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Abstract

We apply the alternating direction method of multipliers (ADMM) optimization algorithm to implicit time integration of elastic
bodies, and show that the resulting method closely relates to the recently proposed projective dynamics algorithm. However,
as ADMM is a general-purpose optimization algorithm applicable to a broad range of objective functions, it permits the use
of nonlinear constitutive models and hard constraints while retaining the speed, parallelizability, and robustness of projective
dynamics. We demonstrate these benefits on several examples that include cloth, collisions, and volumetric deformable bodies

with nonlinear elasticity.

1. Introduction

Animating realistic deformable objects at interactive rates has been
a long-standing goal of computer graphics research. To achieve
truly realistic behavior, simulation techniques must be able to sup-
port the complex, nonlinear deformation behavior of real materials.
Soft materials such as cloth, rubber, and biological soft tissue ex-
hibit significantly nonlinear elastic behavior, and much work has
gone into acquiring their constitutive properties for use in computer
graphics [BBO*09, WOR11,MBT*12]. However, general nonlin-
ear materials are difficult to simulate robustly in real time. Recent
algorithms for real-time simulation, such as position-based dynam-
ics [MHHRO7,BMO™* 14] and projective dynamics [BML*14] are
fast, parallel, and robust, but only support a restricted subset of
elastic models, namely those that can be expressed as a combination
of soft constraints.

In this work, we apply the alternating direction method of mul-
tipliers (ADMM) optimization algorithm [BPC*11] to the time
integration of nonlinear elastic forces, and derive a novel simulation
algorithm. Our method generalizes projective dynamics to arbitrary
conservative forces, including nonlinear elasticity and hard con-
straints, while retaining its speed, parallelizability, and robustness
(see Figure 1). Our ADMM-based implicit integration algorithm has
the following attractive properties:

e it is a generic method that supports arbitrary conservative forces,

e it is highly parallelizable,

e it is robust to large time steps and nonsmooth energies, and

e in the special case of linear forces, it is identical to projective
dynamics.
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Figure 1: A neo-Hookean armadillo with 2.8k tetrahedra simulated
interactively at 15 fps using our method.

2. Related work

Nonlinear constitutive models:  Soft materials of interest in
graphics, like cloth, rubber, muscle, and skin, exhibit a strongly
nonlinear elastic response when undergoing large deformations.
Much previous work in graphics has focused on acquiring nonlin-
ear constitutive models of volumetric soft tissue [BBO*09] and
cloth [WOR11, MBT*12] from observed data; their results show
that nonlinearity leads to visually more realistic behavior than linear
elastic models. Furthermore, Xu et al. [XSZB15] recently showed
that allowing artists to directly specify the nonlinear elastic response
of a simulated material enables desirable animation effects to be
achieved.

Parallel time integration: Implicit time integration techniques
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such as the backward Euler method have long been popular in
physics-based animation [TPBF87, BW98] due to their robustness
and unconditional stability. However, their principal drawback is
that they require solving a large system of nonlinear equations. Even
a single Newton iteration is often too expensive for real-time use,
while cheaper methods like Gauss-Seidel or Jacobi iterations can be
extremely slow to converge to acceptable accuracy.

Recent years have seen the development of a number of fast
and parallel techniques for performing implicit integration. These
techniques employ the optimization form of backward Euler integra-
tion [KYT*06,MTGG11,GSS™15], and perform the optimization by
alternating between local and global steps. Liu et al. [LBOK13] pro-
posed a block coordinate descent approach for mass-spring systems.
The projective dynamics algorithm of Bouaziz et al. [BML*14]
generalized this approach beyond springs to finite element models
and other forms of constrained dynamics. This approach is closely
related to the Shape-Up algorithm [BDS*12] for geometry manipu-
lation using shape constraints. However, both aforementioned inte-
gration techniques [LBOK13,BML" 14] assume a simplified elastic
model, in which the force is always proportional to the distance
from a constraint manifold.

