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Figure 1: Our improved neighbor algorithm can handle real time simulations of over 500K particles (left image, velocity color coded),
multiple fluid resolutions at once (middle image, support radius color coded), and large scale simulations with over 35 million particles
(right image, velocity color coded).

Abstract
In this paper we present a new approach to create neighbor lists with strict memory bounds for incompressible Smoothed
Particle Hydrodynamics (SPH) simulations. Our proposed approach is based on a novel efficient predictive-corrective algorithm
that locally adjusts particle support radii in order to yield neighborhoods of a user-defined maximum size. Due to the improved
estimation of the initial support radius, our algorithm is able to efficiently calculate neighborhoods in a single iteration in
almost any situation. We compare our neighbor list algorithm to previous approaches and show that our proposed approach
can handle larger particle numbers on a single GPU due to its strict guarantees and is able to simulate more particles in real
time due to its benefits in regard to performance. Additionally we demonstrate the versatility and stability of our approach in
several different scenarios, for example multi-scale simulations and with different kernel functions.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation I.6.8 [Simulation and Modeling ]: Types of Simulation—Parallel

1. Introduction

The Smoothed Particle Hydrodynamics (SPH) method plays an im-
portant role in scientific computing and computer animation. Due
to it’s nature as a Lagrangian simulation it offers high spatial flex-
ibility and support the simulation of incompressible fluids with
free surfaces and various physical properties. In SPH fluids are de-
scribed by unstructured particle data and local fluid quantities are
interpolated from a set of particles within a compact support radius.

As these particle pairings need to be checked for every interac-
tion it can be beneficial to store them in a neighbor list. Creating
these neighbor lists has traditionally been very expensive on GPUs
due to unbounded memory consumption and irregular access pat-

terns [IABT11]. But they can still be used on GPUs if they are
reused often in an iterative pressure solver [GEF15].

In this paper we introduce an efficient and versatile neighbor list
method for incompressible SPH fluids simulations on GPUs with
strict memory bounds and improved access patterns providing ben-
efits in performance in all situations. To achieve this we propose
a new formulation to locally adjust the particle support radius in
every time step instead of using a fixed support radius. In order
to guarantee our strict memory bounds we propose a predictive-
corrective algorithm that correctly reduces the support radius of
particles that violate the given bounds until they are correctly lim-
ited. Finally we propose a new structure to store the neighbor list in
that improves access patterns and speeds up the overall simulation.
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Using our proposed algorithms we are able to simulate larger
particle sets on a GPU and perform faster calculations when com-
paring it to previous approaches. Additionally we show how our
method is able to handle multiple fluid resolutions and dynamic
rigid boundaries.

2. Foundations and related work

Since the introduction by Gingold, Monaghan [GM77] and
Lucy [Luc77] in the field of astrophysics, SPH has spread into
many areas of research including, our area of interest, computer
graphics [MCG03]. First designed for the simulation of com-
pressible fluids, SPH has since been extended to support incom-
pressible fluids [MM13, ICS∗14, BK15], strong surface-tension ef-
fects [AAT13], two-way-interactions with rigid bodies [AIA∗12]
and many more effects. We refer the reader to the survey paper by
Ihmsen et al. for a general overview [IOS∗14].

In SPH, fluid quantities are evaluated by interpolating informa-
tion of neighboring particles. The interpolant of a quantity A of par-
ticle i at its position xi depends on the position x j, mass m j , density
ρ j and quantity A j of the neighboring particles j and is commonly
written as

A(xi) = ∑
j

A j
m j

ρ j
W (xi j,H), (1)

where xi j = ‖xi− x j‖ represents the distance between particles i
and j [Mon05]. W is a kernel function that weights particle quan-
tities based on xi j and the support radius H. Interactions only take
place if xi j is shorter than the support radius H leading to a compact
support radius. In practice, the dynamic particle volume mi

ρi
= Ṽi can

be replaced by Ṽi =
1
δi

, where δi = ∑ j W (xi j,H) is the particle den-
sity, in order to correctly handle density contrasts [SP08]. To sta-
bly handle free surfaces, Orthmann et al. presented another deriva-
tion based on the particle number density ni = ∑ j VjW (xi j,H) as
Ṽi =

Vi
ni

, where Vi =
mi
ρi,0

is the particle’s rest volume and ρi,0 its rest
density [OHB∗13].

