for k, two of the three geometrically longest
groups for 7 and j (discarding the one closestto vertical);

6. two of the three most populous groups for i and j (discarding
the one closest to vertical), group nearest their bisector for k

7. two of the three geometrically longest groups for i and j (dis-
carding the one closest to vertical), group nearest their bisector
for k

In comparing the “simple” variants with the “more intelligent”
variants, it is obvious that if the “more intelligent” variants identify
the three main axes correctly, they will produce better realisations
of the frontal geometry. The question at issue is whether the “more
intelligent” variants can be confused and choose the wrong group
of parallel lines. The results of using variants 1, 2, 3 and 6 on the
20 test drawings are shown in Table 1. Variants 4, 5 and 7 are not
listed, as for all 20 drawings the results using variants 4, 5 and 7
were the same as for variants 2, 3 and 6. The former variants were
thus not investigated further.

It canbe seen that (with one exception) the diagonal lines in Fig-
ure 11 have indeed confused the “more intelligent” variants, and
here the variants which fix the k-axis to the y-axis are to be pre-
ferred; the exception is the “bisector” variant, which finds the cor-
rect group of lines for the k-axis. Naturally, only the “more intelli-
gent” variants note that the k-axis is not vertical in Figures 5, 10,
14, 15 and 19. No variant handles Figure 15 correctly—there is an
obvious major axis of the object to which no edges are parallel—
but the results produced, while incorrect, are tolerable.

Of the variants tested, our results suggest variant6 is best, but (as
noted) there are also arguments favouring variant 3. In view of this
ambiguity, we include a tuning parameter allowing us to interpolate
between the two approaches, and subsequent sections assume use
of this interpolation.

4.1. Parallel Lines

Parallel lines are possibly the most important as well as the most
common regularity visible in 2D drawings—all 20 test drawings
contain them—and they provide an important clue to the frontal
geometry. Itis usually obvious to a human which lines in a drawing
are intended to be parallel, so to replicate the user’s intentions, it is
important to have a method of inferring which lines in the drawing
correspond to parallel lines in 3D. If one is to allow for freehand
drawing inaccuracies, or uses arelatively weak interpretation of the
general viewpoint assumption, this processis tricky.

The first problem is that it is difficult, and sometimes impossi-
ble, to seta numerical threshold for parallelism. See, for example,

Figure 15. Clearly, the non-axially-aligned lines should not be par-
allel to one another. This figure is comparatively well-drawn: the
largest angle between pairs of lines which should be parallel to one
another is 0.17°, while the smallest angle between pairs of lines
which should not be parallel to one another is 0.78°. It is easy to
see that in a less-well-drawn drawing, some line pairs which “ob-
viously” should not be parallel to one another could be closer in
angle than some which “obviously” should be parallel.

A second problem is that there are circumstances where lines
may appear to be parallel to one another, within a threshold, but
which geometric reasoning tells us cannot be parallel. See, for ex-
ample, Figure 11. It is clear that the central sloping face cannot be
parallel to either of the other two sloping faces. Assuming that the
lines at the top of the front U-shaped face are collinear, it also fol-
lows that the two end sloping facescannot be parallel to one another
either.

Reasoning of this form is particularly problematic in Figure 15,
as conditional reasoning is required. Pairs of the non-axially-
aligned lines could be parallel to one another, on the assumption
that this is a (rather poor) drawing of a cube joined to a quadrilat-
eral frustum.

We previously [21] presented a method for grouping lines based
partly on existing 2D parallelism and partly on heuristics concern-
ing which pairs of lines might be expected to be parallel. It required
line labels as input in order to deduce line pairs which could not be
parallel. Even with labelling information, cases exist where the rea-
soning required is beyond the capabilities of the method presented.
It is unrealistic to expectany method which has less input informa-
tion to match, let alone exceed, that performance.

