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Abstract
The eigenfunctions of the discrete Laplace–Beltrami operator have played an important role in many aspects of geometry
processing. Given the success of sparse representation methods in areas such as compressive sensing it is reasonable to find
a sparse analogue of LBO eigenfunctions. This has been done by Ozoliņš et al for Euclidean spaces and Neumann et al for
surfaces where the resulting analogues are called compressed modes.
In this short report we show that the method of Alternating Direction Method of Multipliers can be used to efficiently calculate
compressed modes and that this compares well with a recent method to calculate them with an Iteratively Reweighted Least
Squares method.

1. Introduction

Compressed modes were introduced in [OLCO13] and [OLCO14]
to provide a basis of the space of functions on Euclidean spaces
with the intention of solving PDEs. The elements of this basis dif-
fered from the standard eigenfunctions basis in that their support
is localised rather than over the whole domain. This can be seen
in Figure 1 for compressed modes on surfaces which were intro-
duced in Neumann et al, [NVT∗14]. Shaded areas of the six modes
indicate that the mode is non-zero.

In [NVT∗14] they used the Alternating Direction Method of
Multipliers (ADMM) method to calculate a batch of compressed
modes all in one go. This required a parameter, µ, which measured
the size of the support. The method was accelerated in [Hou15] via
a Nesterov method and a method for ordering the modes was also
given.

However, problems remained in that if one calculated the first 20
modes say, and then required 10 more, one had to start from the
beginning and calculate the first 30. Furthermore, due to an issue
with the parameter µ the first 20 of the new 30 are not the same as
the 20 originally calculated.

Another problem was that the definition of compressed modes
involved an `1 norm term that did not take into account non-
uniformity of sampling of the manifold in the discrete case. This
was taken care of in [BCKS16]. Furthermore, they give an Itera-
tively Reweighted Least Squares Method (IRLS) method to calcu-
late the modes sequentially rather than in a batch as in [NVT∗14].

In this brief report to accompany an SGP17 conference poster
we outline an ADMM method to calculate the modes sequentially.
This is compared to the IRLS method.

2. Compressed modes

First we define compressed modes for a matrix pair.

Definition 2.1 Let W be a symmetric positive semi-definite matrix,
A a symmetric positive definite matrix and µ be a non-negative real
number. The kth compressed mode of L = A−1W with respect to
the compression parameter µ, denoted ϕk, is defined inductively
as

ϕk = argmin
ϕ

ϕ
TWϕ+µ||Aϕ||1

such that ϕ
T Aϕ = 1 and ϕ

T
i Aϕ = 0 for all i = 1, . . . ,k−1.

In [BCKS16] W is the cotangent Laplacian and A is the area matrix.
In [BH17], where they use the term µ||ϕ||1 rather that µ||Aϕ||1, W is
the Hessian of discrete deformation energy and A is a mass matrix.

To solve this optimisation problem we use the ADMM method.
Details of this method can be found in [BPC∗11]. We use a block
method and incorporate an acceleration.

The optimization function is split into the sum of three (rather
than the more usual two) functions:

argmin
ϕ

ϕ
TWϕ+µ||Aϕ||1 + ι(ϕ)

where the indicator function ι is defined by

ι(ϕ) =

{
0, if ϕ

T Aϕ = 1 and ϕ
T
i Aϕ = 0,

∞, otherwise,

where i = 1, . . . ,k.

We can then reformulate the problem as

min
ϕ,S,E

ι(ϕ)+ETWE +µ||AS||1 such that ϕ = S, ϕ = E.
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Figure 1: Local support and identification of natural features.

10 20 30 40
Teapot, 6489 ADMM 8.9 16.8 23.3 32.4

vertices, µ = 100 IRLS 9.0 14.4 22.2 28.0
Human, 10K ADMM 11.4 19.7 66.9 112.5

vertices, µ = 625 IRLS 12.8 31.9 43.4 64.1
Aquarius, 100K ADMM 102.4 312.8 557.5 846.3
vertices, µ = 800 IRLS 42.3 180.5 396.1 630.3

Table 1: Time taken (in secs) for the calculation of 10-40 modes in
each method for different meshes.

With this formulation we have to solve three optimization prob-
lems and make a simple update. Each of these is fairly straightfor-
ward to solve either explicitly or by a simple iterative process.

The IRLS method of [BCKS16] is the following. Suppose we
have k compressed modes already. To find ϕk+1 we proceed iter-
atively. Suppose ϕ

j is an approximation to this compressed mode
(the initial ϕ

0 could be random). Define a diagonal matrix Ω
j+1

with its pth diagonal entry equal to
1

ϕ j(p)
. That is, the pth entry on

the diagonal is equal to the reciprocal of the pth entry in the vec-
tor ϕ

j. Fortunately, in our case, in practice the entries are non-zero.
To avoid division by zero any zero entry can be replaced by a very
small value.

We then define the next iterate ϕ
j+1 by

ϕ
j+1 = argmin

ϕ

ϕ
T
(

W +µΩ
j+1A

)
ϕ (1)

such that ϕ
T Aϕ = 1 and ϕ

T
i Aϕ = 0 for all i = 1, . . . ,k.

3. Results

The two methods were applied to a number of meshes: The human
mesh in Figure 1 (SCAPE dataset, 10K vertices), Aquarius the Wa-
ter Carrier, (EPFL Computer Graphics and Geometry Laboratory,
100K vertices), and the classic teapot (6489 vertices). The experi-
ments were performed on an iMac with 3.4 GHz Intel core i7 and
8GB RAM using MATLAB/C++.

The times for calculating 10, 20, 30 and 40 modes on each mesh

for the two methods is given in Table 1. As it can be seen, the
ADMM method is reasonably competitive. However, it was dis-
covered that the IRLS method involves a very poorly conditioned
matrix and is not accurately solving an eigenvalue problem that is
part of the implementation. Hence, though the method has superior
speed it does not necessarily calculate the correct mode.

4. Conclusion

The ADMM is very easy to implement compared to the IRLS
method and for lower numbers of modes is competitive with re-
spect to speed. However, as the IRLS method involves a poorly
conditioned matrix it may not be correctly calculating the modes.

What is needed is a method to analyse the quality of modes pro-
duced by the various methods. This and an alternative IRLS method
are to be detailed in a paper in preparation.
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