The support radius either is uniform for all particles [IABT11,
AAT13,AIA∗12] or gets locally and dynamically adjusted for each
particle to increase the simulation stability [Mon05,DA12] or in or-
der to reduce the simulation time by only simulating at full particle
resolution in areas of interest [SG11, OK12]. A common approach
to calculate local support radii is given as

Hi = shη

(
mi

ρi

) 1
3

, (2)

where η is a configuration parameter set ideally somewhere be-
tween 1.2 and 1.3 [Mon05]. Note, we directly adjust the support
radius in Eq. 2 instead of the smoothing length hi [Mon05]. To be
more consistent, we will only use the support radius throughout
the text which is related to the smoothing length by the constant
smoothing scale sh = H

h and depends on the shape of the kernel
function [DA12]. In order to conserve quantities and momentum,
particle interactions have to be symmetric. Thus, varying support
radii are usually symmetrized as H =

Hi+Hj
2 [Mon92, OK12]. Lo-

cally and dynamically adapting the support radius also introduces
additional gradient H terms in each derivative. These additional

terms, however, have neglectable effect [HK89], thus, they are usu-
ally omitted [HK89, OK12]. Although locally adapting the support
radius is common practice, so far, no approach aimed at using it to
strictly limit the memory consumption of simulations.

Calculating and accessing particle neighborhoods are core prob-
lems of every SPH framework. To that end, the simulation do-
main is usually subdivided by uniform grids [HKK07,GS10,Gre10,
OK12] often in combination with spatial hashing [IABT11] or by
hierarchical data structures [HK89,Gon15] into which particles are
sorted. These data structures allow particles to be accessed based
on their physical location. Often cells are ordered by space fill-
ing curves and to increase cache efficiency particles are sorted
accordingly so that particles that are close neighbors in mem-
ory are also close neighbors in simulation space [GS10, IABT11,
DCGGM11]. During simulations each particle has to traverse all
possible neighbors in this data structure. Using hierarchical data
structures is rather costly and thus usually only applied for com-
pressible simulations with strongly varying support radii and gravi-
tational codes [HK89]. For incompressible flows, uniform cells are
commonly used with cell sizes of H3. Then for each particle 27
cells have to be searched for neighbors. However, still about 87%
of these potentially neighboring particles lie outside the particle’s
support radius and thus don’t interact [DA12].

To prevent these spurious particle pairings, neighbor lists can
be calculated which explicitly store all pairs of interacting parti-
cles [Ver67,DCGGM11]. Especially in incompressible simulations
using iterative solvers [ICS∗14, BK15], many particle interpola-
tions have to be performed in each time step. Computing a neigh-
bor list only once per time step instead of calculating all possi-
ble interactions for every interpolation strongly improves perfor-
mance [IABT11,GEF15]. Neighbor lists can either be processed in
two passes, a first pass to calculate the number of neighbors to allo-
cate enough memory and a second pass to actually find the neigh-
bors [VBC08], or by pre-allocating a fixed array with a maximum
number of neighbors per particle [DCGGM11].

The simulation of SPH-based fluids can be efficiently carried
out on GPUs using regular grids to subdivide the simulation do-
main [HKK07, Gre10, GS10, GEF15]. As hierarchical data struc-
tures and hashing involve irregular access patterns and cause thread
divergence, they are usually avoided. Due to the restricted amount
of memory, particle neighborhoods are often accessed by travers-
ing cells for each interpolation [HKK07, Gre10, GS10]. Explicitly
storing neighbor lists on the GPU [OK12, GEF15] can get very
memory-consuming and thus strongly limits the number of parti-
cles if the neighborhood size is unbounded. So far, no approach to
restrict the size of neighborhoods has been presented.

3. Variable support SPH

There is an ideal number of neighbors NH inherent to every ker-
nel function which depends on the shape of the kernel. For the
cubic spline kernel the ideal number of neighbors is given as
NH = 50 [DA12]. For our improved neighbor list algorithm we pro-
pose a formulation of the support distance that is derived based on
the ideal number of neighbors.