Accepting that there is no perfect solution to this problem, we
instead use a simple approach, as follows:

e Determine, from the junction shapes, any pairs of lines which
either must or cannot be parallel: “through” lines at 7- and K-
junctions must be parallel; any other pair of lines meeting at a
junction cannot be parallel.

e For every other pair of lines, make a prediction that they might be
parallel, and determine a merit figure (see [21]) for this predic-
tion based on (a) how close the lines are to being parallel and (b)
any clues which suggest that they might be parallel (at present,
the only clue we use is that lines which are on opposite sides of a
quadrilateral are more likely to be parallel so have a higher merit
figure).

e Sort the predictions into descending order of merit

e For each prediction, in descending order of merit,

— if the prediction that the lines are parallel contradicts an es-
tablished belief, exit the algorithm, as we have finished

— if the merit of the prediction is below a threshold, exit the
algorithm, as we have finished

— note that the lines are parallel to one another, and note also
that any lines parallel to either are parallel to the other, and
that any lines known not to be parallel to either cannot be
parallel to the other

e note any remaining lines, not parallel to any other line

This algorithm is not foolproof, and indeed produces incorrect
results for Figure 15: the 6 non-axially aligned lines, none of
which should be parallel to one another, are grouped into 3 par-
allel line groups. It also produces incorrect results for Figure 11.
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Fig. True Angles Variant 1 Variant 2 Variant 3 Variant 6
I J K I J K I J K I J K I J K
1 288 66 180 300 60 180 287.86 66.00 18000 287.86 66.00 180 287.86 66.00 180.00
2 288 66 180 300 60 180 288.00 66.00 18000 288.00 66.00 180 288.00 66.00 180.00
3 316 68 180 300 60 180 316.16 68.00 18000 316.16 68.00 180 31616 68.00 180.00
4 294 72 180 300 60 180 294.00 72.00 180.00 29400 72.00 180 29400 72.00 180.00
5 304 62 175 300 60 180 30399 62.00 17498 30399 62.00 180 30399 62.00 174.98
6 288 66 180 300 60 180 288.00 66.00 18000 288.00 66.00 180 288.00 66.00 180.00
7 288 66 180 300 60 180 288.00 66.00 180.00 288.00 66.00 180 288.00 66.00 180.00
8 310 67 180 300 60 180 310.03 6699 18000 31003 6699 180 31003 6699 180.00
9 310 70 180 300 60 180 310.03 7057 18000 31003 70.57 180 310.03 70.57 180.00
10 285 65 170 300 60 180 28497 6499 16999 28497 6499 180 28497 6499 169.99
11 295 50 180 300 60 180 295.01 50.00 20881 29501 50.00 180 29501 50.00 180.00
12 292 57 180 300 60 180 292.00 57.00 180.00 29200 57.00 180 29200 57.00 180.00
13 292 57 180 300 60 180 292.00 57.00 180.00 29200 57.00 180 29200 57.00 180.00
14 295 55 190 300 60 180 295.03 5492 19001 29503 5492 180 29503 5492 190.01
15 285 65 190 300 60 180 27245 6498 18997 27245 6498 180 27245 6498 18997
16 285 70 180 300 60 180 285.03 69.99 18000 28503 69.99 180 28503 69.99 180.00
17 320 70 180 300 60 180 320.02 6998 180.00 32002 6998 180 320.02 69.98 180.00
18 320 70 180 300 60 180 320.02 69.98 180.00 32002 6998 180 32002 69.98 180.00
19 315 70 170 300 60 180 31456 70.00 16839 31456 70.00 180 31456 70.00 168.39
20 325 65 180 300 60 180 32500 6501 18000 32500 65.01 180 32500 65.01 180.00

Table 1: Choice of 2D Axis Angles

Although the 3 non-axially aligned faces cannot be parallel, the
6 non-axially-aligned edges are grouped together. Attempting to
make these edges parallel in 3D would inevitably result in distor-
tions when inflating the object. Worse, as shown in Table 1, this
erroneous “group” of 6 edges has been chosen to represent one of
the major axes of the object instead of a correct group containing
only 5 edges. Far more subtle reasoning than the current state of
the artis required to process these two drawings correctly.

It can be noted that all variants we test label Figure 15 correctly,
notwithstanding the incorrect grouping of parallel lines. However,
with some variants, the incorrect grouping causes problems when
processing Figure 11 as it produces a more populous grouping than
one of those corresponding to a major axis.

5. Linear Systems

We want an interactive system, and inflation is just one part of that
system. Thus, we base the core of our inflation method, the deter-
mination of vertex z-coordinates, on direct solution of a weighted
linear least-squares problem [1], rather than on iterative non-linear
optimisation. Weighting the equations allows us the freedom to ex-
periment by altering the relative importance of different heuristics;
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solving by least-squares fit allows us the freedom to add contradic-
tory equations suggested by different heuristics.

We first describe our approach in its simplest form; later, we de-
scribe how we generate the additional equations required when the
drawing contains more than one distinct subgraph (see Section 5.1),
and other additional equations based on deductions about align-
ment of the visible faces (see Section 6).

