Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2014)
Vladlen Koltun and Eftychios Sifakis (Editors)

Camera Motion Graphs

C. Sanokhol, C. Desochel, B. Merabtil”z, T-Y Li > and M. Christie!

RISA, University of Rennes 1, France
2 Algiers Polytechnic School, Algeria

3National Chengchi University, Taiwan

Abstract

This paper presents Camera Motion Graphs, a technique to easily and efficiently generate cinematographic se-
quences in real-time dynamic 3D environments. A camera motion graph consists of (i) pieces of original camera
trajectories attached to one or multiple targets, (ii) generated continuous transitions between camera trajectories
and (iii) transitions representing cuts between camera trajectories. Pieces of original camera trajectories are built
by extracting camera motions from real movies using vision-based techniques, or relying on motion capture tech-
niques using a virtual camera system. A transformation is proposed to recompute all the camera trajectories in
a normalized representation, making camera paths easily adaptable to new 3D environments through a specific
retargeting technique. The camera motion graph is then constructed by sampling all pairs of camera trajectories
and evaluating the possibility and quality of continuous or cut transitions. Results illustrate the simplicity of the

technique, its adaptability to different 3D environments and its efficiency.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation

1. Introduction

With significant advances in the quality of real-time render-
ing techniques, there is a pressing demand to properly con-
vey complex 3D contents through appropriate cinematog-
raphy (cinematography is here understood as positioning,
moving and cutting between cameras). Typically, computer
games increasingly rely on elements of style/genre drawn
from real movies in terms of camera placements, trajectories
and edits. And in the game industry, these issues are mostly
addressed through collections of manually crafted camera
animations and edits.

The path towards a fully automated computation of cin-
ematography is complex. Current contributions address the
problem by procedurally generating camera trajectories. Us-
ing optimization or path planning techniques, paths are syn-
thesized accounting for velocity [NOO3], visibility of tar-
gets [OSTG09, CNO12] or visual properties to be ensured
along the trajectory [HHSO1]. However, most trajectories
still display a distinguishable synthetic aspect. Two reasons:
through many years of training, audience is now educated to
certain types of camera trajectories pertained to the devices

(© The Eurographics Association 2014.

DOI: 10.2312/sca.20141136

and techniques used in the real movies. Yet most generative
models of trajectories do not account for such techniques.
And second, there are specificities and subtleties on cam-
era motions which are difficult to reproduce with generative
models: aesthetic variations in speed, or noise in motions due
to real camera devices or hand-held cameras. These speed
variations or noises are part of the quality of camera trajec-
tories and participate in their realism.

A solution to reproduce such effects would consist in
reusing real camera paths, which intrinsically contain these
variations and noise. But how to adapt, or retarget, these
existing paths to new 3D environments? One first needs to
reproduce the proper framing of targets (i.e. on-screen loca-
tions of targets throughout the trajectory) with scenes and
target motions different from the original one. Second the
paths need to be adapted to the specific scales and target po-
sitions of the new 3D environment. And third, the visibil-
ity of targets must be evaluated in the new environment and
strategies must be developed to avoid occlusions.

Our goal in this paper is to retain the realism of camera
paths by extracting them from real data (existing movies or

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sca.20141136

178 C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs

motion captured data), and to provide a means to retarget
these paths to new 3D environments. Directly inspired by the
way character animation techniques strongly rely on motion
captured information to ensure realism [Zhe13], we propose
camera motion graphs. A camera motion graph is a motion
graph [KGPO02] in which pieces of camera trajectories are
connected through continuous transitions (denoted TC) or
non-continuous transitions (denoted T) from one trajectory
to another. The construction of a camera motion graph con-
sists in sampling all pairs of camera trajectories in order to
evaluate the possibility and the cost of transitions. The cost
of a transition is defined using cinematographic continuity
rules (see [Tho09]).

This paper describes the three stages in camera motion
graphs: (i) extracting real camera trajectories and expressing
them in a normalized representation, (ii) constructing a cam-
era motion graph by building possible transitions between
trajectories, and (iii) applying the camera motion graph in a
new 3D environment.

The benefits of our approach are: (i) the simplicity in re-
using real content inside a camera motion graph structure,
(ii) the retargeting of camera paths in new 3D environments
and (iii) the computational efficiency. To demonstrate the
benefits, we illustrate our approach on examples involving
multiple characters in cluttered 3D environments. Practical
applications of this work can be found in game industry, but
also for animation studios wishing to re-use carefully crafted
trajectories, and previzualisation industry to explore possible
trajectories or edits of a cinematographic sequence within a
few minutes.

2. Related Work

Controlling a virtual camera is a complex problem, not due
to the dimensionality of the problem (a camera is generally
modeled with 7 degrees of freedom), but to the properties it
should ensure (speed, angle, visibility of targets, framing of
targets and maintaining on-screen composition of targets).
A survey on the different techniques has been proposed by
Christie e al. [CONO8]. We here restrict the study to issues
addressed in this paper: planning camera paths and edits be-
tween paths.