The support distance Hi and the number of neighbors NH are
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closely related as within a sphere of radius Hi only a certain number
of particles with their respective volumes Ṽi can be found. This

relation can be described as NH =
4
3 πH3

i

Ṽi
. Solving for Hi then yields

our proposed formulation to locally adjust the support radius as

Hi = Ṽi
1
3

(
NH
4
3 π

) 1
3

︸ ︷︷ ︸
shη

. (3)

That way, we determine η depending on the properties of the kernel
rather than by manually tweaking.

Our formulation for adapting the support radius is similar to the
commonly used one, see Eq. 2. However, we use the adaptive par-
ticle volume of Solenthaler [SP08]

Ṽi =
1

∑ j W (xi j,H)
(4)

instead of mi
ρi

. In contrast to our general volume estimate, according
to [OHB∗13], we chose this formulation for the support distance as
we are interested in the actual spatial distribution of the particles
and not a corrected distribution that takes into account the parti-
cle volume. If the particle volume is taken into account, our esti-
mate cannot adequately handle boundaries between particle resolu-
tions as in those cases the adaptive volume would not significantly
change due to its corrective effects. Equation 4 does not correct the
summation for the different particle volumes and causes the desired
change in the adaptive volume. For simulations of uniform particle
rest volumes both formulations lead to the exact same result.

The proposed formulation locally adapts in two ways to the cur-
rent simulation. On the one hand for surface particles without a full
neighborhood our formulation increases the support distance and
helps fill up the surface particle’s neighborhood which can increase
the SPH interpolation at the surface. On the other hand, for spatially
compressed particles, we reduce the support distance and hence re-
duce the number of neighbors to meet the desired maximum.

In the first time step of a simulation, we can only assume an
initial distribution where Ṽi = Vi as we cannot calculate the actual
estimate without having a support distance. As we can assume tem-
poral coherence of the particle neighborhood, we later use the sup-
port radius of the previous iteration to give better approximations
for Ṽi. To facilitate this we apply a linear interpolation of the newly
predicted support radius Hi using Eq. 3 and the support radius of
the previous timestep Hl

i as

Hl+1
i = Hl

i +ω

[
Hi−Hl

i

]
, (5)

where ω is the weight which we usually set as ω = 0.5. By exploit-
ing temporal coherence, we often find an estimate of the support
radius that directly yields the desired neighborhood size.

4. Constrained neighborhoods

Our proposed constrained neighborhood algorithm aims at effi-
ciently calculating particle neighborhoods of a fixed, user-defined
size. Using a fixed size allows giving strict bounds on the mem-
ory consumption and also allows us to calculate the neighbor list

in a single pass over the underlying particle access data structure
in most situations. Our algorithm works in an iterative way similar
to a prediction-correction method using a soft start by initializing
the support radius according to Sec. 3 and then predicting a neigh-
borhood using this support distance and correcting potential errors.
Note that the underlying data structure of our neighbor lists is an
array. We only use the term list to be consistent with literature.

While our initial support radius gives good estimates, it is not
able to guarantee neighbor limits as we always get a distribution of
neighborhood sizes above and below the desired number NH . Al-
though our algorithm is able to enforce a strict limit of NH neigh-
bors, in some scenarios it can be beneficial to allow each parti-
cle to store Nadd neighbors, so that in total each particle can have
N = NH +Nadd neighbors.

Fig. 2 shows a flow diagram of the proposed algorithm. In the it-
erative process we first try to create a neighbor list of fixed size (see
Sec. 4.1). While adding neighbors to the list, we store the support
radii of the farthest particles, i.e. the fringe, of the neighborhood in
a fringe buffer of limited size and if necessary, additional particles
are stored in an overflow buffer (see Sec. 4.2). If too many neigh-
bors are found, the support radius is reduced using the fringe buffer.
As neighboring support radii may also have been reduced, we try to
replace corresponding neighbors with neighbors from the overflow
list (see Sec. 4.3). Only if we run out of space in the overflow list,
or cannot reduce the support radius sufficiently in a single iteration
due to resource constraints, we have to do another iteration over
the particle access data structure. Due to the soft start and the over-
flow buffer, in most simulation time steps the neighborhood can be
calculated in a single iteration consisting of a single pass over the
underlying data structure.