The vertex z-coordinates are the variables in the linear sys-
tem. Most junctions involve just one variable, the z-coordinate of
the corresponding vertex. T-junctions may be occluding or non-
occluding, so we need two variables,one for the z-coordinate of the
(possibly-)occluded line as it passesfrom view, and the other for the
z-coordinate of the occluding line at the same xy-coordinates. If the
two z-coordinates come out as similar, this gives a strong hint that
the T-junction is non-occluding.

Although parallelline information has been successfully used in
inflation [4, 11], we do not use it. Firstly, the parallel line group-
ing process described in Section 4.1 occasionally makes incorrect
groupings, distorting the object, but more importantly, the basic
method implicitly makes 2D parallel lines parallelin 3D, and doing
so explicitly is redundant.
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Figure 23: Axesand Other Lines in 3D

The linear systems in their simplest form use one equation for
each of the i-, j- and k coordinates for each line, relating the coor-
dinates of the two ends of the line, using the line angle with respect
to the axes determined above. This results in three uncoupled linear
systems.

For lines which are not close to one of the three axis directions,
we must make assumptions as to what they represent. Figure 23
illustrates the two most plausible interpretations of a non-axially-
aligned line, the interpolated prediction (left-hand), which in this
example would predict an edge in the ij-plane, and the extrapo-
lated prediction (right-hand), which in this example would predict
an edge in the ik-plane. For simplicity, we always use the inter-
polated prediction. The relative magnitude of the two vector com-
ponents (in the example, the i- and j-components) is obtained by
forming an axis-aligned skewed rectangle.

Clearly, the implications of lines aligned with the three main axes
are more certain than the implications of lines interpreted by in-
terpolation. We account for this by weighting lines differently as
follows:

e Where a line is very close to parallel with one of the main axes,
the weight of the equation in each of three the linear systems is
1

e Where aline is not close to parallel with one of the main axes, the
weights of the equations in the three linear systems are reduced
in proportion to the difference in 2D angle between the line and
the axis

e Anequation with a weight of O or less is dropped (note that drop-
ping so many equations that one of the linear systems cannot be
solved is not in itself a problem: the consequence is simply that
this approach cannot make recommendations; the relaxation la-
beller still runs, using initial junction and label probabilities pro-
vided by defaults and other labelling approaches).

Aswell as the direction of each edge vector, we must also deter-
mine its length. For the fixed-2D-axis variant which corresponds to
isometric projection, equal-length lines correspond to equal-length
edges.

For the variants from Section 4 in which the 2D alignment of the
major axes is variable rather than fixed, the mathematically-correct
method of determining 3D lengths of lines is by using the cubic
corner method [17]. See Figure 24. For any line VA meeting a tri-
hedral junction V which meets the requirements of a cubic corner,
the depth change is given by:

|za—zv| =m/+/(tanF tanG) — 1.

Figure 24: Cubic Corners

where m is the 2D length of line VA, and F and G are the 2D angles
AVC and AVB. The requirement which a trihedral junction must
meet to be a cubic corner is simply that (tanF tanG) > 1 [17]. It
can be noted that for the special case corresponding to the “fixed
angle” variant in Section 4, this reduces to |z4 — zv | = m/v/2, the
isometricity assumption which we used in [26].

Lacking firm evidence about whether engineers tend to sketch
using isometricity (easier to draw but mathematically incorrect) or
mathematically-correct cubic corners, we use a tuning parameter to
interpolate between the two predictions.

5.1. Subgraphs

In some drawings, the vertex-edge graph divides into disjoint sub-
graphs, resulting in separation of the systems of equations into dis-
crete subsystems, rendering a unique solution impossible. How-
ever, while the relative z-coordinates of the two or more distinct
groups of vertices canhave any possible value, there is usually only
one good way of relating the depths of the groups.

T-junctions actas subgraph boundaries: the z-coordinate of the
possibly-occluded line need not be the same as the z-coordinate of
the occluding line. To try to ensure there are enough equations for a
unique solution to the linear system in the absence of any other in-
formation, we add very-low-weighting equations equating the two
z-coordinates of the 7 -junctions; however, this is a last resort, and
other, better methods, corresponding more closely to human per-
ception, are preferred whenever possible.