Largely based on techniques from the field of robotics,
Nieuwenhuisen and Overmars [NOO3] propose to precom-
pute a probabilistic roadmap (PRM) in the free space around
a static 3D model. The roadmap is then used to generate
a synthetic path from user-specified initial and final cam-
era positions. The synthesized path is smooth and optimized
by considering maximum angular rotations on the camera
parameters, and enables the user to automatically navigate
around the model.

Oskam et al. [OSTGO09] later extend the use of roadmaps
using a precomputed regular decomposition of an environ-
ment. The roadmap is computed on the entire free space of

the scene and paths are automatically computed to transit
from one specified viewpoint to another while maintaining
visibility of static or dynamic targets. The authors propose
to divide the scene in cells and fill the cells with spheres.
The intersection of two spheres is a portal through which
the camera can move. The final connection between the por-
tals are set and refined by sampling the visibility between
two portals using stochastic ray casting. The camera trajec-
tory is then computed from a point A to a point B using the
roadmap and smoothing the path through portals by using
real-time rendering techniques for visibility.

Li et al. [LCO8] also propose to use roadmaps to track
dynamic targets. Interestingly, the roadmap is computed in
the local reference frame of the dynamic target, rather than
of the environment. This roadmap structure is updated as
the scene evolves using a lazy evaluation scheme to check
whether way-points in the roadmap still ensure the visibil-
ity of the target. Furthermore, the authors introduced virtual
links in the roadmap which allows the camera to perform
cuts (a non-continuous transition) between two positions.
The approach however focuses on a single target.

Other well-known planning techniques such as corridor
maps have been used for planning camera motions (see
[VMGL12]) for the specific tasks of tracking a large num-
ber of targets. Using roadmaps for filming dynamic targets
is also a path following by Lino er al. [LC12a]. The solution
consists in first decomposing the 3D environment using spa-
tial viewpoint partitions into a Binary Space Partition (BSP)
representation. The viewpoint partitions are modeled after
cinematographic properties. The technique then performs a
BSP edge sampling to construct a camera navigation graph,
and performs path planning in the graph by using the cin-
ematographic properties. The spatial partitions are recom-
puted at a frequency lower than the frame rate to adapt to
dynamic targets.

In order to avoid both the cost of planning camera motions
and the low realism of synthetic trajectories, the solution we
propose consists in re-using and adapting real camera paths.
This option has not been explored by previous contributions,
with two notable exceptions: [SB04] and [KRE*10].

In tackling the issue of re-using camera paths from pre-
vious navigations for improving the exploration tasks of a
3D scene, Singh and Balakrishnan [SB04] propose an ap-
proach to store and efficiently extract paths in space and in
time using clustering techniques. The approach is however
dedicated to this specific task and does not address editing
issues nor realism in the paths.

More recently, Kurz et al. [KRE*10] propose to improve
the realism of computer generated trajectory by adding noise
extracted from real trajectories. This method is a three-step
process. First, a database of noise is created. The real cam-
era trajectories are filtered using a Taubin filter. The noise
(also called details), is obtained by applying a Gabor trans-
form to the difference between the base and the real camera

(© The Eurographics Association 2014.

C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs 179

trajectory. The noise is then re-applied to a synthetic trajec-
tory. This method shows that real data can be used in a smart
way to improve computer generated trajectories. However
this approach only extracts the details of the trajectory and
not the overall motion.

Our objective in this paper is to extract real camera mo-
tions from different sources and retarget them to new con-
tents (i.e. new targets in new 3D environments). We further-
more propose to organize these trajectories in a motion graph
structure to enable possible transitions or cuts between the
adapted trajectories.

3. Camera Motion Graphs

E1> r—‘/ scene 2
r

scene 1

a) Extracting pieces of camera
trajectories attached to one
or two targets.

b) Expressing all the trajectories in a
normalized representation using
reference targets.

c) Constructing the motion graph

by sampling all couples of trajectories
to evaluate possible

continuous or cut transitions

d) Projecting the camera motion graph in
anew 3D environment and evaluating the
visibility of camera paths at run-time

fixed camera motions v cut transition Emnm

one target camera motions v smooth transition s s

two target camera motions v occluded trajectory X

occluder example of target _E

Figure 1: Overview of the process consisting in construct-
ing a camera motion graph from real trajectories, and ex-
ploiting the camera motion graph in a new 3D environment.

Our camera motion graph is a directed graph [KGP02,
LCR*02]. Each node corresponds to a motion clip (i.e. a

(© The Eurographics Association 2014.

piece of a camera trajectory) expressed in a normalized rep-
resentation. Each edge in the motion graph corresponds ei-
ther to a continuous transition or a cut, from one motion clip
to another.

Creating and using camera motion graphs follows a 3-
stage process. The first stage consists in extracting camera
trajectories from real film footage or using motion capture
techniques, and then expressing the trajectories in a normal-
ized representation (see Section 4). The second stage con-
sists in constructing the motion graph by computing the pos-
sible transitions between trajectories through the evaluation
of two costs: a cost for continuous transitions and a cost for
non-continuous transitions (see Section 5). And finally, the
third stage consists in generating a camera path in real-time
by using the camera motion graph structure as the scene dy-
namically evolves (see Section 6). This stage typically han-
dles the issue of target occlusion by adapting the camera path
to deal with small occlusions, or by selecting a transition be-
tween paths to deal with large occlusions.