4.1. Initial neighborhood list

First, we calculate a neighbor list of at most N elements for each
particle i using a single pass over the underlying data structure. The
fixed space of the neighbor list, however, may not be large enough
to directly contain all neighbors inside the support radius Hi.

In case, no particle finds more than N neighbors, we are done
and the predicted support radius of Sec. 3 is valid for all particles.
This corresponds to the green control flow in Fig. 2. In case any
particle finds more neighbors, the respective support radius has to
be decreased in order to reduce the number of neighbors and fit the
strict memory bounds. In the worst case, additional iterations of the
neighbor search have to be run.

4.2. Overflow lists and tracking the neighborhood fringe

In order to prevent additional iterations of the neighbor search, we
keep track of neighbors that initially do not fit into the neighbor
list. Therefore, we use an overflow list that is subdivided into fixed-
size partitions. In this list we can store a limited number of inidices
of additional neighbors that did not fit into the normal list without
correction. For each particle we can only grab one partition and, in
order to keep memory consumption low, the total number of parti-
tions is limited.

During the construction of the initial neighbor list, we already
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Figure 2: Flow chart of our proposed neighbor algorithm. Green
elements describe the path of the method that is always done. Yel-
low elements describe our added functions to handle the overflow
and to correct the support distance. If the error flag is set (red box),
our algorithm needs another iteration as it cannot accurately han-
dle all errors in this iteration.

keep track of the outermost neighbor particles j for each particle i
in the fringe of the neighborhood, i.e. the farthest particles from
i. To that end, we propose to use a fringe buffer that stores the
largest possible support radii Hi = 2xi j −Hj for particle i so that
the distance xi j to the neighboring particle j is just inside the sym-
metrized support Hi+Hj

2 = xi j . For each particle the fringe buffer
holds the same number of elements as a partition of the overflow
list, however, the fringe buffer is stored in shared memory in order
to allow for an efficient sorting of its elements. We only allow to
store unique values in the fringe buffer and only replace the cur-
rent minimum value if a value is found that is larger than the cur-
rent minimum. Although it only occurs very rarely, if two or more
elements had exactly the same value, the algorithm might not ter-
minate otherwise. We split the storage of distances and indices as
we need to sort the distances and replace values within the fringe
buffer but only add values to the overflow list, see Fig. 2.

If a particle i has found M neighbors with M > N, we have to
correct the support radius so that only N particles remain inside Hi.
In order to find the proper support radius, we use the fringe buffer
and sort it in descending order by distance. The (M−N)-th entry
in the fringe buffer is then used to directly set the support radius of

particle i as this is the support radius that particle i needs to have
in order to just contain the targeted neighbor number. Note that as
we only store unique values in the fringe buffer, it may rarely occur
that the support radius is slightly over-corrected.

4.3. Merging of initial neighborhood and overflow list

If a particle has used an overflow partition, its support radius has
been reduced in the previous step. As neighboring particles are
likely to have found too many neighbors, too, these possibly can
be removed from the neighborhood as well. Additionally, we want
to merge the entries in the overflow list with the normal list.

In order to remove these particles, we simply iterate over the
neighbor list to find particles that are now outside the support ra-
dius. These are replaced by particles from the overflow list that are
within the support distance. That way, we effectively merge the ini-
tial neighbor list with the overflow list. Only if particles remain
inside the support radius that do not fit into the neighbor list, we
have to run another iteration to further correct the support radius.

To keep this process efficient we only apply it to particles with an
overflow list and not for every particle in the simulation. Although
this causes some spurious particle interactions, the impact on the
simulation performance can be neglected due to the very limited
number of spurious interactions. As we use symmetrized support
radii in the SPH integration, particle interactions always remain
symmetric so that conservation of momentum is guaranteed.

