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Abstract
Surface interrogation and intersection depend crucially on good root-finding algorithms, which in turn depend on accurate
polynomial evaluation. Conventional algorithms for evaluation typically encounter difficulties near multiple roots, or roots that
are very close, and this may lead to gross errors in the geometric computation, or even catastrophic failure. In this paper we
study the cost and accuracy of several approaches to polynomial evaluation, explaining the reasons for non-convergence of
certain methods, and supporting our subsequent conclusions with the results of benchmarking experiments.

Categories and Subject Descriptors (according to ACM CCS): G.1 [Numerical Analysis]: I.3.5 [Computational Geometry and
Object Modeling]: J.6 [Computer-Aided Engineering]:

1. Introduction

Many important problems in CAD and CAGD reduce directly to

solving systems of nonlinear polynomial equations of the form

p(x) = 0,

where p and x are in Euclidean spaces of possibly different dimen-

sion. Such problems include the calculation of intersections, dis-

tance functions, and curvature extrema [PMS 02].

The usual difficulties solving nonlinear polynomial equations are

exacerbated when dealing with multiple roots. Such cases arise at

surface intersections that are tangential or singular. Even the evalu-

ation of polynomials near multiple roots turns out to be of reduced

accuracy. Inaccuracies in these fundamental tasks can lead to gross

errors in the geometric computation, or even catastrophic failure

[Hof 01].

As a part of a project which includes finding more robust surface
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intersection evaluators [CARGO] we are re-examining these issues

from the ground up. Arguing from first principles, it is clear that

accurate root finding cannot succeed without accurate polynomial

evaluation. Focusing specifically on this subproblem, we study in

this paper the cost and feasibility of accurate floating-point evalua-

tion using various approaches that have been proposed before.

Tangential or singular surface intersections arise often by de-

sign in fairing operations and in blending operations. Curvature-

continuous surface intersections are not uncommon in ship-hull

design. In such demanding situations, some authors attempt to in-

crease the certainty of the numerical evaluation of the geometry

by employing interval-arithmetic enclosure methods, e.g. [Pat 03].

Here, a common problem near multiple roots is that the enclosure

algorithm cannot exclude the presence of a root in many intervals

near the true root because the polynomial evaluation is not accu-

rate enough. Thus, accurate polynomial evaluation has significant

impact on CAD in a number of critical situations.

CAD systems create complex geometry with tangential and

curvature-continuous contacts based on user specifications and pro-

prietary algorithms. As long as the created geometry remains un-

der the control of the CAD system, the difficulties of tangential and

near-tangential intersection computations can be controlled by re-

taining additional information such as the rail curves of blending

surfaces. This may motivate a perception that increasing the ac-
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curacy of intersection computations is a minor matter in practice.

However, when the geometry is exported to other CAD systems or

analysis programs for additional manipulation, then the additional

information that simplified difficult intersections for the original

CAD system is removed. Thus the problem we sketched has a prac-

tical dimension.

Böhm [Boe 83] and others [Ham+95] have described an algo-

rithm for the evaluation of univariate polynomials

p(t) =
n

∑
i=0

pit
i, (1)

as well as [Kra 91] bivariate polynomials

p(x,y) =
m

∑
j=0

n

∑
i=0

pi jx
iy j

where the coefficients pi or pi j are assumed to be exactly repre-

sentable in the computer. Kramer’s extension can be used for poly-

nomials in more than two variables as well. Although the matrices

generated can be large, they are highly structured and do not have

to be represented explicitly.

Böhm’s algorithm, which will be described in the next section,

is based on Horner’s method. Part of the algorithm is closely re-

lated to the classical method of iterative improvement, which is

used to improve computed solutions to systems of linear equations

[Wil 65]. The method of iterative improvement generally performs

very well: indeed, Wilkinson states [Wil 65]p. 256 that “. . . the per-

formance of the . . . process does not fall far short of that corre-

sponding to exact iteration provided only that inner-products are

accumulated [in double precision] in the computation of the resid-

uals.” Nevertheless, there are difficulties with the method in the

context of certain of the problems considered here. These difficul-

ties can be explained by careful examination of the analysis of it-

erative improvement given in [Wil 63]. Our purpose is to provide

this explanation, and to describe experimental results obtained with

the iterative-improvement method and, more generally, with the

method of Böhm. Moreover, we contrast the residual iteration ap-

proach with Priest’s multi-precision arithmetic approach [Priest92].

