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Abstract

We present an efficient algorithm for approximating huge general volumetric data sets, i.e. the data is given over arbitrarily
shaped volumes and consists of up to millions of samples. The method is based on cubic trivariate splines, i.e. piecewise
polynomials of total degree three defined w.r.t. uniform type-6 tetrahedral partitions of the volumetric domain. Similar as in
the recent bivariate approximation approaches (cf. [10, 15]), the splines in three variables are automatically determined from
the discrete data as a result of a two-step method (see [40]), where local discrete least squares polynomial approximations of
varying degrees are extended by using natural conditions, i.e. the continuity and smoothness properties which determine the
underlying spline space. The main advantages of this approach with linear algorithmic complexity are as follows: no tetrahedral
partition of the volume data is needed, only small linear systems have to be solved, the local variation and distribution of the
data is automatically adapted, Bernstein-Bézier techniques well-known in Computer Aided Geometric Design (CAGD) can be
fully exploited, noisy data are automatically smoothed. Our numerical examples with huge data sets for synthetic data as well
as some real-world data confirm the efficiency of the methods, show the high quality of the spline approximation, and illustrate

that the rendered iso-surfaces inherit a visual smooth appearance from the volume approximating splines.

1. Introduction

General data fitting is an important problem in many scientific ar-
eas and applications. The general goal in this field is to efficiently
compute suitable models which approximate given sets of discrete
data of different type. This gets challenging for very large data
sets with arbitrarily distributed data samples possibly contaminated
with some noise resulting from measurement. A very well-known
and important example in computer graphics, approximation the-
ory and numerical analysis is the bivariate problem of surface ap-
proximation, i.e. fitting the height data at given points which are ar-
bitrarily distributed over a planar domain. The literature shows that
even in this case it is a complex task to find appropriate methods
which satisfy (almost all) requirements of efficient and exact fitting
for data of general type. In this paper we go a step further and con-
sider fitting of general volumetric data, i.e. we assume that sets of
discrete points are arbitrarily distributed in a volume domain and
some associated (scalar) density values at the points are given, and
we are interested in finding a suitable non-discrete approximating
model of the data, which allows a convenient further processing.

It is obvious that the most important property of any fitting
method should be that it approximates well, i.e. the values evalu-
ated from the model should be close to the data values at the given
points. Besides this main point of good approximation quality there
are a number of additional requirements which should be ideally
satisfied by an approximation method. In brief, some of these re-
quirements are: efficient computation, evaluation and representa-
tion of the models, applicability to reasonable distributions of gen-
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eral data, the models should satisfy smoothness conditions for high
quality visualization, the models should have the potential to au-
tomatically reduce noise in contaminated data and for automatic
data reduction. Depending on the specific applications this list of
desirable properties may even be increased.

Due to the importance of data fitting in the different fields of ap-
plication there exists a vast literature on this topic. We list some of
the methods although we are aware that this list is far from being
totally complete. An approach is to use radial basis functions and
related hybrid and Shepard-like methods (see e.g. [4, 14, 22, 39]).
Recently, such methods have been tuned towards surface recon-
struction from volumetric data (see e.g. [6, 11, 33, 44]), which has
typical applications in computer graphics and reverse engineering.
Other methods are based on different types of splines. We men-
tion local and global methods based on tensor product splines in
three variables and the simplex spline approach [35, 36]. If the
data is structured (for instance, as a result from some local near-
est neighbor estimation, quantization type or gridding algorithm),
then the usage of tensor product splines and related methods is
often straightforward (see e.g. [13, 24, 25, 34] and the references
therein). An example from the area of volume visualization are
trilinear splines which interpolate the data on a three-dimensional
grid - these are local spline models where the polynomial pieces
are of total degree three. In this paper, we also use local spline
models based on piecewise polynomials of total degree three - but
these are different from tensor product splines (as well as from
simplex splines, in general). The cubic splines we propose here
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are defined w.r.t. tetrahedral partitions of the three-dimensional do-
main and satisfy smoothness conditions. Due to their mathemati-
cal complexity currently there are only a few papers on trivariate
splines and many open questions concerning these spaces exist to
date (see [1, 7, 16, 20, 41, 42, 45] and the references therein). Nev-
ertheless, we show here that the trivariate splines provide the nec-
essary potential to be useful tools for solving volume fitting prob-
lems. For further information on the topic of data fitting we refer to
[2, 21, 40, 46] and the references therein.