4.4. Discussion

A basic approach to strictly limit the size of the neighborhood is
to use a constant support radius but only search up to N neighbors
for each particle and then stop. This, however, causes simulations
to get highly unstable because, on the one hand, the particle neigh-
borhood is no longer symmetric and, on the other hand, the kernel’s
normalization property is violated if particles are removed from the
neighborhood without properly adjusting the support radius.

In contrast, our proposed algorithm works by first predicting and
then iteratively correcting the support radius in order to reduce the
number of neighbors. As only the farthest particles of the neighbor-
hood get removed, no instabilities due to asymmetric interactions
occur and due to the fact that the support radius is properly ad-
justed, the normalization property of the kernel function is still sat-
isfied. The support radius is reduced iteratively using a value from
the fringe buffer. As the fringe buffer only contains unique values
that are smaller than the current support radius, the support radius
can only be reduced by our algorithm. Hence, the size of the neigh-
borhood will also be reduced in each iteration and the algorithm
terminates successfully.

5. Implementation details

5.1. Overflow lists

Although in most simulation scenarios only few particles find more
neighbors than the user-defined limit, this would always cause a
second iteration of the neighbor search. In order to prevent addi-
tional iterations, we store the overflow of the neighborhood lists in
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an additional buffer (see Sec. 4.2) and later try to merge entries with
the neighbor list. We set the size of this buffer so that each particle
can have one additional neighbor. Each partition of the buffer has
12 elements which corresponds to the size of the fringe buffer that
we only store in shared memory. We use a single counter in global
memory that points to the first free partition in the buffer. If a par-
ticle needs an overflow partition, we use the current counter value
as start address and increment the counter using an atomic-add op-
eration. If more overflow lists than available are requested, an error
flag is set and we have to start another iteration.

5.2. Constraining the initial support radius

In our implementation, we use a cell based particle access data
structure with uniform cell sizes. The cell size limits the support
radius that is allowed for a particle without clipping the neighbor-
hood. Initially, the cell length is set to fit a particle with no com-
pression (see Eq. 3) and we later limit support radii to this length.

5.3. Coalesced neighbor lists

One technical improvement, we propose, is the use of a coalesced
neighbor list. In traditional neighbor lists [OK12], every particle
stores its neighbors contiguously in memory. This is a very straight
forward implementation, however, on GPUs this approach does not
perform well due to non-coalesced loads and small cache sizes per
particle. In order to resolve this issue, we propose an optimized data
structure in which the classical neighbor list is stored in transposed
order. So we contiguously store the first neighbor of every particle
and then the second neighbor of every particle and so on. This op-
timization allows us to access the neighbor list in fully coalescing
loads without cache problems.

Note, this structure is only realistically possible if the length of
the neighbor list for each particle is strictly limited. Otherwise, the
size of the data structure would have to be adjusted to the parti-
cle with the most neighbors which would be highly restrictive to
simulating large particle numbers.

6. Results and discussion

In order to evaluate the runtime performance and memory con-
sumption and in order to show the versatility and stability of our
approach, we ran several test cases. To enforce fluid incompress-
ibility, we used IISPH [ICS∗14] and DFSPH [BK15] resulting in
an average compression rate of 0.5%. Dynamic rigid objects were
realized using particles [AIA∗12]. For static boundaries we used
distance fields [HKK07]. We used the model of Akinci [AAT13] to
simulate surface tension effects. Simulations were run on an Intel
i7-5930K with 16GB of host RAM and an Nvidia Geforce Titan
X with 12GB of device RAM. Fluid surfaces were rendered using
screen-space curvature smoothing [vdLGS09].

First, we present the capabilities of our approach in real-time
simulations. Then, we will give a comparison to previous neigh-
bor algorithms in terms of memory consumption and computa-
tional speed and present simulations of very large scale. In order
to demonstrate the stability of our method, we show complex sce-
narios of multi-scale simulations, rigid-fluid coupling and test the

Table 1: Performance characteristics of the Bunny scene for dif-
ferent neighbor algorithms. ‘Frametime’ gives the run time of a
simulation time step. ‘Corrected’ gives the number of particles for
which our algorithm adjusted the support radius. ‘Ratio’ gives the
time spent to calculate the neighbor list and sort the particles vs.
the total time. ‘Size’ is the neighbor list size in device memory.