2. Residual iteration in polynomial evaluation

2.1. The method of Böhm for evaluating polynomials

We restrict our attention to the case of the single-variable polyno-

mial, as in equation (1). Rewriting p(t) as in reference [Ham+95],

in the Horner nested-multiplication form

p(t) = (. . .(pnt + pn−1)t + . . .+ p1)t + p0,

and defining

xn = pn

xi = xi+1t + pi, i = n− 1, . . . ,0,

we obtain the linear system

Ax = p (2)

where

A(n+1)×(n+1) =




1

−t 1

.

.

.

−t 1




,

x =




xn

xn−1

.

.

.

x0




, and p =




pn

pn−1

.

.

.

p0




The desired solution to the problem of evaluating p(t) can be

obtained by taking the last component of x: x0 = p(t). Indeed, the

process of computing an initial approximation x(1) to this linear

system by direct forward substitution gives

x(1)
n = pn

x(1)
i = x(1)

i+1t + pi, i = n− 1, . . .,0,

which is exactly Horner’s method.

2.2. Iterative improvement

Given the initial approximation x(1) to the solution of (2), the clas-

sical method of iterative improvement [Wil 65, Wil 63] can be ap-

plied to obtain a sequence of vectors x(s) which converge, under

certain conditions, to the exact solution x of (2). Since in our spe-

cial case the matrix A is lower triangular, the process [Wil 63]p.

121 simplifies: for s ≥ 1, we first compute the residual r(s) from

r(s) = p−Ax(s), (3)

and then the correction x(s+1) − x(s) from

x(s+1) − x(s) = A−1r(s); (4)

this last is computed by means of the same forward-substitution

process that was used above to compute A−1 p, with p replaced by

r(s). If guaranteed solutions are required, then the calculation of
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the residual in (3), and the correction vector in (4), can be com-

puted in interval arithmetic [Ham+95]. Alternatively, initial iter-

ations x(1),x(2), . . . ,x(s0) can be computed using ordinary floating-

point arithmetic, with double-precision calculation of residuals, un-

til convergence, followed by a final iteration x(s0+1), using interval

arithmetic, to obtain an interval bound.

It is essential, however, that the residual in (3) be computed to

high accuracy [Wil 63]p. 126. If this is done, then under normal

conditions the iterative-improvement procedure provides excellent

results [Wil 65]p. 256. On the other hand, there are exceptional

cases, one of which arises in the use of this procedure for the eval-

uation of polynomials with multiple roots.

Consider for example the polynomial

p(t) =
n

∑
i=0

pit
i

where

pi =

(
n
i

)
(−1)n−i, i = 0, . . . ,n,

so that

p(t) =
n

∑
i=0

(
n
i

)
ti(−1)n−i = (t − 1)n.

We might take n = 12 and consider evaluating the polynomial at

t = 1+10−6, so that p(t) = 10−72. Since

A−1 =




1

t 1

t2 t 1

. .

. .

t12 t11 . . t 1




we see that x0, which is equal to the last component of A−1 p, is

equal to

12

∑
i=0

ti pi =
12

∑
i=0

ti

(
n
i

)
(−1)12−i = (t − 1)12,

which is indeed p(t).

The matrix A has ‖A−1‖∞ = ∑12
i=0 ti = t13−1

t−1
∼= 13, and ‖A‖∞ =

2+10−6, so that its condition number ‖A−1‖∞ · ‖A‖∞ is approx-

imately 26. This is well within the bound [Wil 63](38.1) required

for convergence using “block floating” arithmetic. The iterative-

improvement procedure fails to converge using floating-point arith-

metic, however, even when the residual is computed in double pre-

cision [Wil 63]p. 126. (This fact is easily verified empirically by

writing a short computer program.)

The reason for this failure is as follows. Suppose that |x(s)
0 | has

been reduced to a value below 2−53 ∼= 10−17; then, using IEEE

double-precision floating-point arithmetic [IEEE] the result of cal-

culating

r(s)
0 = ((p0 − x(s)

0 )+ x(s)
1 t)

in double precision gives a result that does not depend on x(s)
0 , since

p0 = 1, and subtracting x(s)
0 from 1 in double precision produces ex-

actly 1. Since this is the only place at which x(s)
0 enters the calcula-

tion, it can be seen that once |x(s)
0 | is below the threshold mentioned,

subsequent iterations do not even depend on x(s)
0 .

The convergence analysis given in [Wil 63] is for block-floating

arithmetic—floating-point arithmetic is discussed only informally

[Wil 63]p. 126. If we try to imitate the analysis, to obtain an analy-

sis for floating-point arithmetic, we encounter a problem at a fairly

early stage. Block-floating arithmetic produces an exact represen-

tation of the residual r(s) which can be converted to a standardized

block-floating vector with small relative error [Wil 63](38.11), and

this is a crucial step in the convergence proof. Although double-

precision calculation of the residual will usually produce an esti-

mate with small relative error, this cannot be guaranteed, as the ex-

ample described above shows. In such cases we are therefore forced

to compute the residual using extended precision, as is done for the

inner-product operator � in [Ham+95], and to use this throughout

the process of iterative improvement.