As noted above, the fitting problem becomes simpler if one con-
siders gridded volume data. Recently, we developed quasi-inter-
polation methods for data of this structured type [28, 38] based
on quadratic trivariate splines. According to our knowledge, these
are the first approaches in the literature where it is shown that
splines on tetrahedral partitions with lowest possible degree sat-
isfying many smoothness conditions provide useful tools with ad-
vantageous properties for the various requirements of efficient vi-
sualization in computer graphics. As announced in the future work
section of [38], in this paper we continue the agenda and focus
on the more difficult problem of efficient approximation of gen-
eral volumetric data. For developing the method presented here,
we approach the problem from two sides. On the one side we ben-
efit from our experience on trivariate splines described in [28, 38].
For instance, the computational examples presented in these papers
and other tests showed that the basic algorithms frequently used
in the practice of bivariate splines (see [10, 31, 46]) can also be
efficiently applied for splines on tetrahedral partitions. This con-
cerns e.g. the Bernstein-Bézier techniques well-known in CAGD
(see e.g. [18, 37]) and the computation of local approximants. On
the other hand, it has only been recently that algorithms for the effi-
cient interpolation and approximation of general bivariate data sets
appearing in certain real-world settings have been developed which
take many of the above requirements into account. These methods
(see [10, 15, 19, 26, 27, 30, 32], and the survey article [31] as well
as the references therein) are based on bivariate splines, i.e. piece-
wise polynomials satisfying smoothness conditions which are de-
fined w.r.t. planar and three-dimensional triangulations. In fact, the
method presented here is the first generalization of the recent bi-
variate fitting methods [10, 15] to the more complex trivariate set-
ting and therefore falls into the class of spline extension methods.
Roughly speaking, this two-step approach (see [40]) works as fol-
lows. In a first step, we independently compute trivariate polyno-
mial approximations to appropriate local portions of the data di-
rectly in its Bernstein-Bézier form. This can be done by impos-
ing a checkerboard-coloring (see [29]) to the uniform type tetra-
hedral partition associated with the splines. Following the ideas in
[10, 15], we adapt the degree of the local polynomials to the lo-
cal variation and distribution of the data as well as for the type
of data. This makes this step stable and robust and provides some
smoothing of the noisy data if this is necessary. In contrast to ear-
lier methods known from the literature based on trivariate piecewise
polynomials, we directly use these local polynomial approximants
as pieces of the trivariate splines. In the second step, these local
pieces are glued together using the continuity and smoothness con-
ditions which define the underlying spline space. In this way, the
splines are defined on the whole volumetric domain as a result of
building extensions of the local representants of the data.

The complexity of this general algorithm is linear in the number
of (reasonably distributed) data points. In brief, its main advantages

are as follows. No computation or storage for a tetrahedral partition
of (a subset) of the data points is needed. Only small linear systems
have to be solved - this can be done independently and in paral-
lel, and therefore enables the handling of huge data sets (i.e. the
number of data points is of order (9(106)). The computation, eval-
uation and representation of the approximating splines is efficient
due to the exploitation of the Bernstein-Bézier techniques. The al-
gorithm possess an insensitiveness concerning data contaminated
with moderate noise. Moreover, only basic operations and tools
available in standard numerical libraries are applied. These facts
ensure not only the efficiency of the method but also the simplicity
of its implementation.

2. Overview of the algorithm

We briefly sketch the basic idea of the algorithm. The method is
based on cubic splines w.r.t. a uniform type tetrahedral partition,
i.e. piecewise polynomials of total degree three which satisfy con-
tinuity and smoothness conditions across the common triangular
faces of neighboring tetrahedra. The tetrahedral partitions are nat-
ural generalizations of the four-direction meshes well-known from
the bivariate setting and cover the volume domain containing the
given data points. Basically, the method consists of two steps. In
the first step, we use a checkerboard coloring and choose a subset
of tetrahedra for which we compute local least squares polynomial
approximations of varying degrees for small portions of the data
close to the respective tetrahedron. On the set of these (pairwise
distinct) tetrahedra, we define the spline to be equal to the local
polynomial approximations. In the second step, we use the condi-
tions of the underlying spline space to uniquely extend the polyno-
mial pieces obtained in the first step to a consistent spline on the
whole domain. Hence, the algorithm completely follows the basic
ideas known from approximation method of the bivariate setting
([10, 15]). What is new here, is that we generalize these methods to
the more complex trivariate setting by using the partition described
in [38]. Comparing with [10, 15], we observe that in the trivariate
setting the second step (extension to a consistent spline) becomes
more complex, while the first step (local polynomial approxima-
tion) essentially coincides. The consequences are that we keep the
description of the first step very short and informative, while in the
second step we also skip a few of the smoothness conditions and re-
place others by some different natural conditions in our first method
dealing with general volumetric data. One motivation for doing this
comes from the observations described in [28, 38]. Below we show
that the whole approach applies only basic computations and aver-
aging operations and therefore the algorithm is simple and straight
forward to implement. Moreover, we note that we use cubics in this
paper, because according to our experience these spaces provide at
least some of the additional flexibility (comparing with quadratics
as they were used in [38]) needed for the efficient approximation of
arbitrarily distributed, three-dimensional data.

3. Trivariate Splines

Before going into the details of our algorithm, we give some back-
ground information on spaces of cubic splines w.r.t. uniform type
tetrahedral partitions A, include a brief review of the piecewise
Bernstein-Bézier form of trivariate splines and discuss smoothness
conditions on adjacent tetrahedra of A.

(© The Eurographics Association 2004.
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Figure 1: (a) Example of a more general domain Q than the unit cube. The domain is decomposed into uniform cubes which are colored
black and white. (b) The tetrahedral partition A is obtained by uniformly subdividing each cube of <> into 24 tetrahedra. Since six planes
are needed, A is sometimes called a type-6 tetrahedral partition. In the black cubes one tetrahedron is consistently colored black. (c) The
intersections of A with planes parallel to the three coordinate planes are four-directional meshes which are well-known from the bivariate

setting.