Algorithm Frametime (ms) Corrected Ratio Size (MB)
Our approach N = NH = 50 527 51923 9.07% 475
Constant H, coalesced 596.39 - 8.40% 932.61
Two-pass [OK12] 1323.39 - 3.33% 699.457
Cell iteration [Gre10] 765.83 - 1.2% -

compatibility with different kernel functions. Finally in order to
demonstrate the scaling and performance of our method we test
our approach against previous approaches for a dambreak scenario
using various resolutions.

6.1. Real-time simulations

For real-time simulations, at least 30 frames have to be simulated
per second. With our improved algorithm we were able to run a
real-time simulation of a dam break scenario with over 500K parti-
cles using DFSPH and the poly6 kernel, see Fig. 1 (left). Using the
cubic spline kernel, still 240K particles were simulated in real-time.

6.2. Scaling and comparison to previous work

We compared our new method to three previous approaches by sim-
ulating a bunny that was sampled with fluid particles and dropping
it into a basin (see Fig. 3). The simulation ran with 2.4M particles
for 15s simulated time using IISPH with cubic spline kernel. Ta-
ble 1 gives the performance results averaged over all time steps.

Figure 3: A bunny is sampled with fluid particles and dropped into
a basin. Surfaces are rendered using curvature smoothing.

We ran our approach with N = 50 and outperformed all other
approaches in simulation speed and neighbor list based approaches
in memory consumption. The ‘Two-pass’ algorithm calculates the
neighbor list in two passes over the particle access data structure
and stores the exact number of neighbors for each particle contigu-
ously in memory [OK12]. In comparison, our algorithm reduced
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the memory consumption by 47%. Figure 4 shows the memory con-
sumption of the neighborhood sizes resulting from using constant
support radius and our adaptive support radius. Most particles in the
fluid volume have more than N neighbors using constant support.
Our method, however, is able to strictly enforce the desired number
of neighbors. The row ‘Cell iteration’ corresponds to the approach
in which the particles neighborhood is recomputed for every inter-
polation [Gre10]. It does not need any memory to store neighbor
lists but took over 45% longer than our proposed approach to simu-
late. The row ‘Constant H, coalesced’ gives the results for a neigh-
bor list approach with fixed size that uses our proposed coalesced
data structure. By strictly limiting the neighborhood size, we were
able to reduce the computation time significantly whilst consuming
less memory than previous neighborlist based approaches.

Figure 4: Comparison of the Bunny scene using constant support
radius and our method using N = 50. The number of neighbors is
color coded.

In order to evaluate the scaling of our method in comparison to
previous works, we simulated 15 seconds of a dambreak scenario
(see Fig. 10) using various particle resolutions yielding simulations
of 30K to 4M particles. We compared our algorithm using different
neighborhood sizes N = 50,55,60 with the naive neighbor list ap-
proach (Two-pass [OK12]), a cell based approach (Cell iteration),
and an approach using our proposed coalesced data structure with-
out constraints (Coalesced). Fig. 5 shows the average overall fram-
etime of the different approaches for different particle resolutions.
Our method was able to handle small and large simulations very
well and outperformed the previous approaches for all particle res-
olutions in terms of the overall frametime. This is due to the fact
that our method creates a lower average number of neighbors than
previous approaches, as shown in Fig. 6, so that the costly time
integration of the SPH equations is sped up considerably whilst us-
ing an efficient access structure. On average our approach found
about 10% less neighbors than methods using a constant support
radius for the cubic spline kernel, when using strict constraints of
N=50 neighbors, without negatively influencing the simulation be-
havior. The smaller N is chosen, the smaller the average number of
neighbors gets. Fig. 7 shows the ratio of the SPH integration and

Figure 5: Average time to simulate one frame (y-axis) for different
particle resolutions (x-axis) of our neighbor algorithm (N=50, 55,
60) and previous works.