2.3. The Inner-Product Operator �

Given floating-point numbers ak and bk, k = 1, . . . ,n, the opera-

tor � delivers as result a floating point number S′ such that there

is no representable floating point number S′′ properly between

S = ∑n
k=1 akbk and S′. The operation can be implemented in sev-

eral ways.

Hammer et al. [Ham+95] implement an accumulator that holds,

as a fixed-point number, the mantissa of products akbk and their

summations. At a size of 544 bytes, the accumulator is large enough

to represent all partial sums that do not overflow or underflow with

the ak and bk in double precision. Thus, an accumulator can be used

to compute accurate summations S and extract the leading bits as S′.

Hence, S′ is accurate to within less than one unit of least precision

(ulp).

Kobbelt [Kob 97] implements an accumulator as an array of

floating-point numbers indexed by their exponents. For each ex-
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ponent value, there is an array element. Kobbelt gives an algorithm

for summations using the array with appropriate carry. The final

result can be extracted by combining partial sums recursively.

Because Kobbelt’s summation delays the construction of the

leading bits of S, his implementation does better when large sum-

mations are needed with few result extractions. Hammer’s imple-

mentation is better suited for general-purpose situations.

2.4. Distillation

Studied by Priest [Pri 92], several algorithms have been developed

that effectively carry out multiple-precision floating-point compu-

tations without explicitly manipulating extended mantissae. These

techniques rest on the concept of compensating summation and dis-

tillation. Intuitively, a distillation of a sum

S =
n

∑
k=1

ak

of n floating-point numbers calculates p floating point numbers bk

such that
n

∑
k=1

ak =
p

∑
k=1

bk

exactly and the mantissae of the bk are disjoint, i.e.,

|bk+1| < ulp(|bk|).

It is then clear that b1 is an approximation to S that is accurate to

within 1 ulp. By rounding according to the leading bit of b2, S′ can

be accurate to within 1/2 ulp.

Distillation can be used to implement floating-point summa-

tion exactly. Additionally, products of distillations again can be

represented exactly as sums of partial products, so implementing

floating-point products exactly. This provides a third way for im-

plementing the inner-product operator �.

Since Priest’s algorithms can compute multiplication and addi-

tion directly, it is also possible to use them to evaluate polynomials

directly, without iteration. We include below data to show how ef-

ficient the direct evaluation is.

3. Experimental Assessment of Evaluation Methods

We have implemented polynomial evaluation in the following

ways:

1. Simple Horner: The polynomial is evaluated using the usual

Horner method. This provides us a baseline datum for assess-

ing accuracy and speed.

2. Residual iteration using the Hammer et al. implementation of

�.

3. Direct evaluation of the polynomial using distillation.

4. Residual iteration using distillation of sums and products.

All evaluations were done in the fully expanded power-base form;

no factorization is considered. The polynomials used to benchmark

polynomial evaluation are the following:

• p1(x) = (x− 2)4, x = 2+10−8

• p2(x) = (x− 2)6, x = 2+10−8

• p3(x) = (x− 2)8, x = 2+10−8

• p4(x) = 0.886339x6 −0.163394x5 +1.38273x4 +4.28066x3 −
0.390834x2 − 1.38172x− 0.00221897, x = 0.00221897

• p5(x) = −6.18121x7 − 4.04466x6 − 0.353717x5 + 1.557x4 +

0.846107x3 +4.10773x2 +0.307834x+1.03226, x = −1.03226

• p6(x) = 1.41423x8 − 0.70459x7 − 0.156364x6 + 3.41544x5 +

7.70459x4 − 2.04128x3 − 0.522173x2 − 0.529087x − 1.5827,

x = −1.06724

• p7(x) =−0.7934x9−0.257333x8 −0.402707x7 +1.67564x6 +

0.442567x5 + 1.58694x4 + 0.110229x3 − 0.777947x2 −
0.440497x+1.5179, x = −0.257333

Polynomials p1 through p3 have been chosen to test the evalua-

tion near a multiple root. Despite the high multiplicity, the coeffi-

cients of these polynomials have low bit complexity. The remaining

four polynomials have simple roots but have coefficients of high bit

complexity. They were generated randomly.

The table shows observed evaluation times for the four methods.