3.1. Type-6 Tetrahedral Partitions A

The approximation method is based on cubic splines, i.e. piecewise
polynomials of total degree three which are defined on natural uni-
form tetrahedral partitions A. The partitions are the same as those
used for reconstruction of gridded data in [38]. For ease of explana-
tion we choose a cubic domain Q = [0,n]> C R® for now, although
more general domains are possible, which are decomposed into
cubes (cf. Fig. 1 (a)). Given a set of discrete volumetric data points
X ={x=(xv,\,2v) € Q: v=1,...,N} C R® with associated
functional (scalar) values fx € R, x € X, we set n = | /N /10|
and cover the domain Q with cubes Qj jk, i, j,k =1,...,n, of edge
length h =1/n. This choice of n ensures that the number of degrees
of freedom of the spline space approximately coincides with the
number of scattered data points (see Sec. 3.3). On the other hand,
this is just a reasonable heuristic choice which performed well for
many of the computational examples presented in Sec. 5. We also
note that for automatic data reduction different choices of n might
be advantageous. In addition, we need a ring of border cells sur-
rounding the union <> of the cubes Q; j x to completely determine
the approximating spline on Q.

In order to define a tetrahedral partition (see [5] for a survey), we
split each cube Q € < into six pyramids by connecting its center
point vg with the four vertices of every face of Q. Then, we insert
both diagonals in these six faces of Q and connect their intersection
points with vg. This subdivides each of the six pyramids in Q into
four tetrahedra, forming a natural, uniform tetrahedral partition A of
Q, where every cube Q € <> contains 24 congruent tetrahedra. An
other way to describe the type-6 tetrahedral partition A is to say
that A is obtained by slicing Q with the six planes which contain
opposite edges of Q. Fig. 1 (b) illustrates the construction of A. The
partition A is a generalization of the four-directional mesh which
is well-known in the bivariate setting (cf. [7, 10, 15]), Fig. 1 (c))
shows this. We will construct a piecewise cubic spline w.r.t. A with
polynomial pieces defined over every tetrahedron.

We impose a checkerboard coloring (a concept introduced in the
context of local Lagrange interpolation by bivariate splines in [29])
to the cubes from <. Cubes Q; jx Where i+ j+-k is even are called
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black cubes, while the rest of the cubes are called white cubes. For
every black cube we choose the same tetrahedron, e.g. always the
front facing one in the bottom pyramid (cf. Fig. 1 (b) and 9), and
call these in the remainder of this paper the black tetrahedra of A.

3.2. Bernstein-Bézier Form and Smoothness Conditions

The Bernstein-Bézier techniques are well established tools from
CAGD [18, 37], and it is well known that the related Bernstein-
Bézier form of the polynomial pieces plays a key role for multivari-
ate splines [1, 7, 16, 41, 45, 46]. Every cubic spline s on A can be
written in its piecewise Bernstein-Bézier form, i.e. for every tetra-
hedron T = [vg,v1,V2,v3] € A with vertices vy, p=0,...,3, we
have

slf=p= Z ajjke Bijke € Ps, D
i+j+k+¢=3

where a;j, € R are called the Bernstein-Bézier coefficients of the

polynomial piece p associated with the Bézier points

(ivo+jvi+kva+£v3)/3, i+j+k+£=3,

which are sometimes also called domain points. Here,
P = span {x'yIZX: i, j, k>0, i+j+k<3}

denotes the twenty-dimensional space of cubic trivariate polyno-
mials, i.e. the total degree is three. Moreover,

3!

Bijke = iy MMASAS €P3, i+ j+k+0=3,

are the cubic Bernstein basis polynomials w.r.t. T, where the lin-
ear polynomials Ay, v =0,...,3, determined by the interpolation

conditions Ay (vy) = dvy, L =0,...,3, are called the barycentric
coordinates with respectto T.

A convenient description of Cl-smoothness for neighboring
polynomials (i.e. polynomials defined on tetrahedra sharing a tri-
angular face) in Bernstein-Bézier form can be found in [3, 7, 12].
Let p = s|t be given on T as in (1), and set fi = s|¢ € P3 for
a neighboring polynomial on T = [Vo,V1,V2,V3] with Bernstein-
Bézier coefficients &jjk, i+ j+k+¢=3. Then s is a contin-
uous spline on T UT, if the coefficients associated with Bézier
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points on the common triangular face TNT = [Vo, V1, V2] coincide,
i.e. djjko = &jjko, i+ j+k = 3. Moreover, s is C!-smooth across
T NT iff, in addition, we have

dijkt = Ao(V3) @it1jko +A1(V3) @ijako +
A2(V3) @jjki10 +A3(73) ajje,

Analogously to the univariate and bivariate cases, for each condi-
tion of this form there is the geometric interpretation that five points
in R* lie in the same (three-dimensional) hyperplane, in general.
The fourth components of these points are the Bernstein-Bézier co-
efficients while the first three components are the associated Bézier
points. In general, there are five coefficients involved for every sin-
gle smoothness condition. If one or even two of the barycentric co-
ordinates vanish at V3, the number of involved coefficients is four
and three, respectively. For instance, this holds if V3 lies in the plane
that contains the triangle [vp,v1,v3] and if V3 lies on the line that
contains the edge [vo, v3], respectively. In these cases, the smooth-
ness conditions degenerate to lower dimensional conditions known
from the bivariate and univariate setting, respectively. Fig. 2 illus-
trates a degenerated and the general case.

i+j+k=2.

For the type-6 tetrahedral partition A defined in the previous sub-
section, there are three cases, i.e. we have to consider neighboring
tetrahedra lying in

o two different cubes of <,
o the same pyramid (cf. Fig. 1) of a cube,
o two different pyramids of a cube.