The input of our system is a 3D scene encompassing one
or multiple dynamic targets. The animations of the scene
or the targets are not known beforehand. A simple seman-
tic layer is required to contextually describe the actions per-
formed by the targets. The real-time output of the system is
a camera path adapted to both the context of the scene and
its 3D representation while ensuring the visibility of targets.

4. Extracting Camera Trajectories

Camera trajectories extracted from tracking tools or motion
capture software are usually expressed using Cartesian co-
ordinates defined in the global basis of the 3D scene (for
the position) and quaternions (for the orientation). In order
to express these trajectories in a normalized representation,
both suitable for retargeting and insertable in a camera mo-
tion graph, a better representation is required.

4.1. Representation of camera trajectories

Let us first define some notations. Let q be a camera con-
figuration. A camera configuration is defined by a Cartesian
position Xq, a quaternion orientation ug, a field of view 7q,
and a depth of field pq. A camera trajectory 7 is represented
by a sequence of n camera configurations, at the rate of one
camera configuration per frame (at 30 fps). A configuration
q(i) represents a camera configuration at frame i in a trajec-
tory. Let o be a target in the scene defined by a Cartesian
position Xo, a quaternion orientation uo and a height /o (the
height of a target is the size of its bounding box along axis
7, in a z-up reference frame). A framing configuration f° is a
2D position representing the on-screen projection of a target
object position X, through a camera configuration q.

We propose to identify three groups of camera trajecto-
ries. The first (denoted G) only encompasses pan and tilt

180 C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs

motions for fixed cameras (i.e. cameras with fixed positions
that only swivel around horizontal or vertical axes), focus-
ing on a single target (or a group of targets abstracted as
a single target). The second (denoted G;) gathers camera
motions that focus on a single target (or a group abstracted
as single target). Example trajectories are turning around a
character or performing a traveling while following a char-
acter. And the third group (G), gathers camera trajectories
defined over two or more targets. Example trajectories are
circular motions around the characters, traveling motions to-
wards the characters or crane motions. All three groups are
represented in Figure 2.

We propose to express the trajectories in the reference
frame of the targets so as to create a normalized representa-
tion. We refer to these targets as reference targets. Express-
ing trajectories in the reference frame of a single target is
straightforward since a spherical camera coordinate system
can be used to encode position, and quaternions for orienta-
tion. The problem is however more complex with two refer-
ence targets (see Section 4.1.3), but can be addressed by ex-
ploiting the manifold representation proposed by [LC12b].

Furthermore, rather than storing a sequence of camera ori-
entations uq that frame the reference target(s), we propose to
store a sequence of framing configurations f° (i) for each tar-
get o (i.e. where the reference target o is projected on the
screen at frame i). The benefit of this representation is to
retarget the camera orientations by maintaining the framing
positions of new targets on the screen as they were recorded
in the initial trajectory. Indeed, a simple replay of the camera
orientations ug independently of the target’s motions would
lead to empty shots or awkward framings as soon as the mo-
tions of the new targets do not correspond to the motions of
the reference targets (which will often be the case).

4.1.1. Fixed camera motions G

A panoramic motion of the camera (see Figure 2(a)) is a
fixed camera motion generally used to follow target objects.
In order to re-use such a motion in a different environment,
we need to (i) ensure that the camera stays at a fixed position,
and (ii) that the camera frames the new target in the same
way it framed the reference target. Therefore, in the group
of fixed camera motions G, we choose to express the posi-
tion x4 of a camera configuration q in the local basis 0y of
the target o at its first frame (0(0) representing the target con-
figuration at frame 0). The camera’s orientation is expressed
using a framing configuration f® at frame i (projected po-
sition of target o; on the screen). Field of view and depth
of field at each frame are the same as in the extracted trajec-
tory. In order to address the scaling issue (dealing with a new
target which size is different from the reference target), we
normalize the representation by considering the height /o of
the reference target to be 1, and applying a scaling factor s
on the local coordinates of the camera so that the projected
height of the target is maintained.

When reusing this trajectory in a new 3D scene with a new
target object o, the newly computed camera configuration q’
will be expressed at frame i as:

xq (1) = xr(0)ug (0).0(0). (e o) Xo(0)
ug (i) = ugli)
Y@ = Yal0)
p()) = pali)

where ug(i) represents the camera orientation computed
from the framing configuration f°(i) now targeting object
o (i). The camera location therefore remains fixed, while the
camera swivels to maintain the recorded composition with
new target o’.

4.1.2. Single target motions G

In the group of trajectories G| (see Figure 2(b)), we rep-
resent the position of a camera configuration q(i) in a tra-
jectory 7 with a spherical coordinate system defined in the
local basis of the target o at frame i. This means that the cam-
era motion is locally defined in the basis of the reference ob-
ject, and that as the new target moves, the camera will move
accordingly (unlike motions G). The camera orientation is
expressed with a framing configuration f° defined at frame i
on target 0. Field of view and depth of field at each frame are
the same as in the extracted trajectory. The newly expressed
camera configuration is therefore defined as [0,0,d,£°,7, p]T
where ¢, 0,d represents the spherical coordinates of camera
configuration q in the basis of reference target 0. A normal-
ization is also computed to address the scaling issue.