All computations were done using 64-bit double-precision arith-

metic on a Pentium 4 PC. In each case, the CPU time of a total

of 3000 (repeated) evaluations was measured. All times are in mil-

liseconds.

Polyn. p1 p2 p3 p4 p5 p6 p7

Degree 4 6 8 6 7 8 9

Iterat’ns 3 4 5 1 1 1 1

Horner 63 78 94 78 79 94 94

Hammer 390 1125 1938 328 375 406 453

Direct 1906 5563 10720 7137 10360 13938 17517

Distill 1531 11922 32062 609 672 766 859

Depending on the number of iterations, Hammer’s method costs a

factor of between 1:4 and 1:20 compared to Horner, with the num-

ber of iterations the main cost parameter. For multiple roots, more
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than one iteration is needed when evaluating in its vicinity. Direct

evaluation, using Priest’s method, is unattractive, with cost factors

as high as 1:180. Here, the bit complexity of the coefficients is the

main factor leading to large vectors in the distillations. The cost can

be reduced by using residual iteration with sum distillation, yet the

computing times observed are always higher than using Hammer’s

inner-product implementation. Here, the number of iterations has a

big impact.

The accuracies that are achieved over Horner’s method are sum-

marized as follows:

• p1 : Horner evaluates to exactly zero. The other evaluation meth-

ods obtain the value 10−32 (hex 3949 f623 cb12 02b2), with an

interval width of 3 ulp(10−32) after 3 iterations.

• p2 : Horner evaluates 8.53 ·10−14, whereas the accurate evalua-

tion is 10−48 with an enclosure width of 1 ulp after 4 iterations.

• p3 : Horner evaluation yields 1.02 · 10−12, accurate evaluation

10−64, with an enclosure width of 1 ulp.

• p4 : The Horner value is 2.64044, the accurate value is also. The

distance between the two, observing the binary mantissae, is 1

ulp (4005 1f9d 29c7 a5da vs 4005 1f9d 29c7 a5db).

• p5–p7: The Horner value differs from the exact value by no more

than 2 ulp.

The accuracy of evaluating p4 through p7 reflects the fact that the

argument and the coefficients do not generate sums with terms of

vastly different magnitude. Thus, digit cancellation does not create

large errors.

4. Conclusions

Accurate polynomial evaluation is a key prerequisite for good root-

finding algorithms which, in turn, are fundamental to surface inter-

rogation and intersection. These operations typically encounter dif-

ficulties near multiple roots or near roots that are very close. Con-

ventional evaluation algorithms are then a fundamental obstacle

since they are inherently imprecise in such cases. Accurate eval-

uation is possible, but the experiments show that the algorithms

available to us today are expensive. Residual iteration in particu-

lar is an algorithm capable of delivering accurate values, but the

implementation of the � operator is expensive.

As we have seen, the difference between the accurately rounded

value and the value delivered by Horner can be more than 30 orders

of magnitude. In such situations, conventional evaluation delivers

no information near the root. This has led to inefficiencies in shape-

interrogation algorithms [Pat 03].

Against this backdrop, we have demonstrated that several tech-

niques for accurate evaluation are rather costly and should not

be used to simply displace conventional evaluation. Conventional

evaluation using classical iterative improvement, conventionally

implemented, may lead to non-convergence in cases of impor-

tance. These insights provide strong justification for the certifi-

cate approach of computational geometry pioneered by Fortune

[FVW 93]. Indeed, as shown by evaluations of p4 through p7, sim-

ple evaluation can be efficient and accurate.

It remains to be seen whether novel hardware algorithms such

as the fused floating-point multiply and add (fma) instruction on

the Intel Itanium can make significantly lower the cost of accurate

polynomial evaluation; see also [Nie 03]. The fma instruction com-

putes the expression d = a ∗ b + c with all intermediate bits, and

thus can deliver the floating-point value for d to the result precision

rather than to the precision of max(|a∗b|, |c|). It is conceivable that

it allows us to push the boundary of meaningful routine calculation

closer to the vicinity of multiple roots.

Brep solid representations of curved solids contain geometric

data that is intrinsically inexact. This raises the question how useful

it is to improve the accuracy of evaluation and intersection compu-

tations. It seems to us, in this context, that precise evaluation must

be combined with a semantic conceptualization of what the im-

precise input data means in a mathematical sense. Clearly, without

such a semantics highly precise evaluation is a luxury with unclear

purpose. But conversely, given such a semantics, the inability to

evaluate geometry with high precision at reasonable cost may be

equally crippling.

The algorithms we have examined evaluate polynomials given

in power-base representation. Corresponding techniques that work

with the Bernstein-Bezier basis or with a B-spline representation

would be desirable.
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