We observe that the smoothness conditions for the first two cases
(inter-cube and intra-pyramid) degenerate to simple univariate con-
ditions involving three coefficients (Fig. 2, left), while in the third
case (inter-pyramid) the smoothness conditions are of the general
form involving five coefficients (Fig. 2, right). Due to symmetry,
there are essentially two conditions with always the same barycen-
tric coordinates involved, and one can easily see that enforcing
smoothness over the common triangular face of neighboring tetra-
hedra in A is to apply one of these two simple averaging formulae
(Fig. 2 shows the two stencils).

In the algorithm described in Section 4, we take advantage of the
Bernstein-Bézier form not only to express and use certain smooth-
ness conditions. In fact, it enables us to apply many standard tech-
niques from CAGD. Most important is the efficient and robust eval-
uation using the de Casteljau algorithm (see e.g. [18, 37]). It com-
putes not only the value of the polynomial pieces s|t = p but si-
multaneously also its piecewise derivatives which is essential for
efficient and high-quality visualization purposes. These aspects are
discussed in [38] together with implementation issues like the effi-
cient computation of point locations and barycentric coordinates in
the three dimensional domain. Although we make extensive use of
the Bernstein-Bézier techniques in our current implementation of
the algorithm there is obviously no need to repeat these computa-
tional aspects again, and we refer the interested reader to [38].

3.3. Cubic Splineson A

As one can see from the previous section, the C1-smoothness for
the polynomial pieces of the splines on two adjacent tetrahedra of
the type-6 tetrahedral partition A are relatively simple to describe
by using the piecewise Bernstein-Bézier form. On the other hand, if
we consider the complete partition A, these conditions connect the

coefficients of an overall Ct-smooth spline in a highly non-trivial
way, because for each (interior) tetrahedron T of A the conditions
have to be satisfied simultaneously across all the four triangular
faces of T - and they can obviously not be considered indepen-
dently. This observation is contrasted to the situation of splines in
one variable, in the sense that for smooth multivariate spline spaces
of low (and lowest possible) polynomial degree, one can sometimes
observe that the splines have to simultaneously satisfy a huge num-
ber of smoothness conditions, while on the other hand the num-
ber of coefficients involved is relatively low. As a basic work, the
analysis of the complicated structure for C-splines on A of arbi-
trary polynomial degree has been provided recently [16] (see also
[20, 42]). From these results we know that in the particular case
of C! cubics on A the number of degrees of freedom of the spline
spaces fits into the formula 6 n® +24 n? + 18 n+ 4, which shows
that the spaces allow to deal with trivariate data, in principle. On the
other hand, some basic observations motivated by the bivariate ap-
proximation methods in [10, 15] (see also [42], Remark 7.3) seem
to indicate that this number is too small for designing a local ap-
proximation method with optimal properties using the overall C*-
smooth cubic splines. As noted above, this makes the extension step
of the below algorithm more complex and different to the bivariate
case. More precisely, in our first approach for local extension de-
scribed below (see Sec. 4.2) we use cubic splines on A with about
10 n® + O(n?) free parameters (i.e. the 20 coefficients associated
with the complete set of domain points in each of the n3/2 black
tetrahedra are chosen), where most of the c!-smoothness proper-
ties (but not all) are satisfied and only few of them are skipped or
replaced by other useful conditions, so that the local approxima-
tion of the data is preserved. An additional motivation for proceed-
ing this way comes from the results of our previous work [38] on
piecewise quadratic reconstructions from gridded volume data. We
note, that it can be easily seen from the description of the extension
step in Sec. 4.2 in conjunction with the specific form of the sten-
cils of the averaging rules representing smoothness conditions (cf.
Fig. 2) that the resulting splines satisfy a huge number of smooth-
ness conditions including those essential for certain visualization
purposes and therefore have an almost similar behavior as math-
ematically smooth functions. In addition, this is confirmed by the
computational examples given in the results section.

4. Approximation Method

We use the basic ideas from the two-step methods [10, 15] and
adapt them to the trivariate setting. With the uniform tetrahedral
partition A defined, in the first step, we determine least squares
polynomial approximations for small, local portions X)o. of the
given data from X'. Computing the trivariate local polynomials pjec
with piec(X) = fx, X € Xjgc, can be done by using the same basic
principles as described in [10, 15] (see also [8]) and applying them
in a straight forward way to the trivariate setting. In contrast, find-
ing methods for extending the local trivariate polynomial pieces to
a consistent cubic spline (second step) are more difficult and differ-
ent to the two-dimensional case. In the approach described below,
we mainly concentrate on the important aspects of computational
efficiency.

(© The Eurographics Association 2004.
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Figure 2: Smoothness conditions of cubic polynomial pieces on neighboring tetrahedra of A. The Bézier points associated with coefficients
involved in the smoothness conditions are shown as blue dots. For conditions between neighboring tetrahedra either of different cubes or of
the same pyramid, three points lie on a line, i.e. two barycentric coordinates vanish, and the conditions degenerate to smoothness conditions
of univariate type (left). Only for neighboring tetrahedra of different pyramids inside the same cube we have the general case with all the five
coefficients involved in each of the six conditions (right). The closeups show stencils of the two averaging rules representing the conditions.
In our algorithm the outlined coefficient is determined from the solid ones by applying the respective smoothness condition.

4.1. Local Polynomial Approximation

In the first step, we determine least squares polynomial approxi-
mations for a huge number of small, local portions of the given
data points X' and the associated values fx, x € X. To do this,
only the black tetrahedra (cf. Sec. 3.1) in A are considered. More
precisely, for each such tetrahedron T, we choose an appropriate
subset Xjo. = X1, of X' containing data points which are close
to T, and compute pjoc = p,Toc, trivariate polynomials of degree
d € {0,...,3} in its Bernstein-Bézier form w.r.t. T, such that the
error

S (Ploc(x) — fx)?