Another related method is the position-based dynamics approach
[MHHRO07,BMO*14], which models all forces as hard constraints
and solves them using Gauss-Seidel iterations. Recently, Wang
[Wan15] proposed the use of the Chebyshev semi-iterative tech-
nique to accelerate the convergence of both projective dynamics and
position-based dynamics. Their technique is orthogonal to our work,
and could potentially be applied to our algorithm as well.

Concurrently to our work, Liu et al. [LBK16] also generalize
projective dynamics to nonlinear materials by interpreting it as
a quasi-Newton optimization algorithm. They further accelerate
convergence using the L-BFGS method [NWO06].

Primal-dual algorithms for optimization: In the convex opti-
mization literature, primal-dual methods [EZC10, OV 14] such as
ADMM [BPC*11] and PDHG [ZCO08] have been growing in pop-
ularity. Such methods rely on decomposing the objective function
into two terms and perform alternating optimization steps on each
in turn. This is particularly useful if the two terms have simple but
incompatible structures, so that efficient optimization routines can
be implemented for each but not for their sum.

Such algorithms have begun to find use in graphics as well. In
their fluid tracking algorithm, Gregson et al. [GITH14] used ADMM
to impose a divergence-free constraint onto a velocity estimation
problem. ADMM is a highly parallelizable variant of the method of
multipliers, or the augmented Lagrangian method, which has previ-
ously been applied to strain limiting in cloth simulation [NSO12].
Another primal-dual algorithm known as PDHG was used by Narain
et al. [NAB*15] to optimize the reproduction of defocus cues on
3D displays. However, to our knowledge, the connection between
primal-dual optimization algorithms and recent techniques for paral-
lel implicit integration has not yet been observed.

3. Implicit integration using ADMM

We consider a physical system with positions x € R?, velocities
\AS ]Rd, and inertia matrix M. The forces acting on the system

can be separated into conservative forces f = —VU(x) induced
by a potential energy U (x), and other potentially non-conservative
external forces fext. We will perform backward Euler integration on
the conservative forces f and treat the other forces fex; (including
gravity) explicitly. In the minimization form of backward Euler time
integration [MTGG11,GSS*15], the state of the system x at the next
time step ¢ + At is given by

2
x(t+Ar) = argmin(L2 HM1/2 (x—X(t+Ar)) H + U(x)) )
X 2At
M

x(t 4+ Ar) —x(z)
- 2

Al ; @
where X(t + Ar) = X(1) + v(t)Af + M~ fexiAr? is the predicted state
at t + At in the absence of the conservative forces. To simplify the
notation, from here on we will write x(# + Ar) and X(¢ + Az) simply
as x and X.

v(t+Ar) =

Typically, U is the sum of many different energy terms, each of
which affect only a small subset of nodes. Following the projective
dynamics approach [BML*14], we define for each energy term a
“reduction matrix” D; such that the energy only depends on a small
vector of local coordinates D;x. Then we have

m

U(x) = Y Ui(Dx), 3)
i=1

where the function U; maps the local coordinates to the correspond-
ing energy. For example, for a spring of length ¢ and stiffness k
between nodes a and b, we could choose D; so that D;x = [x), — X4,
and define U;(D;x) = %k(HDixH —0)2. For convenience, we con-
catenate all the local coordinates into a single vector, and define the
function

DIX
D2X m
Us . =Y Ui(Dx), )
. i=1
D, x

p!]".

Thus, our key task is to solve the optimization problem

so that U (x) = U (Dx) where D= [D] DJ

1
5 IMY2(x = %) P+ U (D). 5)

min
X

3.1. ADMM

The alternating direction method of multipliers [BPC*11] is a
method for solving optimization problems of the form

min f(x) +¢(z)
st. Ax+Bz=c. (6)

The algorithm works by introducing a (scaled) dual variable u and
iterating the following update rules:

X" :argmin(f(x)—i—gHAX—}—an—c—i—u"||2)7 )
X

7 = argmin(g(z) + % |AX" + Bz — c—O—u”Hz)7 ®
z

lln+l —u'+ (Axn+l +an+l _ C) )
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for some step length parameter p > 0. Here superscripts on the
variables denote the iteration number. When f and g are convex,
ADMM is known to converge to the optimal solution for any p > 0
under very mild assumptions [BPC*11]. While the energy functions
U; used in physics-based animation are typically not convex, ADMM
has in practice also been observed to perform well on nonconvex
problems; we refer the reader to [BPC* 11, Sec. 9] and references
in [HLR15] for more details.