Figure 6: Average number of neighbors per particle (y-axis) for
different particle resolutions (x-axis) of our neighbor algorithm
(N=50, 55, 60) and previous works. Note that Two-pass, Cell iter-
ation and Coalesced do not adjust support radii and thus all yield
the same number of neighbors.

the overall frametime, the remaining time is spent for the neighbor-
hood algorithm. With our approach relatively more time is spent for
finding neighboring particles than for the integration. Although our
method introduces a larger computational overhead over previous
approaches, it yields smaller neighborhood sizes and hence consid-
erably reduces the time spent for the time integration and is able to
speed up the overall simulation time.

6.3. Large scale simulations

One of the main benefits of the proposed approach is that more
particles than with previous neighbor list approaches fit into mem-
ory. A large scale scenario with up to 35M particles in which a
stream of water is perturbed by two pillars could be simulated, see
Fig. 1 (right). The simulation took 3.5 s per simulation step and
the neighbor list consumed a total of 2240MB with a strict limit of
N =NH = 15 neighbors using IISPH and the poly6 kernel. The only
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Figure 7: Ratio of the time spent in the integration part of the sim-
ulation step over the overall simulation frametime (y-axis) for dif-
ferent particle resolutions (x-axis).

other method able to simulate 35M particles was the cell iteration.
However, it took about 6.8s to simulate a time step.

6.4. Stability and versatility of our approach

Without additional adjustments, our method was able to stably
simulate multi-scale scenarios with volume ratios of 1:8 using
Nadd = 25 additional neighbors (see Fig. 8). We were also able to
handle volume differences with a ratio of 1:2 without additional
neighbors required. We also tried to run simulations in which we

Figure 8: A spherical drop of particles with r = 0.5m drips into
a fluid volume with r = 1.0m. We set N = NH + 25 to handle the
boundary between particle resolutions. For an unbounded neighbor
list we set N = NH +150. The number of neighbors is color coded.

stopped adding neighbors to the neighbor list after N = NH neigh-
bors had been found. This however caused severe instabilities due
to asymmetric interactions. We thus omit to show these simulations.

Additionally, our method works with two-way rigid-fluid cou-
pling (see Fig. 9) where the fluid particles are directly influenced
by dynamic rigid particles.

Figure 9: A mixer is filled with 1.3M particles. The spinning ro-
tor is simulated using dynamic rigid particles. The neighborhood
size was set to N = NH. Surfaces were rendered using curvature
smoothing.

During our experiments, we also evaluated the effect of differ-
ent Nadd for single-scale simulations using the cubic spline kernel.
It showed that only in combination with multi-scale simulations
additional neighbors were necessary to achieve stable simulations.
Both for run time performance and memory consumption, Nadd = 0
yielded the best results.

Figure 10: Dam break scenario with 500K particles. Surfaces are
rendered using curvature smoothing.
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Although for interactive simulations poly6 or cubic spline ker-
nels are usually employed, more stable kernels are commonly used
in scientific computing [DA12]. We were able to stably simulate
the Dam Break scenario of Fig 10 using seven different kernel
functions (poly6, cubic spline, quartic spline, quintic spline, Wend-
land2, Wendland4, Wendland6) and set N = NH to their respective
ideal neighborhood size [DA12].

When using variable support radii, both the particle positions and
support radii are time-dependent. Although, in general, this has an
influence on the derivation of time-derivatives, we omitted to take
derivatives of Hi into account as their effects have been shown to
be neglibile [HK89] and we did not observe any issues concerning
simulation stability by ignoring these terms.

7. Conclusions

In this paper, we presented a novel algorithm to efficiently cal-
culate memory-constrained neighbor lists for SPH-based particle
simulations. The approach works by iteratively adapting each par-
ticle’s support radius so that a user-defined maximum number of
neighbors is never exceeded. The algorithm works iteratively in
a predictive-corrective way, where the proposed initial prediction
is based on the current simulation state. In order to improve per-
formance, an optimized data structure for neighbor lists has been
proposed that allows for fully coalesced memory reads on GPUs.

Due to the restricted neighborhood size, both performance and
memory consumption can be considerably improved compared to
previous approaches. We are able to stably simulate incompress-
ible fluids including two-way fluid-rigid coupling and multi-scale
simulations. Due to our highly efficient method, over 500K parti-
cles could be simulated in real-time and, due to the strictly limited
memory consumption, up to 35M particles could be simulated on a
single consumer GPU.
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