;
XEXT,

becomes minimal. To do this algorithmically, for each of the black
tetrahedra T € A we choose an initial sphere centered at the
barycenter of T such that the volumetric domain is completely cov-
ered by the union of these spheres. Then, we collect the data points
within each such sphere. The finding of these points can be done ef-
ficiently by initially sorting the data points from X’ into an appropri-
ate uniform grid data structure. Following [10, 15], we analogously
balance the number of data points distributed within a particular
sphere depending on the local distribution of data points. This is
done either by thinning or increasing the radius of the spheres. In
this way, for each black tetrahedron T, we obtain a local portion
Xr. of the data which is contained in an appropriate sphere S|T..
Then, we determine the local polynomial p|T ¢ on T which approxi-
mates the data values fx at the points x € &) in the above discrete
least squares sense. We solve the arising system of linear equa-
tions by computing the singular value decomposition (SVD). Since
the corresponding observation matrices are of moderate size (the
polynomial degree p,TOC and the cardinality of XJJC are both small)
this can be done in a fast and robust way. In addition, as is well-
known the SVD allows to check if this system is well-conditioned
or not (in our current implementation, we follow [15] at this point,
although we are aware that this can be improved). If the latter case
appears (i.e. there is some hidden redundancy in X,T,C), we proceed
by dropping the polynomial degree d and consider a new system for
polynomials of degree d — 1, and iterate this process until either the
system is well-conditioned or the polynomial degree is zero. This
procedure is initialized with d = 3. If the resulting polynomial is of
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lower degree we can rewrite it as a cubic polynomial by applying
(successive) degree raising (see e.g. [18]). This local approxima-
tion procedure is analogous to the bivariate case [10, 15] (see also
[8]), and provides numerical stability of the approximation part of
the algorithm. Fig. 8 shows a visualization of a single local polyno-
mial approximant.

4.2. Spline Extension

The approximation step described in the previous subsection deter-
mines the polynomial pieces of the approximating spline on the set
of all black tetrahedra. More precisely, for each such tetrahedron
T, we set the approximating spline to be equal to the local polyno-
mial approximation p,TOC, i.e. the 20 Bernstein-Bézier coefficients
of the spline piece in (1) coincide with the 20 Bernstein-Bézier co-
efficients of pJ.. Now, in this second step, we show how to com-
pute the Bernstein-Bézier coefficients of the approximating spline
on the remaining tetrahedra of A which are not black and have a
non-empty intersection with Q. As noted above this can be under-
stood as an extension of the local approximating pieces obtained
in the first step, where we use the continuity and many smoothness
conditions.

For ease of explanation, we proceed by considering only a black
and a white cube of the partition > (see Sect. 3.1). Figures 9 and 10
show the domain points associated with the coefficients of the poly-
nomial pieces defined on tetrahedra in a black and a white cube,
respectively. These two cubes represent all interior cubes of . As
coefficients of the outermost layer (called layer 3) coincide with
those of neighboring cubes, we only show the inner layers of the
white cube. We use these figures to explain how the remaining co-
efficients are determined. The coefficients are computed step by
step and this is done locally, i.e. simultaneously for all the cubes in
<. To understand the below description, it may help to simultane-
ously think of what happens in each step to the imaginary neighbors
of the black and the white cube (which have a common edge or a
common vertex with these cubes). We denote the coefficients by aj,
i=0,...,239, their indices i are shown in the diagram. The indices
i are chosen to represent the order in which the a; are determined,
i.e. for i < j the coefficient a; is computed before (or eventually si-
multaneously with) aj, so the value of a; may depend on the value
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of aj. We decided to give the following description of the second
step, because it follows the method we basically used to imple-
ment it — obviously a pure mathematical description could be done
shorter — but would require additional notation.

Since the spline is already determined on the black tetrahedra, it
follows that the coefficients agp,...,aig as well as ayg,...,ass are
already uniquely determined. For the latter coefficients this can be
seen by taking into account that there are other black cubes which
share a common edge or a vertex with the black cube of consid-
eration. These initial coefficients (resulting from the approxima-
tion procedure of the first step) are marked yellow. We will de-
termine the main part of the remaining coefficients by applying
the simple averaging rules connected with the smoothness condi-
tions (cf. Fig. 2). The given sequential order implicitly defines the
appropriate rule, structural ambiguities do not impose any over-
determination since in this case we skip the smoothness conditions
or replace by appropriate averages, which are non-standard rules.
Only some few a; will be treated in such a specific, unusual way
— on the other hand this makes the whole construction possible.
The light green coloring gives a hint on finding the coefficients
ag, - - -, a147, Which are computed before the first non-standard rule
is applied.

Using intra-pyramid rules gives agg, . . ., 837, €.0. axg = 2ag —ay.
An inter-pyramid conditions determines azg = a;p —ag + %(ag +
agg), then agg = 2agg —agg, and agg = %(az +agg). An inter-cube
condition gives a41 = 2agg — aj» in the neighboring white cube.
We continue this way and apply the smoothness conditions to ob-
tain a4, ..., ...agp. Hence, we determine all coefficients around the
cube vertices, i.e. the spline becomes smooth at all vertices of <.
Note that as we “walk around” a vertex, we consider the already
determined coefficients in the neighboring cubes, i.e. for the dia-
gram we imagine a continuation of cubes in all directions. Using
the smoothness conditions, we compute ags, .. .,a;05 Which com-
pletes the bottom sides of layers three and two (cf. Fig. 9) for all
cubes. Then, we determine the top side of layer three, i.e. the coeffi-
cients aypg, - - ., a114 and of layer two, i.e. ayss, . . ., a13. After that,
the inner layers one and zero of all black cubes can be computed,
i.e. the coefficients a137,...,a147 and the spline becomes smooth
at the midpoints of black cubes. We have now fixed all coefficients
marked light green, where we used smoothness conditions from
the Cl-spline spaces. At that point, one can see that there would be
some hidden overdetermination for the overall C*- splines (cf. [42],
Remark 7.3) - therefore, we have to proceed differently.