Our problem (5) is of the form (6) if we set

10 = S IM x5 (10)
¢(2) = Us(2), (n
A =WD, (12)
B=-W, (13)
c=0, (14)

for any invertible matrix W. Thus the constraint is W(Dx —z) =
0, with W acting as a weighting parameter that does not change
the solution but can be used to improve the convergence rate (see
Section 5). To remain compatible with the separability of U, we
will take W to be block diagonal, with blocks W; the same size as
the corresponding z;. In practice, it is convenient to use blocks of
the form W; = w;I, and we will assume the same in the remainder
of the paper.

After introducing @ = W lu, the ADMM update rules (7)-(9)
applied to (10)—(14) become

X" = (M+par’D"W'wWD) ™!
(M5+ pAPD W W &) 1%
S argmin<U*(z) " g||W(DXn+l _z—|—ﬁ”)”2>7 (16)

As p can be absorbed into W via W «— | /pW, we will omit it from
here on.

As the algorithm proceeds, x" and z" converge to the optimal
solution x* and the corresponding local coordinates z* = Dx* re-
spectively. To understand the role of @", we observe that if U is
smooth, differentiating (16) yields

VU (") =W'w@" +Dx" ! — 2" (18)
=W wa"t! (19)
Thus @ encodes a (weighted) running estimate of all the forces in

the system. To be precise, at convergence the net force is nothing
but

—VU(x*) = -D' VU, (z") (20)
= -D'W'wi*. 1)

For interactive applications, using a small fixed number of it-
erations is generally sufficient. If it is necessary to measure the
progress towards convergence, one can use the primal and dual
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Algorithm 1 The ADMM algorithm for implicit time integration.

1: Initializex =X andu =10

2: loop

3: for all energy terms i in parallel do
4 Compute D;x +u;

5 Update z; using (24)

6: Update u; using (25)

7 end for

8 Update x using (15)

9: end loop

residuals [BPC*11],
rn+1 _ W(Dxn+1 _ zn+1 )’ (22)
Sn+l _ DTWTW(ZV!+1 _ Z"), (23)

terminating when both ||r"|| and ||s"|| are sufficiently small.

3.2. Implementation

In this section we provide some notes on our implementation, and
highlight the conceptual simplicity and parallelizability of our algo-
rithm.

In the x-update (15), the matrix M+ A?DTWT WD has the same
structure as the global matrix used in projective dynamics. In partic-
ular, it is constant, symmetric, and positive definite. We precompute
and store its Cholesky factorization, rendering the global step ex-
tremely fast.

The separable structure of Ux and W makes the z- and @i-updates
trivially parallelizable. The dual variable 1 is of the same size as z
and can be decomposed into subvectors @i; corresponding to each z;.
Then the z- and @i-updates for each energy term can be performed
independently:

. 1 u
szl _ argm1n<Ui(z,-) + EHWi(DiX"“ _zi+u?)||2>, 24)

Zi

't =a D" - (25)

To apply our algorithm to a specific simulation problem, the main
task is to implement a solver for (24) for each energy term U; in the
simulation. When W; = w;1 is a multiple of the identity, (24) can be
interpreted as a proximal operator [PB14] for U;, and intuitively it
amounts to minimizing U; subject to a quadratic penalty for moving
away from D;x"*! 4@, While this is still a nonlinear optimization
problem that does not in general have a closed-form solution, for
typical energy terms it is very low-dimensional and therefore fea-
sible to solve numerically or using precomputation. In Section 4.1,
we show how an existing projective dynamics implementation can
easily be adapted to perform the z-update in our algorithm. For more
complex energies that do not fit into the projective dynamics frame-
work, we have found a few (< 10) iterations of L-BFGS [NW06] to
be sufficient.