Two distinct categories of drawings have multiple subgraphs. If
Figures 8 and 9 were drawn as wireframes rather than natural line
drawings, it would be seen that the wireframe is graph-connected;
the rear corners of the objects only appear to be isolated because
their connections to the rest of the object are occluded. By con-
trast, the hole loops corresponding to the bosses and pocket in Fig-
ures 5, 16 and 19 would still be isolated. The methods for dealing
with these two categories differ.

As well as using hypothesised cofacial configurations as a sep-
arate information provider, as described above, we can also use
them to tie subgraphs together. We use these hypotheses to generate
equations in each of the three linear systems which, using 2D (xy)
geometry, determine the ijk coordinates of a vertex on the inner
loop relative to those of three neighbouring vertices on the cofacial
outer loop. Lamb and Bandopadhay [10] used a similar approach
for cases where they deduce that a vertex from one subgraph is in
the plane of a region of the other subgraph. However, their method
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relies on lines not being unexpectedly occluding, and so does not
extend to the non-trihedral case.

For any four coplanar vertices A, B, C and D, an equation can
be generated in z4, zB, z¢c and zp. Providing BC and BD are non-
collinear, BA can be expressed as a linear combination of them:
(A—B) =m(C— B)+n(D—B), where m and n can be calculated
from the known x and y coordinates of the junctions; rearranging
this gives

2o+ (m+n—1)zp—mzc—nzp =0.

In practice, many drawings with viewpoint-specific subgraphs
contain lines in the separate subgraphs which are collinear in 2D
and which should remain collinear in 3D, e.g. Figures 8 and 9. We
add equations to the linear systems to enforce this collinearity.

These methods, while not a complete solution to the problems of
separate subgraphs, cover most situations encountered in practice,
including all of this paper’s test drawings. The practical problems
posed by separate subgraphs are not as great as theoretical consid-
erations might suggest.

6. Face Normal Alignment

In many drawings, it is possible to determine not only that some
edges are aligned with one of the three major axes, but also that
some face normals are similarly aligned. We now consider how to
make and use such deductions.

It is simple to add extra equations to our linear systems if we
know that a face normal is aligned with the i-, j- or k-axis. For
example, if we know that the face normal is aligned with the i-
axis, we can set ip = ip for every pair of vertices P and Q on the
face. Such extra equations should both make it more certain that
the linear systems have a unique solution and that the solution is a
good one.

The major problem is determining which vertices are actually in
the plane of the face. A junction, in a loop of junctions and lines
bounding a region, does not necessarily imply a corresponding ver-
tex in the plane of the face—the face may be only partially-visible,
with the vertex being one which occludes the face. Currently, we
start by attempting to determine those regions corresponding to
fully-visible faces: junctions bounding such regions must corre-
spond to vertices in the plane of the face.

a Any region bounded by lines from all groups of parallel lines
is not a fully-visible face—e.g., for normalons, it is clear that if
the region is bounded by lines in all three main axes, the corre-
sponding edges cannot all be in the same plane.

b Any face which includes the occluded line at an occluding 7'-

junction is only partially-visible. As at this stage we do not know

which T-junctions are occluding and which are not, we assume
that any face including the “tail” of a T-junction is not a fully-
visible face.

At least one of the edges at an L-junction always occludes one

or other of the faces it meets (some relatively rare non-trihedral

vertices produce L-junctions which occlude both, the two edges
occluding different faces). Without a labelling, it is not possi-
ble to tell which face is the occluded one (unless the L-junction
occludes the boundary). If the lines meeting at an L-junction

o
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separate two non-background regions, we assume that if one re-
gion is already known not to be a fully-visible face, that is the
occluded one, but failing that, neither region is a fully-visible
face.

Even this step is not entirely reliable: stage (c) in particular is an
uneasy compromise between theoretical soundness and practical
utility.

Any fully-visible face including edges aligned with two of the
major axis has its normal aligned with the remaining major axis, so
we can set the corresponding coordinates in that axis of all vertices
in the face equal.

Having identified the fully-visible faces, we try to predict face
normal alignment for the partially-visible faces. This is less certain,
so we include a merit figure for our predictions.