Now, consider the unknown five coefficients ajag, . .., a5, on the
layer two of the black cubes (marked by light red squares). Apply-
ing the C1-conditions on the same layer and between layers two
and one, we obtain the six equations

aisy = 2a149 —as3

ajsp = 2aug—an

aisp = 2a51 —a116

aisp = 2a50 —a11s
aug+aug = 3 (a2 +aisy) +ary
ajso+aisy = 3 (Asg+arsp) +aw

for the five unknowns. As the system is over-determined, we sug-
gest to average smoothness conditions as follows. Straightforward

substitution provides

aug = 3 (a1p —ags) +ay
aue = 3 (a1p —au) +ayy
aiso = 3 (Asg —aie) +aia1
ais1 = 3 (asg—ais) +aia

and hence determines ayus, . ..,a151. Back-substitution gives four
conditions on a5, that are averaged to

1
aisp = 7(a12 —ay1 —ags +asg —aiie — ay1g) +ar7 +auan.

We apply the same averaging of coefficients obtained from smooth-
ness conditions symmetrically to determine ajs3,...,a157 on the
front left side of the black cubes (marked by red squares).

Next we compute the coefficients ajsg and ajsg in the black
cubes (marked by light blue rhombs). Due to an intra-pyramid
smoothness condition, we can use ajsg = 2 aj59 — ajss. In order
to uniquely determine both coefficients, in addition, we impose the
individual Cz-super-smoothness condition

4aj59 = agg+4ajsg —ars

which is a standard procedure to eliminate undesirable degrees of
freedom for splines (see [10, 27, 41]). This is illustrated by us-
ing the dashed line in Fig. 9 showing the coefficients that are in-
volved, here. Now, we uniquely determine agp, . ..,a167 USing the
smoothness conditions involving these coefficients around the ver-
tical edge. Note that this is possible due to the careful choice of
aiso and apsg. Analogously, we determine ajgg and ajg9 (marked
by blue rhombs) using a C?-condition (illustrated as a dashed line),
and walking around the corresponding edge uniquely determines
the coefficients ay7g, . . ., a175 via smoothness conditions.

We now complete the outermost layer of the black cubes by ap-
plying intra-pyramid rules, and we obtain aj7g,...,a193. For the
computation of the coefficients ajoq,...,a204 0On layer two of the
black cubes we consider intra-pyramid conditions only, and we skip
seven inter-pyramid conditions. Note that this does not affect the
smoothness across the common faces of black and white cubes. Fi-
nally, we determine the inner levels one and zero of the white cubes
by using smoothness conditions, and we obtain aygs, ..., a4 and
apos, ... ,az39, respectively.

Now, all the remaining coefficients of the spline (essential for the
representation on Q) are uniquely determined, and hence we have
extended the local polynomial approximations from the first step
to a spline defined on the whole domain Q. The extension to the
spline turns out to be a repeated averaging of coefficients using very
simple and natural rules most of which representing smoothness
conditions, making this step easy to implement and very efficient.
Let us point out that the resulting consistent spline is C? between
cubes sharing a common square face, as well as inside the pyra-
mids (consisting of four tetrahedra sharing a common edge) and
at the midpoints of all cubes. Moreover, many additional smooth-
ness conditions are automatically satisfied by applying the above
method. In the diagram of Fig. 9 and 10 the coefficients are in-
dexed for illustration purposes, and we assume that all a; (for fixed
index i and variable cube index) are computed simultaneously for
all the cubes. In the implementation this would require an iteration
over all cubes and to compute each a; individually. We can mini-
mize the number of iterations to six by reordering the computation
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of coefficients (or appropriately permutating the 240 indices) while
using the same rules to compute the coefficients.

5. Results

In this section we demonstrate the efficiency of the algorithm and
the high quality of the spline approximations. In the following, all
computation times are measured in seconds on a (single) 3 GHz
Intel Xeon CPU using double precision arithmetic. Tests on an SGI
Onyx using eight 400 MHz R12k processors concurrently show
that we get nearly optimal speedup from parallelizing the algo-
rithm. The iso-surfaces of the approximating splines are visualized
as very fine triangular meshes generated by applying the Marching
Cubes algorithm [23].

In order to investigate the quality of the approximation, we first
consider the smooth trivariate test function of exponential type

o~ 10(0— )% +(y—5)2)

fxy,2) = 3
L3I -2 e 7))
L L3 g 3))
S IR 18]
forall (x,y,2) € Q¢ = [~ 3, 3]° (cf. [17]). Fig. 3 shows several iso-

surfaces of the spline approximation s¢ of f.