The entire procedure for implicit integration using ADMM is
summarized in Algorithm 1. Note that as the algorithm proceeds by
alternating between global and local steps, we can list them in either
order without substantially changing the algorithm. In practice, it is



24 R. Narain, M. Overby, & G.E. Brown/ADMM D Projective Dynamics: Fast Simulation of General Constitutive Models

preferable to perform the local step first, as that is where the forces
are computed.

4. Applications and results

In this section, we describe some applications of our ADMM-based
algorithms to specific energy functions, including both the sim-
plified energies of the form used in projective dynamics, general
constitutive models applied to finite elements, and hard constraints.

4.1. Projective dynamics as a special case of ADMM

Projective dynamics solves the optimization problem (5) under the
assumption that the energy terms are of the form

Kk
Ui(Dix) = min 5’ |Dix — pil|? (26)

for some constraint manifolds C; and stiffnesses k;. Thus they act as
soft constraints or penalty forces pulling the system towards satis-
fying the constraints. The projective dynamics algorithm consists
of alternating between a local step (performed in parallel for each
energy term),

pi < proj, (Dix), 27
and a global step,

i=1 i=

—1
m m

X (M +ar Yy kiDiTDi> <Mf< +ary k,-D,Tpi> 28)
i i=1

- (M + AtzDTKD> - <Mi n AIZDTKp> . 9)

where proj¢, gives the nearest point on C;, and K is the matrix with
diagonal blocks k;I of the appropriate size. The user is required to
implement the projection step proje, for the constraint manifolds of
interest.

In Appendix A, we show that this algorithm is nearly identical
to a special case of the ADMM algorithm applied to (26), with
w; = v/k;. In fact, it is exactly identical if the constraint manifolds
C; are affine, for example in linear (non-corotated) elasticity.

For general constraint manifolds, a similar argument to that in
Appendix A reduces our z-step to

p/ " = proje, (Dx" ! +a}), (30)

gt ki (D )
! ki +Wl-2

) (3D

while the other steps remain the same. Thus any energy terms from
a projective dynamics implementation can be readily incorporated
into our algorithm.

As further validation, in Figure 2 we compare the convergence of
projective dynamics, ADMM, and L-BFGS on a simple nonlinear
problem, namely a corotated linear elastic material with a twisted
initial condition. For projective dynamics, we used the implementa-
tion in the ShapeOp library [DDB*15]. While our proof does not
apply to this problem because of the presence of rotations, we can
see that with the choice w; = v/k; ADMM and projective dynamics
take nearly the same steps towards convergence (the difference in

10°Q
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Figure 2: Convergence of projective dynamics, ADMM, and L-
BFGS in the presence of rotations. A deformed box partially untwists
over a time step of At = 0.04s. On the y-axis we plot relative er-
ror (g(x") — S(x*))/(s(xo) —&(x")), where €(x) = f(x) + g(Dx),
and €(x*) is the objective value after 1000 L-BFGS iterations. For
L-BFGS, we used a history window of size 10.

run time is likely an artifact of implementation details). Interestingly,
with a lower weight w; = %\/E , ADMM turns out to converge faster
than projective dynamics; we discuss this further in Sec. 5. The L-
BFGS method applied directly to the original problem (5) is slower
to converge than both projective dynamics and ADMM in terms of
computation time, because each iteration is more expensive.

4.2. Other elastic models

In our algorithm, any conservative force acting on the system is
specified by two things: the reduction matrix D;, and the local energy
function Uj(z;). Here we give examples for some common forces
and constraints.

Finite elements and nonlinear elasticity: For a tetrahedron,
we assume a rest shape with vertex positions Xg, X, X¢, Xy in
reference space, and an associated reference shape matrix B =
Xp—Xa Xc—Xu X;—X4]. Its deformed configuration is
characterized by the deformation gradient,

F:[xb—xa Xc — Xg xd—Xa}B_], (32)

which is a 3 X 3 matrix. We define D; to be the matrix mapping x
to vec(F), the 9-dimensional vector that contains the columns of
F. We do the same for triangles, except that X4, Xj, X lie in a 2D

(© 2016 The Author(s)
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Figure 3: A low-stiffness Saint Venant—Kirchhoff bunny recovers
from having its vertices (top) collapsed to a point, or (bottom)
randomized.

reference space, and so the deformation gradient is a 3 X 2 matrix
and D;x lies in RS.

