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Abstract

In this paper, a new method to interpolate a sequence of ordered points with conic splines is presented. The degree
of continuity at joints of the resulting splines can reach G3 while the number of curvature extrema is reduced
to a minimum. The construction process is not based on parametrization, but basic geometric elements. A new
geometric concept called Chord-Tangent Ratio which is vital to determine the shape of conic splines is proposed.
The main idea of the construction is to merge the constraints of continuity into a function of tangent arguments and
Chord-Tangent Ratios, and construct an optimization function to eliminate the curvature extrema, then through
an iterative process, for the constraint function to reach its zero point and for the optimization function to reach
its minimum. Experiments show that splines constructed by the new method performs well not only in terms of
continuity, but also in smoothness.

1. Introduction

There are methods to parametrize conics into quadratic ra-
tional Bézier curves and join them together with C1 con-
tinuity [Fan02]. It has been proved that conic splines can
achieve low interpolation errors when the sample points are
taken from a smooth curve [Ann01]. Methods to reduce the
error in the sense of Hausdorff distance have also been de-
veloped [HwK09]. It has been proved that the conic splines
can achieve a higher order approximation with an error less
than O(h4) and a continuity degree of G2 [Flo95]. A method
based on deleting the vertices at joints and on the curves sep-
arately, then adjusting the tangents to maintain the the degree
of continuity is proposed [Yan04]. A more reliable and ro-
bust method to optimize conic splines is required for actual
cases. The new method has three advantages: (1) degree of
continuity is improved from G2 to G3, the highest possible
for conic splines. (2) vertices in the splines are eliminated
as many as possible, which brings a much fairer shape of
splines. (3) the algorithm is simple and robust, so it is easy
for application.
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2. Basic Concepts

Given ordered sample points P0,P1, . . . ,Pn, our goal is to
construct a conic spline between every two adjacent sam-
ples.

Definition 1 (Chord-Tangent-Ratio) Let t1 and t2 be two
tangents of conic c, l be the chord through the contact points,
P be an arbitrary point on curve c, m be a constant which
satisfies

m =
dP−t1 ·dP−t2

d2
P−l

,

where d(·, ·) expresses the distance from a point to a line.
We call m the Chord-Tangent Ratio of the section of c.

3. Constraints and Optimization functions

3.1. Constraints

We write the tangent argument at sample point Pi as θi,
and write the chord length, the chord argument, the Chord-
Tangent Ratio and the osculation angles of the ith conic ci
as li, mi, αi, βi respectively. The constrain conditions can be
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expressed by a function:

g(θ,m)

=∑(lnmi +2lnsin(θi−ϕi)− lnsin(ϕi−θi−1)− ln li

− lnmi+1 +2lnsin(ϕi+1−θi)− lnsin(θi+1−ϕi+1)

− ln li+1)
2 +∑

(
sin(θi−θi−1)

mi

sin(ϕi+1−θi)

sin(θi−ϕi−1)

+
sin(θi+1−θi)

mi+1

sin(θi−ϕi)

sin(ϕi+1−θi)
−2sin(ϕi+1−ϕi)

)2

.

(1)

This function is composed of two summations. The first im-
plies the continuity of curvature; and the second implies
the continuity of curvature change rate. This function is an
equivalent condition of G3 continuity about the splines.

3.2. Optimization function

The constraint of continuity cannot finally determine all the
elements to construct spline. The main goal to construct an
optimization function is reducing the vertices on splines. We
reinforce the requirement of spline without vertices into a
more rigorous form: The curvature radius change rates at ter-
minals are similar. The optimization function is constructed
as:

f (θ,m)=∑

(
mi−

1
2

(
sin(ϕi−θi−1)

sin(θi−ϕi)
+

sin(θi−ϕi)

sin(ϕi−θi−1)

))2

.

(2)

4. Solution of Constrained Optimization Problems

From the discussion above, the construction problem are
transformed into a conditional extremum problem. The com-
plete algorithm is shown as following:

1. Estimate the directions of tangents at every points.
2. Calculate the start value of arguments {θi} of tangents.
3. Calculate the arguments of the chords {ϕi} between ev-

ery two adjacent sample points.
4. Construct the start values of Chord-Tangent Ratios {mi}

of every splines.
5. Calculate partial derivatives of the constraint function to
{θi} and {mi}

6. Calculate partial derivatives of the optimization function
to {θi} and {mi}

7. Calculate the descent direction by

v =

(
∇g+

(
∇ f − (∇ f ·∇g)∇g

∇g ·∇g

))
.

8. Adjust {θi} and {mi} with the descent direction.
9. If more iterations are required, go to step 5.

10. Generate quadratic rational Bézire spline from tangents
and Chord-Tangent Ratios.

It is not difficult to find that both the time complexity and
space complexity of this algorithm are O(n).
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Figure 1: Letter "e" and "ϕ"
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Figure 2: Curvatures of Splines

5. Experiments

We depict the latin letter "e" and Greek letter "ϕ" with con-
ics(Figure 1). There are two groups of control points for ei-
ther of them. One depicts the inside the inner boundary while
the other depicts the outer boundary(Figure 1).

From the graphics, we can see conics(blue curve) de-
pict the curves in the letters better than Cubic Hermite
Splines(red curve).

The curvature plot(Figure 2) shows us the robustness of
conic splines. We can hardly identify the positions where the
control point lies. But irregular positions of control points
may cause Runge phenomenon on Hermite splines.
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