We sample f at N randomly distributed points x and approximate
the values fx = f(x) at these data points with s;. Here, the number
of cubes in every dimension is chosen as described in Sect. 3.1 so
that the degrees of freedom of the spline approximately matches
the number of data points. Tab. 1 shows different measurements of
approximation errors and computation times for increasing num-
bers N of random samples and the respective choice of n. The third
column shows the average error measured at the data points, the
fourth columns lists the maximum error to the data, and the fifth
column contains the maximal error to f in the uniform norm. The
latter error is approximately computed by choosing 20 uniformly
distributed points in each tetrahedron of A, evaluating the error for
all these points, and computing the maximal error over all these ap-
proximative errors. The computed errors are obtained by consider-
ing the essential tetrahedra, i.e. tetrahedra contained in cubes from
the complete interior of Q. Note that passing from the i-th row to
(i41)-th row of the table (doubling N), the side length of the cubes
decreases by the factor 2~(2/3) ~ 0.79. The last column shows the
time for the local least squares approximation measured in seconds.
Every row in the table is an average of 50 independent scattered
tests, each of which uses a different random distribution of the data
points. The time for determining the coefficients in the extension
step (see Sect. 4.2) are not listed explicitly, since it is clearly lin-
ear in the number of cubes. In our computations, we observed that
this is less than 5% of the time required for determining the local
polynomial approximations (first step of algorithm). The test shows
the quality of the spline approximation as well as the efficiency of
its computation, particularly confirming the linear complexity of
the algorithm. Moreover, we give a test that shows that our algo-
rithm provides the potential to deal with noisy input data. This is
illustrated by the results shown in Fig. 4. In this test, the domain
is decomposed into 29° cubes to approximate 128 000 samples as
before (cf. Tab. 1), and we added uniformly distributed noise to
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the sampled function values of f. Similar results were obtained for
different smooth test functions. Obviously, for cubic trivariate poly-
nomials, our method yields errors which are negligible. Examples
for simple but non-trivial test functions are of truncated power type,

e.g.
gx.y,2) = (x— 33+ (x(y— 1z - 1)3 + (x(y—1)(z— 3))3.

where (x,y,z) € Qg = [0,1]3. Choosing N = 8000, for this sim-
ple test function we obtain the following errors of the approximat-
ing spline sq: errmean = 0.00000950, errya, = 0.00010017, and
errmax = 0.00011770.

We proceed by applying our method to some real-world data
sets. An example for an interesting test in computer graphics is
volume-based surface reconstruction. Here, we assume that sam-
ples of the signed distance to a surface are given, and the goal is to
(locally) find a trivariate model representing the data whose zero-
set approximates the surface. We consider this as a very intuitive
test because the desired result is the shape of a known object and
hence needs no extra interpretation. However, we currently do not
directly compete with existing surface reconstruction methods, as
the goal of our algorithm is more general, and our current setup is
not optimized for the specific requirements of efficient reconstruc-
tion of surfaces. We consider an existing, high-resolution triangular
mesh that was initially acquired by digitizing a real-world object as
the Max-Planck bust. We then sample the signed distance to this
surface not only in vicinity of the surface but randomly distributed
in an extended bounding box. This way we generate a huge amount
of data even for regions of the volume that are very distant from the
zero-set and would be negligible for surface reconstruction. Hence,
this is obviously a difficult test for any method. For the test, we
explicitly want to cover the whole volume and stress the algorithm
with large input. Given the Max-Planck data set, we randomly dis-
tribute N = 2 % 10° data points at which we measure the signed
distance in a straight forward (but rough) way. The domain is de-
composed into 58 x 97 x 73 cubes, hence about 205 000 local least
squares polynomial approximations are computed to determine the
approximating spline spjanck. The average number of data points
used for the local approximation in this test is 66. The approxi-
mation takes about 133 seconds, so more than 1500 local approx-
imations are performed per second. Figures 5 and 6 visualize the
results of our algorithm — we observe that the reconstructed sur-
faces inherit a visual smooth appearance from the trivariate splines.
In addition, we provide a similar test using the mechpart data set,
which a well-known benchmark in CAGD. The original data is a
discrete height field over a two-dimensional 82 x 50 grid. A known
difficulty for the reconstruction is the coarseness of this data in
conjunction with the relatively high variation of the heights. As
a test, we distributed N = 512 000 points randomly in the volume
bounding box and measured signed distances w.r.t. an almost reg-
ular (two-dimensional) triangulation of the data. Fig. 7 shows the
reference data and zero-sets of spline approximations smp of the
signed distance for two different partitions A.

We integrated our algorithm in the AMIRA visualization system
[43], and note that all the visualizations given in this paper have
been created with AMIRA. Using this framework enables exper-
iments like the interactive approximation or visualization of local
pieces of the spline as for instance single polynomials on prescribed
tetrahedra of A. Fig. 8 shows an example, where we illustrate the
behavior of the extension step of our algorithm.



78 Rossl, Zeilfelder, Nurnberger, Seidel / Spline Approximation of General Volumetric Data

N n  errmean erfgata errmax time

1000 4 0.05612090  0.16392300  0.18640600 0.05

2 000 5 0.01758270 0.07843640 0.08240110 0.08
4000 7 0.00247124  0.02297960  0.02867510 0.17

8 000 9 0.00076832 0.00766123 0.00922203 0.32
16000 11 0.00030479  0.00374684  0.00429214 0.57
32000 14 0.00010208 0.00147255 0.00168576 1.10
64000 18 0.00003375  0.00054775  0.00062212 2.20
128 000 23 0.00001175 0.00021318 0.00023703 4.38
256 000 29 0.00000441  0.00008587  0.00009686 8.52
512000 37 0.00000160  0.00003636  0.00004275 17.14
1024000 46 0.00000065  0.00001530  0.00001765 32.90
2048000 58 0.00000025  0.00000618  0.00000747 65.26
4096000 74 0.00000009  0.00000292  0.00000375  133.49

Table 1: Approximation errors of the splines s and computation times in seconds.