Any hyperelastic constitutive model can be specified as a strain
energy density function W(F), so that the elastic energy of a tetrahe-
dron of volume V; = %detB is

Ui(z;) = V;¥(reshapes  5(z;)). (33)

For a given constitutive model, one needs to implement a single
function

- . k ~
proxy(F. k) = argmin (W(F) + Z|F—F|F).  G4)
F

after which the z-step for a tetrahedron of any shape can be per-
formed as follows:

F/! = reshapes 5 (Dix" ™! +af) (35)
F = proxy (F) 1 wi/Vi) (36)
2 = vec(FHH). 37)

The formulation for triangle strains is analogous.

For isotropic materials, whose strain energy depends only on the
singular values of F, it is sufficient to apply the proximal operator
to the singular values alone while preserving the singular vectors.
This reduces the problem to a 3-dimensional optimization problem.
To handle inverted tetrahedra, we use the IFE convention for the sin-
gular value decomposition [ITF04, SHST12], and constrain proxy
to only return nonnegative singular values. Figure 3 demonstrates
the robustness of our approach.

Hard constraints: In Section 4.1 we have shown how simple
elastic models that act as soft constraints can be incorporated in our
algorithm. We can also model hard constraints that the system is not
permitted to violate, by setting U = oo for invalid configurations.
Given a set S of allowed values of D;x, we simply add an energy
term equal to the characteristic function of S,

{0 ifz; € S,

Ui(z) = (38)

oo otherwise.

In this case, the z-step simply amounts to a projection to the nearest
configuration on S,

2 = projg(Dix" ! +al). (39)

We note that while all the z; are always projected to the constraint
set, the full system state x may not exactly satisfy the constraints
before convergence.

(© 2016 The Author(s)
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Figure 4: Strain limiting for cloth using (left) our algorithm, and
(right) projective dynamics. Projective dynamics only models soft
constraints, and therefore cannot enforce the strain limits in the
presence of large forces such as high winds.
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Figure 5: An elastic horse is dropped through a series of cylinders,
demonstrating collision handling.

Rigid rods (and inextensible ropes) can easily be modeled with
this approach, where the projection becomes normalization of the
vector to exactly (or at most) the desired length. In Figure 4, we
show a more complex example: a cloth flag with strain limits applied
to each triangle. For cloth it is appropriate to limit strain primarily
in the horizontal and vertical directions, which we do by projecting
the columns of the deformation gradient F so their lengths lie in
[0.95,1.05]. Isotropic strain limiting can be applied by projecting
the singular values of F instead.

Collisions:  Collisions with static obstacles can be handled in
exactly the same way as hard constraints. We add a single non-
penetration energy Unp to the system, which is infinite if any vertex
is inside any obstacle. Thus Dyp = I, and the z-step simply projects
each vertex to the nearest non-penetrating location. Unlike the pro-
jective dynamics approach, the system matrix used in the global
x-step does not need to change when collisions occur. An example
of an elastic body experiencing collisions with static obstacles is
shown in Figure 5.

4.3. Performance

We tested the performance of our unoptimized implementation on a
3.5GHz Intel Xeon E5-1650 with 6 cores and hyperthreading. The
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Local Global Time per

Example #nodes #elems #iters | step (ms) step (ms) | frame (ms)
Armadillo (Fig. 1) 919 2761 7 7.9 0.45 64
Bunny (Fig. 3) 777 2510 10 4.3 0.41 47
Flag (Fig. 4) 1251 2400 20 0.85 0.58 30
Horse (Fig. 5) 962 3221 13 0.96 0.54 19
Untwist (Fig. 2) — low res, linear 367 1562 20 0.57 0.26 16