For each region which is not a fully-visible face,

d count the numbers of pairs of consecutive lines bounding it
which are aligned with 2 of the 3 main axes

e count the numbers of lines leaving the face at trihedral (W - or
Y-) junctions which are aligned with the 3 main axes

f from this, obtain a count of the data which suggest that the face
normal might be aligned with 1 of the 1 major axes, and nor-
malise the 3 counts to obtain likelihood estimates

g if the region shares a line with a face which is already thought
to have a normal aligned with one of the major axes, this region
cannot have the same normal, so set that likelihood estimate to
zero

h predict that the face normal is aligned with the axis correspond-
ing to the highest likelihood estimate, with a merit figure ob-
tained by subtracting the second-highest from the highest likeli-
hood estimate

We note that stage (g) is clearly incorrect: two faces might be
parallel if the corresponding regions share an occluding line. This
stage too is an uneasy compromise: while noting that there will be
cases where a partially-visible face should be parallel to a fully-
visible face despite the two regions sharing a line, there will also
be cases where we should wish to ensure that two regions, both
corresponding to partially-visible faces, sharing a line are not par-
allel, and nothing in our current method prevents this. Figure 2 is
an example where the two problems combine to produce incorrect
output; Figure 3 is an example where both problems occur without
any erroneous effect.

Despite these shortfalls, the predictions of face normals made by
this method are correct far more often than they are wrong, and the
most serious failures are not a consequence of the deficiencies we
have already noted:

e 123 face normals were correctly identified as being certainly
aligned to one of the main axes

e 23 face normals of partially-visible faces were correctly identi-
fied as being probably aligned to one of the main axes

e 10 face normals were correctly identified as being unaligned

e 20 face normals of aligned faces were not identified as being
aligned

e 8 facenormals of partially-visible faces were incorrectly identi-
fied as being probably aligned to one of the main axes

e 8 face normals were incorrectly identified as being certainly
aligned to one of the main axes
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Figure 25: Inflation of Figure 1

The drawings in Figures 11 and 15 defeat this method, partly
because the inputs from grouping of parallel lines are incorrect.
Figures 17 and 18 also defeatthis method: incorrectdeductions are
made from the region corresponding to the boundary of the boss in
each of the two drawings.

In conclusion, we note that the major problem with the idea is
not how well it works, but that it contravenes one of our earlier
assumptions: it is more important for an information provider to
give correct recommendations when it gives any recommendation
than it is for it to always produce some recommendation. Thus, de-
spite the results in Section 7.2, we cannot recommend its inclusion
in any system until the uneasy compromises in stages d and h are
resolved.

7. TestData and Results
7.1. TestData

Our test data (see Figures 1-20) are taken from two papers by
Sashikumar etal [19, 20] concerned with the use of CAD packages.
To ensure that they represent a reasonable selection of engineering
objects, the drawings were taken without any selection other than to
exclude: trivial drawings such as extrusions, repetitions, incomplete
drawings, and non-polyhedral objects. Some have been redrawn to
ensure a general position viewpoint.

Of the 20 drawings, 12 are normalons (1 of these is extended
trihedral, the rest trihedral), 7 can be decomposed into cuboids and
axially-aligned wedges (2 of these are trihedral, 5 are tetrahedral
with one or more K-vertices, and 1 has a 5-hedral vertex), and 1
(Figure 15), although having a cuboid as its convex hull, is neither
a normalon nor built from cuboids and axially-aligned wedges, and
has tetrahedral vertices which are not K-vertices. These proportions
are reasonably close to those reported in a part survey [18].

6 of the drawings have one or more hole loops; 5 have one or
more bosses, 4 have a pocket, and 1 has a through hole; these pro-
portions broadly agree with another survey [14] albeit with more
bosses. Considering these matches with the surveys, we believe
these 20 drawings are more representative of real engineering ob-
jects than the test cases used in many earlier line labelling papers.

7.2. Results

In order to compare the reliability of the approaches described here,
we have determined the number of mislabelled lines in each of the
twenty test drawings; the results are shown in Table 2. Columns

),

Figure 26: Inflation of Figure 14

C-H and Rel are previous methods: the original Clowes-Huffman
method for trihedral drawings (or the extended method [16] for
extended trihedral drawings), and a probabilistic relaxation ap-
proach [25]. Column Fix is the naive implementation of our new
approach describedin [26]. Column Varis the preferred implemen-
tation of varying the 2D angles of the major axes, as described in
Section 4. Column Ded adds to this the deductions concerning face
alignment from Section 6. Columns C+F, C+V and C+D are the re-
sults of combining Clowes-Huffman trihedral labelling or extended
trihedral labelling [16] as additional information providers with the
methods of columns Fix, Var and Ded respectively.