When re-using this trajectory with a new target object o,
the camera configuration q” will be computed at every frame
i as:

() = Xor (i) (i)-hor [ho-S(0(i),00(i),d (i)

(i) (£°(0),0'())

Yo () = Ya(i)

(@) ali
where S(¢(i),0(i),d(i)) computes at frame i the transforma-
tion from spherical coordinates (¢,0,d) to Cartesian coor-
dinates, and F (£°(i),0’ (i)) computes the camera orientation
from the framing configuration f° at frame i now targeting
object o’ at frame i.

\
~

|
°
=

4.1.3. Multiple target motions G,

Finding a normalized representation in which to express dif-
ferent trajectories that involve two reference targets is not
straightforward, and possible solutions come with limita-
tions. In this paper, we propose to rescale each trajectory.
The scaling is applied so as to normalize the distance be-
tween the two targets. Rather than expressing the trajecto-
ries in the basis of one of the targets, we propose to use the
manifold coordinate system proposed by Lino et al. [LC12b]
in a way that enables easy retargeting. The manifold coordi-
nate system was initially defined to maintain the on-screen

(© The Eurographics Association 2014.

C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs 181

locations of two or three tracked dynamic targets (see Fig-
ure 12). Indeed, given the desired on-screen location of two
targets and the 3D positions of these targets in the scene, the
authors proposed to compute a manifold surface on which
each and every point ensures the desired on-screen locations.
Our principle here is to derive this representation by express-
ing our camera trajectories for two targets using a sequence
of manifold coordinates on different manifold surfaces (each
specified composition with two targets represents a manifold
surface, and a viewpoint is a point on this surface). See Ap-
pendix A for details.

We therefore express the camera positions of a trajectory
T using a manifold coordinate representation defined over a
couple of targets 01 and o0,. The camera orientation is spec-
ified using two composition configurations f°' and £ (see
Figure 2(c)). The newly expressed configuration is defined
by [,0,0, 1,12 v,p]" where @,0,a are the manifold co-
ordinates of the camera configuration q and the targets posi-
tions 0| and o, at a given frame i.

When re-using this trajectory with a new couple of tar-
get objects o] and 0}, the camera configuration q’ will be
computed at each frame i as:

xg (i) = My(9(i),8(i))
ug (i) = Mg (e(i),8(i))
Yq' () = Y
Pq’ (’) = Pq

where MY (@(i),8(i)) computes the Cartesian coordinates of
the manifold coordinates (¢(i),8(i)) associated with desired
composition f*' and £ at frame i, and M(9,6,0) com-
putes the quaternion orientation of the manifold coordinates
(9(i),0(i)) at time i (see Appendix A for details). This repre-
sentation is therefore able to retarget the camera trajectories
with different targets at different positions while maintaining
the same on-screen locations of targets (see Figure 8).

4.2. Vision-based extraction of trajectories

There are multiple estimators for camera parameters (also
called match movers). Here we rely on the non-commercial
Voodoo Camera Tracker software developed by Hannover
University. The tool provides us with a mean to reconstruct
a camera trajectory from a given sequence of images — typ-
ically extracted from a video file at a constant time rate.
As displayed in Figure 3 the tool detects feature points in
the scene (such as Harris corner detector [HS88] or SIFT
points [Low99]). It then computes the correspondence be-
tween feature points in two succeeding images in order to
obtain a tracking of feature points using techniques such as
KLT tracking or SIFT matching. As a result, the tool esti-
mates the camera trajectory as well as the camera parameters
(see Figure 3). The user then needs to manually specify the
3D location of the target (or couple of targets) involved in the
scene using an oriented cube primitive — an easy task since
Voodoo provides a point cloud representation of the scene

(© The Eurographics Association 2014.

and manipulators to add geometries. When the targets are
moving (e.g. actors walking), no points are reconstructed.
The user then needs to estimate the motion of the targets
and animate simple geometries accordingly (motions can be
checked by overlapping the geometries on the video). The
trajectories are then exported and converted to the appropri-
ate representation (G, Gy or G).

4.3. Mocap-based extraction of trajectories

Virtual camera systems (VCS) are devices developed in the
virtual production industry to rehearse shots and edits in 3D
environments before shooting in real environments. A virtual
camera system encompasses a 6DOF tracked device (a rigid
body representing the camera rig) together with a display
on the rig to visualize the viewpoint from the rigid body’s
configuration in the virtual scene. In our approach, a plugin
was written for Motion Builder (an Autodesk animation soft-
ware) to extract the trajectories through using the VICON
Tracker plugin. The reference targets are simply specified by
the user (and their coordinates automatically exported with
the trajectories).