— medium res, linear 868 4170 20 1.5 0.81 47

— high res, linear 1727 9031 20 34 1.9 107

— high res, neo-Hookean 1727 9031 20 29 2.0 633

Table 1: Run-time performance numbers for our examples. Each example iterates over a time step of 40 ms except Fig. 1, which has a time
step of 80 ms. The times listed for local and global steps are per iteration.

log Error

100 200 300 400 500
Iterations

Figure 6: Convergence of the untwisting box example from Figure 2,
using ADMM with different values of w;. Reducing w; can improve
the convergence rate, but if it is too low, ADMM may fail to converge.

local step was parallelized with OpenMP, and the global step was
solved using a precomputed sparse Cholesky factorization of the
system matrix. Run-time performance numbers of all our examples
are presented in Table 1. Figures 1, 3, and 5 were rendered with one
iteration of Loop subdivision.

As the “Untwist” example shows, the cost of the local step is
linear in the number of elements, while that of the global step is
slightly superlinear due to the prefactored linear solve. It can also be
seen that the local step becomes more expensive when using general
nonlinear materials, such as the neo-Hookean model, than when
using the simpler projective dynamics model. This is mainly due
to the cost of computing the proximal operator (34). Nevertheless,
as the local step is fully parallel, its performance will improve
directly with greater hardware parallelism. Another simple avenue
for acceleration would be to precompute the proximal operator into
a lookup table for use at runtime.

5. Discussion and future work

One limitation of our approach is that while the algorithm converges
for a broad range of choices of the weights w;, in practice the rate
of convergence can depend significantly on the choice of w;. For
energy terms of the form (26), choosing w,~2 = k; gives convergence
nearly identical to that of projective dynamics. For more general

energies, we have similarly observed reliable convergence when w,~2

is close to the effective stiffness of the energy, that is, when both
terms in the z-step (24) have similar curvature. Figure 6 shows that
reducing w; can in fact lead to much faster convergence, but if the
weight is extremely small the method can fail to converge because
the nonconvexity of the problem becomes too severe. Determining
the choice of w; for reliably fast convergence is a question we hope
to address in future work.

It is known that for convex, potentially nonsmooth functions,
ADMM has an O(1/n) convergence rate [WB13]. Recently work
in optimization has proposed variations on ADMM that have faster
convergence rates [GMS12, GOSB14,KCSB15]. Our work opens
up the possibility of exploiting these and future advances in opti-
mization to speed up physics-based animation. In the future we also
hope to explore applications of Chebyshev acceleration [Wan15] to
our algorithm.

An important application of nonlinear constitutive models is the
use of data-driven materials acquired from real objects. Unfortu-
nately, existing techniques [BBO*09, WOR 11, MBT*12] represent
the acquired material as a stress-strain response function, which
may not necessarily correspond to a hyperelastic (conservative) ma-
terial. Finding a hyperelastic model whose stress-strain response
best fits the acquired data would allow such materials to be used in
optimization-based integration techniques such as ours.

Non-conservative forces such as friction and damping are not
yet supported in our implicit integration method. Rayleigh damping
may be incorporated using the lagged approach proposed by Gast et
al. [GSS™15], which expresses each damping force as an additional
term in the objective function. Friction and other non-conservative
forces are more challenging, and we plan to address them in future
work. One potential approach may be to interpret the local step (24)
as the task of finding the equilibrium of the force —V U; plus a spring
connecting z; to D;x 4 0;. This task can equally well be performed
for non-conservative forces, although we may lose the convergence
and robustness guarantees of optimization-based integration.