Figure 3: Iso-surfaces of an approximation s to the test function f sampled at N = 128 000 randomly distributed points. The color code
visualizes the approximation error for the surface points. The iso-values starting from top left are —0.1, 0, 0.1, 0.3, 0.5, and 0.8.

6. Conclusions and Future Work

We present a new method for the efficient approximation of huge
volumetric data sets distributed over an arbitrarily shaped domain.
Our two-step algorithm is of linear algorithmic complexity w.r.t. the
number of samples, it uses a natural, uniform tetrahedral partition
of the domain which is given implicitly, it requires only the (inde-
pendent) solution of small linear systems, it automatically adapts

to local variation and distribution of the data, it enables the ex-
ploitation of well-established techniques known in CAGD, and it
automatically smoothes noisy data. Our method is based on trivari-
ate, cubic splines which can be efficiently represented by using its
piecewise Bernstein-Bézier form. It is known that finding local con-
structions based on these spaces is a complex task. In this first ap-
proach to the problem of local approximation of general volumetric
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Figure 7: Approximation of the mechpart data set. Top: The origi-
nal surface that was sampled at N = 512 000 randomly distributed
points. Center and bottom: Zero-sets of the approximating splines
Smp. The domain is decomposed into 64 x 39 x 22 and 42 x 26 x 15
cubes, the computation times are 26s s and 20 s, respectively.

data, we balance computational simplicity against overall smooth-
ness. Motivated by recent results for gridded data ([38]), we con-
struct a consistent cubic splines which satisfy almost all smooth-
ness conditions. Our results confirm the high quality of the approx-
imation and show visually smooth iso-surfaces of the reconstructed
real-world objects.

In future work, we will focus on further improvements of the
scattered volume data approximation. According to our current
knowledge, overall smooth trivariate spline models require some
additional degrees of freedom, so that we might either need a higher
(but as small as possible) degree of the piecewise polynomials or
different partitions. Both options are currently subject of intensive
research, and at that point of time it seems to be a complex task
to end up with an intuitive and computationally simple smooth re-
construction taking the requirements mentioned in the introduction
into account. Further, we note that our current implementation can
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Figure 8: An iso-surface of a least squares approximating polyno-
mial piece on a black tetrahedron (transparent red) together with
the positions of the samples (red spheres) that were used for the
local fitting procedure (using a local portion X)q. of the extended
mechpart data set). For this visualization the polynomial is extrapo-
lated out of the respective tetrahedron as indicated. The transparent
blue surface shows the same iso-surface for the complete approx-
imating spline, which shows that the local difference is small and
the extending behaves in a natural and smooth way.

be improved by either applying the average operators introduced
in [10] and perhaps by making use of different local approxima-
tions similar as in [9]. Moreover, one can think of integrating our
method in straightforward hierarchical constructions over nested
sequences of cube partitions, tuning the approach towards surface
reconstruction and providing direct visualization of the trivariate
splines, e.g. by ray-casting similar to [38].
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4

Figure 4: Approximation of noisy data. As for Fig. 3, N = 128 000 randomly distributed samples are used for the spline approximation, and
uniformly distributed noise is added. The maximal amplitude of noise is (from left) 0.5%, 1% and 2.5% relative to the maximum range of
f, where f(x,y,z) € [-0.25,1.27],(x,y,z) € Q;. We observe average approximation errors (errmean) of about 0.0038, 0.0075, and 0.019
respectively. The pictures show the iso-surface with iso-value 0.3 extracted from the approximating splines s;.

9

Figure 5: Visualization of the spline approximation spjanck for the Max-Planck data set. The domain is decomposed into 58 x 97 x 73 cubes.
The left and center image show different views of the zero-set of the spline spjanck.- The right image shows a slice through the approximative
volume model spjanck (X, Y, const) for signed distance values, where the distances are color coded.

Figure 6: Close-ups of different iso-surfaces of the spline approximation spjanck for the Max-Planck data set as used in Fig. 5. The iso-values
are (from left) 2, —2, and —4. The corresponding iso-surfaces can be considered as offset surfaces to the zero-set of the spline s pjanck shown
in Fig. 5.
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Figure 9: The four layers 3,2,1,0 of Bézier points for a black cube, each cube layer is cut into its back-facing and front-facing part. The
dots show the 175 associated Bernstein-Bézier coefficients, and their numeric labels. The meaning of the colors are described in Sec. 4.2.
The 24 polynomial pieces of the splines inside the cube are represented by the 10,6 and 3 domain points in the respective triangles and the
midpoint over all layers, e.g. points with label 0-19 on the black tetrahedron (cf. Sec. 3.1 and Fig. 1 (b)). Note that coefficients on the edges
of the outermost layer (top row) coincide with those of some nearby black cubes. The innermost layer (numbered with 0) consists of a single
point (bottom right). Fig. 10 shows the remaining coefficients of the white cubes.
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Figure 10: The inner layers 2, 1,0 of a white cube contain 65 Bézier points, see also Fig. 9 and Sec. 4.2. The white cube shares faces with
six black cubes, and their coefficients on the outermost layer coincide by the continuity. For this reason it is sufficient to consider the three
inner layers only.
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