4.4. Trajectories and contextual information

While in theory, all trajectories could be seamlessly used in
the motion graph, in practice, we propose to annotate tra-
jectories with contextual information. Indeed, the conveyed
meaning of a trajectory is often related to the nature of ac-
tions performed by the reference targets, or the intended
communicative goal of the shot. We propose to re-use this
contextual information when selecting appropriate trajecto-
ries (see Section 6). A filtering process is performed to only
retain the trajectories matching the context of the new 3D
scene (contextual information provided by the 3D engine,
such as character actions or intended communicative goals).
A contextual information is simply defined as a set of con-
texts. A context represents a lightweight annotation of the
action performed by the reference targets of the scene (e.g.
“A is_running”, “A is_talking_to B”, “A is_fighting_with
B” when considering characters), or intended communica-
tive goal of the camera along the camera trajectory (such as
“establishing A” or “establishing_relation A B”). Contextual
information also holds the number and name of reference
targets involved. Two contextual information match as soon
as they share the same number of targets, and at least one
action or intended communicative goal.

All trajectories annotated with their contextual informa-
tion are then gathered in a database from which a camera
motion graph will be constructed.

5. Constructing Camera Motion Graphs

The construction of a camera motion graph consists in sam-
pling over time every pair of camera trajectories in order to

182 C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs

a) fixed camera motion

b) single target motion

¢) multiple target motion

Figure 2: Our different categories of camera motions.

Figure 3: Harris corner detector for feature points of a picture (on the left) that are used to reconstruct the camera trajectory
from a sequence of images (on the right). The user then enriches the scene by placing target objects.

evaluate the possibility and the quality of transitions between
these trajectories. The purpose of the process is to build pos-
sible sequences of camera trajectories that satisfy continuity
rules in cinematography (e.g. as defined in [Tho09]).

Two types of transitions are considered for a couple of
camera configurations q; and q;. Continuous transitions
(1) represent generated pieces of trajectories that contin-
uously link q; and q; together. Non-continuous transitions
(T represent cuts between configurations q; and q;; (a sud-
den change in viewpoints). We also consider self-sampling
which consists in evaluating the possible cut transitions be-
tween two camera configurations q; and q; of the same tra-
jectory. Self-sampling is useful in case of short-timed occlu-
sions of the targets, the camera switching to a further con-
figuration in time on the same trajectory (j > 7). Continu-
ous transitions in self sampling was not considered, since
the process will lead to shortcuts in the trajectory.

5.1. Non-continuous transitions 7

A non-continuous transition (i.e. a cut) between two camera
configurations q; and q; is considered possible when the cut
satisfies cinematographic continuity rules. Two rules were
considered: jump cuts and line of action.

Jump cuts occur when the angle between two cameras (;
and q; with relation to a target o is lower than 30 degrees.
This insufficient change in the content of the screen creates
a visual discontinuity that should be avoided. However, if
the difference between the on-screen projected height of a
target in both shots is significant, the rule is overridden. The
jump-cut cost cjc is expressed as:

0:
Y= e

where ¢ = T1/6 — Xq,XoXq; + 1 — |P(qi,ho) — p(4;,ho)| and
p(q;, ho) represents on-screen projected height of the refer-
ence target o through camera q;, and 7, represents a height
threshold, here equal to 0.2 on a normalized unit screen.

XgXoXq; > T/6V [p(qi,ho) — p(j,ho)| > 1
otherwise

The line of action rule states that the camera must not
cross an imaginary line passing through two actors involved
in a shot. The cost ¢z 4 of crossing a line of action establishes
whether the two cameras q; and q; are the same side of the
line Xo, Xo,:

0
ClA = 1

where P°'%(x) evaluates whether point x is on the posi-
tive or negative side on the vertical plane P passing through

PO (xgq,). P (xq;) <O
otherwise

(© The Eurographics Association 2014.

C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs 183

targets 0 and 0. Cuts can also be performed between two
camera configurations inside the same trajectory. In such
case, we add an additional cost that prevents a cut to occur
between a camera ¢; and a camera q; earlier in time, (i.e.
such that j < i) to avoid replaying the trajectory.

5.2. Continuous transitions 7€

A continuous transition between two camera configurations
q; and q; is considered possible when the cameras are close
enough (cost ¢;), do not have significantly different ori-
entations (cost ¢)), and do not follow opposite directions
(cost cy;y). Furthermore, transitions towards camera configu-
rations too close to the end of their motion should be avoided
(cost cepg). Costs are expressed as follows:

¢ —{ 0
¢ Xq; — Xq; |
0
), = 1
0
Cdir:{ 1

0
Cend = { 1

where dy, ¢ represents a speed threshold under which the
difference in camera speeds is acceptable, and e7; the last
frame index of trajectory 7;.

[Xq, — X(Ij| <1
otherwise

cos™ ' (2(ug, -qu)2 —1)<n/6
otherwise

|X(Ii - X(lj‘ < ddof
otherwise

er; —j <30
otherwise

Figure 4 represents the cost of transitions (continuous and
non-continuous) between two selected trajectories.

The sampling rate is empirically fixed to 0.2 seconds on
each trajectory, which already generates a large collection of
outgoing edges for each sample (an average of n x 7;/0.2
where 7 is the number of trajectories in the motion graph
and 7, is the average duration in seconds of the trajecto-
ries). Shorter sampling rates are possible but impact the cost
of visibility testing in the real-time process (all outgoing
nodes are tested for visibility when a transition is necessary).
Longer sampling rates reduce the reactivity of the camera on
sudden occlusions or changes in context.