6. Conclusion

We have shown how ADMM, a simple, versatile, and scalable
optimization algorithm, can be fruitfully applied to time integra-
tion for physics-based animation. The resulting algorithm reduces

(© 2016 The Author(s)
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to a method nearly identical to projective dynamics for simple
energy functions, and generalizes to realistic nonlinear energies
while retaining its parallelizability and robustness. We have de-
scribed how arbitrary constitutive models can be incorporated in
our approach without modification, requiring only the solution of
a small 3-dimensional (for isotropic materials) or 9-dimensional
(for anisotropic materials) optimization problem for each element.
This makes our method an effective technique for highly parallel
simulation of realistic deformable objects.
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Appendix A: Proof that projective dynamics ~ ADMM
We will apply ADMM to the projective dynamics energy (26)

ki 2
Ui(z;) = —|lzi — pil|”- 40
i(2i) ;,nEHCI, ) [|z; — pi | (40)
In our formulation of ADMM, we have one parameter W. We define
Wvia W; = kI = /w;], so that W!'W = K. Then the energy can
be conveniently expressed in terms of a single constraint manifold,

C=C; xCy X+ XChm:

i L VK (o —
U*(Z)f;nelgz(z p) K(z—p) (41)

_o 1 o2

—{)nelgzllw(z pll° 42)

Now the z-update of ADMM, i.e. (16) with p = 1, becomes

1
! :argmin(U*(z)—i—EHW(DX'H'l —z+ﬁ")\|2> (43)
z

—argmin(min 3 Wiz )+ 3 IWay)|*) 4

where y = Dx" ! +@". Consider the underlying minimization
1 2 1 2
~||W(z— —||W(z— . 45
min, 3 [W(z—p)|*+ 5[ W(z—y)| (43)

For any fixed p € C, the minimum is attained at z = % (p+y)and

its value is %HW(p —y)||*. Therefore, the optimal p must mini-

mize |[W(p — y)||>. For our choice of W and C this amounts to
minimizing w;||p; — y;||° independently for each i, that is, choosing
Pi = Projc, ¥i = proje, (Dix"! +@"). So in fact we have

pn+l _ PFOjC (Dxn+1 + l_ln), (46)

1
Zn+1 _ E (pn+l +Dxn+1 +l_ln> ) (47)

Armed with (46)—(47), we will now eliminate z from the ADMM
update rules in favour of p. The u-update becomes

l_ln+l :ﬁn+DXn+l _Zn+l (48)
— i +DX"+1 - % <pn+1 +Dxn+1 +l_ln> (49)

_ % (Dxn+1 +l_ln _ pn+1) ] (50)
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Conveniently, this also means that after the @i-update,

S gt L (pn+l Dy +un) 1 <Dxn+1 e 7pn+1>
2 2

(51

:pn+1. (52)

The x-update is now
—1
= (M n AzzDTWTWD> (Mi +APD W W (2" — ﬁ”))
(53)
—1
_ (M n AtZDTWTWD) <Mi n AtZDTWTWp”) 7
(54)

exactly like the x-update in projective dynamics. Instead of the
z-update we have

p""! = proje (Dx"" +-a") (55)

= p:“'l = proje, (D,-X”+l +1f), (56)

which is almost exactly like the p-update in projective dynamics,
except for the presence of the dual variables @;. Finally, the u-update
remains

l_ln+1 _ % (Danrl T+t 7pn+1) (57
1
— =2 (Dix”H T —p;’“> (58)

which has no counterpart in projective dynamics.

So far we have seen that for a general constraint manifolds C;,
projective dynamics and ADMM are extremely similar, with the
only difference being the presence of the ©; variables and their
corresponding update rules. In the special case when the constraints
are linear, that is, the manifolds C; are affine, we will show that the
two algorithms become identical.

Let C; be an affine subspace with normal space N;. Then the
projection operator proj, has the properties that

z; — projc,_ z; € N;, (59)
Vn € N; : projc, (z; +n) = projc, z;. (60)
We can see that
_ 1 _
o = 2 (D - i) ©1)
1 _ . _
=5 (" al) —proje(Dx" ! +a))  (©2)
€N, (63)
and so
P = proje, (D" +uf) (©64)
= proj¢, Dix"*! (65)

as long as u? € N; (for example, if we initialize u? =0).

This proves the equivalence of projective dynamics and ADMM
for linear constraints. Furthermore, nonlinear constraints that are
smooth can be well approximated by a linearization in the neigh-
bourhood of the solution, so both algorithms should behave similarly
as they approach convergence.
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