Various tuning parameters were optimised separately for each of
the variants considered. The data used for optimisation comprised
nearly 600 drawings, combining the test data for [24] and [26]. No
drawing is in both the optimisation set and the set of 20 test draw-
ings used in this paper. However, some of the drawings in this pa-
per, particularly the simpler ones, are similar to drawings in the
largerset.

Figures 25 and 26 show the output of inflating Figures 1 and 14
respectively using the preferred implementation of varying the 2D
angles of the major axes. It can be seen that the inflated frontal
geometry, while not perfectand not as good as could be achievedif
line labels were known in advance, is adequate for the purposes for
which we use it here.

The results shown depend both on the variant used and on the
settings of the tuning parameters. Tuning a given variant does not
always produce a clear optimal setting for each parameter. In some
cases, the fact that different results were produced by the different
variants may be more to do with the specific optimal values used for
the parameters for each variant than with the intrinsic differences
in approach between the variants.

There are 380 non-boundary edges in the test set. The best of
our new variants labels over 90% of these correctly (unassisted re-
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Drawing C-H Rel Fix Var Ded C+F C+V C+4D
Fig. 1 0 6 1 1 0 0 0 0
Fig.2 2 8 2 4 2 2 2 0
Fig.3 2 7 0 2 5 0 2 2
Fig. 4 0 2 2 1 3 1 3 4
Fig.5 2 3 2 2 2 0 0 0
Fig. 6 n/a 8 6 4 2 0 2 6
Fig.7 n/a 7 4 2 2 2 2 2
Fig. 8 2 8 6 6 5 0 0 2
Fig.9 0 4 2 0 4 1 1 2
Fig. 10 0 0 0 0 0 0 0 0
Fig. 11 n/a 8 5 6 8 6 4 13
Fig. 12 0 9 3 1 0 5 1 0

Fig. 13 n/a 6 6 1 0 0 0

Fig. 14 n/a 8 5 3 0 0 2 2
Fig. 15 n/a 0 0 0 0 0 0
Fig. 16 0 0 1 0 0 2 2
Fig. 17 n/a 3 4 1 7 7 3 6
Fig. 18 1 3 4 1 7 7 3 6
Fig. 19 2 1 2 1 2 2 4 4
Fig. 20 0 0 0 0 0 0 2 2
Totals n/a 91 55 36 49 33 33 51

Table 2: Test Results: Numbers of Incorrect Edge Labels

laxation labelling, by far the worst option listed, labels about 75%
correctly).

Table 2 does not distinguish clearly wrong labellings from plau-
sible but suboptimal labellings e.g. labelling the pocket in Figure 2
as a hole. Such minor mishaps can outweigh real performance dif-
ferences between variants, so the totals should be taken as being
indicative rather than as proof that one variant is superior to an-
other.

Overall, the approach described in this paper is clearly a signif-
icant improvement on previous approaches; it is reasonably clear
that the variable-axes variants introduced here are to be preferred to
the fixed-axis variant (3rd column) we introduced in [26], and that
using Clowes-Huffman labelling as an additional support function
is worthwhile.

In all cases, the labellings were produced in a fraction of a second
(using an Intel Pentium 4 GHz CPU).

8. Conclusions and Recommendations

Line-labelling is useful; without line labels, it is much more diffi-
cult to interpret line drawings. However, labelling is a non-trivial
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problem , especially when non-trihedral vertices are allowed, and
no perfectsolution is known.

For drawings of trihedral and extended trihedral objects,
Kanatani’s algorithm [8] for the Clowes-Huffman method, and Par-
odi’s extension, achieve as good results as any other approach.
However, the limitation to trihedral and extended trihedral objects
is unacceptably restrictive.

It is clear that any of the variants presented in this paper is a
significant improvement on the unassisted relaxation approach for
general objects. However, selection between the variants is less
clear-cut in view of the suboptimal labelling issue noted above. In
general, from the variants discussed in Section 4, moveable-axis
variants are to be preferred to fixed-axis variants. It is unclear as to
whether it is beneficial to incorporate the ideas of Section 6.

The failure modes of our approach are not well-understood at
present. Ideally, we should wish to be able to determine, by analysis
of the original line drawing, how much confidence can be placed in
the outputs of the various stages of processing.

We will continue to look at a variety ideas for combining the
requirements of geometric realisability with those of discrete con-
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straint satisfaction problems as alternative solutions to the prob-
lems of line-labelling, using the variants presented in this paper as
a benchmark representing the current state of the art.
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