6. Using Camera Motion Graphs

Once the camera motion graph is constructed in an off-line
process, any real-time animation system that provides the
coordinates of targets in real-time as well as contextual in-
formation can rely on the motion graph to compute realistic
camera motions. When applying the camera motion graph
to a new scene, the steps are the following. The system is
first initialized by (i) accessing the current contextual infor-
mation which also contains the reference targets involved,

(© The Eurographics Association 2014.

@ o a @ [i 40

Figure 4: Cost of transitions between two selected trajecto-
ries sampled at every frame. The horizontal axis represents
the destination trajectory and the vertical axis the origin tra-
Jectory. The red area represents transitions that are not al-
lowed (typically transitions towards configurations too close
to the end of the destination trajectory). The blue areas are
the cut transitions and the green areas the continuous tran-
sitions. The brighter the color, the lower the cost of the tran-
sition.

(ii) filtering the camera paths compatible with the current
contextual information (iii) selecting a the first camera path
among remaining compatible candidates for which the vis-
ibility of target(s) in the first frame is ensured, and (iv) po-
sitioning the camera in the environment according to the se-
lected camera path.

At each frame, the process then consists in testing whether
a transition is necessary. When no transitions are necessary,
the camera follows the current path. A transition is neces-
sary whenever a visibility check fails on the targets (see Sec-
tion 6.2), when the context has changed and is incompatible
with the current path (see Section 6.1), or when the camera
reaches the end of a path.

When a transition is necessary, a visibility check is per-
formed on the reachable camera paths, i.e. on all the out-
going edges from the current node in the motion graph. All
reachable paths have been prior ranked against the quality
of their transition (performed in the construction of the mo-
tion graph), and are then filtered at run-time for compatibil-
ity in their context. With continuous transitions T¢, the first
frame along the continuous transition is evaluated for visibil-
ity. With cut transitions Ty, the first frame on the destination
trajectory is evaluated for visibility. The first transition en-
suring visibility of targets in the ranked and filtered list is
selected and taken, thereby performing a cut, or starting a
continuous transition motion.

6.1. Change in contextual information

As a change in the contextual information of the environ-
ment occurs, a compatibility check with the context of the
current camera path is performed. If incompatible, a transi-
tion is necessary. A change in the contextual information can

184 C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs

be mean a change in the reference targets (switching from
one target to another), a change in the actions performed or
a change in the communicative goal.

The filtering over possible transitions simply consists in
comparing the keywords and number of reference targets of
the new context with those of the destination trajectories, and
retaining the compatible ones.

6.2. Visibility of targets

A key issue to address in re-using existing camera paths in
new 3D environments is ensuring visibility of reference tar-
gets. We propose the following approach.

At each frame, visibility of reference targets can be eval-
uated using a simple ray-casting technique along the current
camera path. Yet, in order to avoid frequent transitions be-
tween trajectories due to partial or short-timed occlusions,
we introduce thick paths on which we perform more evolved
visibility tests, encompassed the evaluation of short term oc-
clusions and partial visibility.

A thick path is a geometric shape placed around the im-
mediate future of the camera path (see figure 5), and decom-
posed into regular cubes. A visibility check is performed by
casting rays from the reference targets towards the cubes in-
tersecting the camera path. If a cube on this path is occluded,
all other cubes are evaluated for occlusion. We then rely on
a local search process to find the closest unoccluded cube in
the geometric shape and construct a path through this unoc-
cluded cube. If no cube is visible, the visibility check fails.

~—

Figure 5: A thick camera trajectory. The arrow represents
the camera trajectory, the red cubes are the ones traversed
by the camera. All traversed cubes are first evaluated for vis-
ibility, and in case of occlusion, the path is locally modified
by finding a fully or partially unoccluded path through the
set of cubes.

We then improve the model by offering the possibility of
specifying a visibility threshold v; € [0;1]. The ratio of vis-
ibility v is then computed as the ratio of number of visible
cubes intersecting the path, on the total number of cubes in-
tersecting the path. The visibility check then fails when the
ratio is below the threshold. We further extend the model by
specifying a maximum duration of occlusion d; in millisec-
ond. The visibility check then fails whenever the duration of

occlusion along the cubes is above the threshold d;. At each
frame, the think path is moved ahead of the current camera
position, and visibility is re-evaluated. Performance issues
are discussed in Section 7. Figure 6 shows an example of
visibility computation on 3 different trajectories.

Figure 6: Topview of a sample scene illustrating the visibil-
ity computation. The upper picture shows the camera (green
point on the left) and the target A (on the right) in an un-
occluded situation (A is visible). Visibility is only performed
along the current camera path (in black). The bottom pic-
ture shows the scene where A is no longer visible. All the
nodes (reachable through outgoing edges representing cuts)
are evaluated for visibility. Gray nodes represent viewpoints
in which the target is occluded, and orange nodes viewpoints
in which the target is visible.

7. Results

We implemented and tested our approach on different envi-
ronments using the CryE ngine™ game engine to measure
benefits and performances. Three criteria were retained:

e simplicity;

e adaptability;

e efficiency.

7.1. Simplicity in re-using data

The principle of our method is to import trajectories from
real data into synthetic worlds. Just focusing on a single

(© The Eurographics Association 2014.

C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs 185

camera trajectory, Figure 7 shows an example of the im-
ported trajectory, together with the original trajectory, illus-
trating the ease in reusing existing data. The simplicity is
also illustrated by Figure 8 which demonstrates how for a
camera, the same on-screen composition is maintained for
different configurations of targets objects.

Figure 7: Simplicity in reproducing a trajectory. In this ex-
ample, the left images are the original pictures where the
trajectory was extracted from. The right pictures represent
the importation of the trajectory into our virtual world. Re-
sults in term of composition (position in are similar.

7.2. Adaptability

Figure 9 shows an example of spatial and temporal adapt-
ability. The feature presented here highlights the maximum
duration of occlusion threshold (d;).

7.3. Efficiency

Given that the process consists in replaying pieces of cam-
era paths adapted to new environments, the main cost comes
from the visibility tests. Visibility is computed at each frame.
While a thorough testing is necessary, on the scenes we
tested, an average of 500 rays were casted at each frame (this
is including situations with occlusions and not). To test the
scalability, the approach was pushed to 15000 rays per frame
on a Dell with Intel Core 17 CPU 2.60GHz, a point at which
the animation seriously lags. Over the different animations,
the average time spent in our process is 16ms (including the

(© The Eurographics Association 2014.

Figure 8: Example of trajectory retargeting. In this exam-
ple, a trajectory was imported into the scene. The reference
targets for this trajectory are two targets represented by the
red and blue points. Depending on the distance between the
targets, the trajectory is adapted so that the composition in
the synthetic shots matches the composition of the original
shots.

cost of visibility tests and computing a new path for the cam-
era when in visually cluttered situations. In cluttered situa-
tions, a peak value of 32ms was reached.

Figure 10 and Figure 11 present examples of sequences
generated with our camera motion graph process.

8. Limitations

Our camera motion graph is an efficient method to retar-
get real camera trajectories to virtual environments. It never-
theless presents some limitations. First, in building the mo-
tion graph, any transition that satisfies the cinematographic
continuity rules is accepted. However the reality shows that
choosing the right moment to cut, and the right shot to cut
to is far more complex than conforming to basic continuity
rules. Second, the retargeting of trajectories can lead to un-
aesthetic trajectories as soon as the paths of the reference
targets in the real camera trajectory and in the virtual en-
vironment differ significantly. Currently, the contextual in-
formation prevents some of these issues, but better models
are required that would account for both the trajectory of the
targets and of the cameras.

186 C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs

Figure 10: Resulting shots from trajectories generated by our camera motion graph process, tracking a single target and
cutting between trajectories when occlusion occurs (see shots 4 and 5).

Figure 11: Resulting shots from trajectories generated by our camera motion graph process, making a transition between a
one target trajectory and a two target trajectory (between shots 2 and 3).

9. Conclusion

Improving realism of camera control by the use of data ex-
tracted from real cinematography is a key challenge. In this
paper we first presented a way to retarget different types of
camera trajectories extracted from real footage. And we then
proposed to organize camera trajectories in a camera motion
graph inspired by character animation techniques. The tra-
jectories are expressed in a normalized representation. The
camera motion graph is then constructed by sampling pairs
of camera trajectories for possible transitions. Finally at run-
time, the camera motion graph is positioned according to
new targets in a new 3D environment, and visibility is com-
puted to ensure the proper viewing of reference targets. The
approach provides us with a means to transit between dif-
ferent viewpoints while preserving the quality of shots and

respecting cinematographic rules, while being simple and ef-
ficient.

References

[CNOI12] CHRISTIE M., NORMAND J.-M., OLIVIER P.:
Occlusion-free camera control for multiple targets. In Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (2012), Eurographics Association, pp. 59-64. 1

[CONO8] CHRISTIE M., OLIVIER P., NORMAND J.-M.: Cam-
era control in computer graphics. In Computer Graphics Forum
(2008), vol. 27, Wiley Online Library, pp. 2197-2218. 2

[HHSO1] HALPER N., HELBING R., STROTHOTTE T.: A camera
engine for computer games: Managing the trade-off between con-
straint satisfaction and frame coherence. In Computer Graphics
Forum (2001), vol. 20, Wiley Online Library, pp. 174-183. 1

(© The Eurographics Association 2014.

C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs 187

Figure 9: These examples illustrate the duration of occlu-
sion dy in visibility computation. On the left sequence dura-
tion of occlusion is set to 0 seconds, meaning that no occlu-
sion is tolerated. This results in a cut towards a camera con-
figuration further on the trajectory (in this example) when
the character gets occluded. In the right sequence the cam-
era path is not changed due to a duration of occlusion lower
than the maximum duration of occlusion. Here the threshold
is set to 0.6 seconds. For the right example, the occlusion
lasts 0.3 seconds.

[HS88] HARRIS C., STEPHENS M.: A combined corner and edge
detector. In Alvey vision conference (1988), vol. 15, UK, p. 50. 5

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion graphs.
In Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA,
2002), SIGGRAPH 02, ACM, pp. 473-482. 2,3

[KRE*10] Kurz C., RITSCHEL T., EISEMANN E.,
THORMAHLEN T., SEIDEL H.-P.: Camera motion style
transfer. In Visual Media Production (CVMP), 2010 Conference
on (2010), IEEE, pp. 9-16. 2

[LCO8] LI T.-Y., CHENG C.-C.: Real-time camera planning for
navigation in virtual environments. In Smart Graphics (2008),
Springer, pp. 118-129. 2

[LC12a] Lino C., CHRISTIE M.: Efficient composition
for virtual camera control. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2012), SCA 12, pp. 65-70. 2

[LC12b] LINO C., CHRISTIE M.: Efficient composition
for virtual camera control. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2012), Eurographics Association, pp. 65-70. 4, 11, 12

[LCR*02] LEE]J., CHAIJ., REITSMA P. S. A., HODGINS J. K.,
POLLARD N. S.: Interactive control of avatars animated with hu-
man motion data. In Proceedings of the 29th Annual Conference
on Computer Graphics and Interactive Techniques (New York,
NY, USA, 2002), SIGGRAPH *02, ACM, pp. 491-500. 3

[Low99] LOWE D. G.: Object recognition from local scale-
invariant features. In Computer vision, 1999. The proceedings
of the seventh IEEE international conference on (1999), vol. 2,
Ieee, pp. 1150-1157. 5

(© The Eurographics Association 2014.

[NOO3] NIEUWENHUISEN D., OVERMARS M. H.: Motion Plan-
ning for Camera Movements in Virtual Environments. Tech. rep.,
Utrecht University, 2003. 1, 2

[OSTG09] OSKAM T., SUMNER R. W., THUEREY N., GROSS
M.: Visibility transition planning for dynamic camera control. In
Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (2009), ACM, pp. 55-65. 1,2

[SB04] SINGH K., BALAKRISHNAN R.: Visualizing 3d scenes
using non-linear projections and data mining of previous camera
movements. In Proceedings of the 3rd International Conference
on Computer Graphics, Virtual Reality, Visualisation and Inter-
action in Africa (2004), AFRIGRAPH *04, ACM, pp. 41-48. 2

[Tho09] THOMPSON R.: Grammar of the Edit. Focal Press, 2009.
2,6

[VMGLI12] Vo C., McKAY S., GARG N., LIEN J.-M.: Follow-
ing a group of targets in large environments. In Proceedings of
the Fifth International Conference on Motion in Games (2012),
Bekris K., Kallmann M., (Eds.), Springer. Invited Paper. 2

[Zhel13] ZHENG C.: One-to-many: Example-based mesh an-
imation synthesis. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation
(New York, NY, USA, 2013), SCA 13, ACM, pp. 145-153. 2

Appendix A: Manifold representation

The space of camera locations that satisfy the exact on-
screen composition of two 3D targets can be defined by a
2D manifold surface (a subset of a spindle torus, see Fig-
ure 12). For any couple (¢, 8) on the 2D manifold, one can
algebraically derive a camera position and a camera orienta-
tion that satisfy this exact composition [LC12b].

Let A and B be two distinct points in the 3D space rep-
resenting the target points to frame. A first quaternion g is

built as the rotation of angle ¢ around the axis %; and a sec-

ond quaternion gg is built as the rotation of angle % around
an axis ¢ computed as
F=7x BA
=7 N
BA
where 7 is a reference vector such that the plane (A,AB, V)
contains all viewpoints (¢, 0) with ¢ = 0. V is computed as:

7= AB x ii scaled to unit length
i(0,0,1) being the world up vector.

Then the camera position x corresponding to the couple
(9,6) on the manifold surface is computed as:

sin (x+9
_\ 2)

x=A+qp-q9-AB- ina
o being the angle generating the manifold surface. The
value of alpha is computed as angle(p%7 pi), where
Pa(pax/Sx,1,pa.y/Sy) and p(ps.x/Se,1,pp.y/Sy) rely
on pu, pp respectively representing the projection of A and
B on the screen, and Sy = 1/tan(yx/2), Sy = 1/tan(vy/2),
where Yy and Yy respectively represent the horizontal and ver-
tical aperture of the camera.

188 C. Sanokho, C. Desoche, B. Merabti, T-Y. Li & M.Christie / Camera Motion Graphs

Given the camera position x, we can compute the camera
orientation that ensures the composition.

We first build a quaternion g; which represents a first
"default" composition of A and B (i.e. y4 = yp = 0 and
X4 = —Xp). q; is built using the basis f;, 7,?, and ﬁ? where

— —

7?: %x% ; ﬁ: (%Jr%) scaled to unit
length ; and = ? XU

We now compute the rotation g, such that, when applied

to g;, points A and B are projected in the appropriate loca-
tions on the screen (i.e. p4 and pp).

a=ai(qc)”" (1)

(b)

Figure 12: (a) Given desired on-screen locations of two tar-
gets, the manifold representation defined by [LCI12b] pro-
vides the surface of viewpoints for which the on-screen lo-
cations are exact. (b) a possible viewpoint is defined as a
couple of angles (¢,0) on this surface.

(© The Eurographics Association 2014.

