
Robust Intersections under Floating Point

Anonymous (under review)

1 Overview

Our strategy for handling intersections robustly in floating point is to register degeneracies with tolerances in
a hierarchical manner before registering the top level intersection primitives in order from most degenerate
(vertex-vertex) to least, followed by the top level primitives (edge-edge and triangle-vertex in 2D, triangle-
edge and tetrahedron-vertex in 3D). Intersection pairs are stored in hashtables for efficient lookup. When
processing each intersection pair, we first check these hashtables to see if a degenerate version of pair has
already been registered (e.g., when checking an edge-edge pair, a vertex of one of these edges may already
be registered as intersecting the other edge or one if its endpoints). If such a degeneracy is found, processing
on the pair terminates and no intersection is registered. Otherwise, the pair is checked to see if it actually
intersects. Handling degeneracies in this way allows us to assume that no degeneracy exists, which in turn
makes it possible to guarantee that the current pair can be checked robustly. This is the key to guaranteeing
robustness.

2 Floating point error

Let F [f(x)] indicate that the computation of f(x) is being carried out under floating point computation.
In general, we will be deriving bounds for floating point error E [f(x)] = |F [f(x)] − f(x)| or relative error
R[f(x)], where E [f(x)] = |f(x)|R[f(x)] for various operations. In the case of vector quantities, R[u] =
max(R[ux],R[uy]) for 2D and R[u] = max(R[ux],R[uy],R[uz]) for 3D. All coordinates are taken to be
exact. Let ǫ < 10−5 be the machine epsilon.

For the purposes of computing floating point error we store for each quantity

• s: A string representing how the quantity is computed

• c, p: The maximum magnitude the quantity could have, in the form cLp, where L is the maximum
edge length of the bounding box surrounding each primitive pair.

• n: A flag indicating that the quantity is guaranteed to be nonnegative

• a, b: relative floating point error, of the form 1 + aǫ+ bǫ2.

• r: A flag indicating that the floating point error is relative to the quantity being computed. Otherwise,
it is relative to cLp

• v: A flag indicating that the floating point error estimate is valid. This is used in cases where nothing
useful can be said about the floating point error, such as when dividing by a quantity that cannot be
bounded from zero.

The state is updated using a set of rules for each operation that is used. A result is invalid if any of its inputs
are, and s is updated. If all inputs are valid and a rule from below applies, the result is valid. If more than
one rule applies, the more restricted rule is used. The rules are applied automatically by instrumenting the
code. Note that no upper bound can, in general, be derived for the case of division since no lower bound for

1

the denominator is available. Since we only use division for normalizing vectors, the choice c = 1 will always
be appropriate. This special case is noted in the table with a “∗”.
ID Rule Restrictions n r
A x = −x1 none 0 r1
B x = x1 + x2 p1 = p2 n1 and n2 0
C x = x1 + x2 n1 and n2 and r1 and r2 and p1 = p2 1 1
D x = x1 − x2 p1 = p2 0 0
E x = x1 − x2 p1 = p2 and a1 = b1 = a2 = b2 = 0 0 1
F x = x1x2 none s1 = s2 or (n1 and n2) r1 and r2
G x = x1/x2 r1 and r2 n1 and n2 1
H x =

√
x1 n1 and r1 1 r1

I x = |x1| none 1 r1
J x = # none # ≥ 0 1
K x = coord none 0 1

ID Rule c p a b
A x = −x1 c1 p1 a1 b1
B x = x1 + x2 c1 + c2 p1 1 + c1a1+c2a2

c1+c2

1+c1(a1+b1)+c2(a2+b2)
c1+c2

C x = x1 + x2 c1 + c2 p1 1 + max(a1, a2) 1 + max(a1 + b1, a2 + b2)

D x = x1 − x2 c1 + c2 p1 1 + c1a1+c2a2

c1+c2

1+c1(a1+b1)+c2(a2+b2)
c1+c2

E x = x1 − x2 c1 + c2 p1 1 0
F x = x1x2 c1c2 p1 + p2 1 + a1 + a2 (1 + a1)(1 + a2) + b1 + b2
G x = x1/x2 1∗ p1 − p2 1 + a1 + a2 (1 + a1)(1 + a2) + b1 + b2 + a22
H x =

√
x1

√
c1 p1/2 1 + a1/2 1 + b1/2 + |a1/2− a21/8|

I x = |x1| c1 p1 a1 b1
J x = # |#| 0 0 0
K x = coord 1/2 1 0 0

3 Tolerance model

Our goal with this intersection framework is to make robustness guarantees while operating entirely within
the limitations of floating point arithmetic. To do this, we use a carefully chosen set of tolerances. When
we perform tolerance checks, we do so with corresponding exact bounds on either side. The tolerance checks
that we use take the general form g(τ)− f(x) ≥ 0, where x represent the input coordinates and f and g are
functions, with g strictly monotonically increasing over a suitable range surrounding τ . Since this check will
be performed in code under floating point arithmetic, we need a way of determining what we can guarantee
based on the outcome of this check. We do this by introducing two more tolerances, τ− and τ+ such that
τ− < τ < τ+ and

g(τ−)− f(x) ≥ 0 =⇒ F [g(τ)− f(x)] ≥ 0 =⇒ g(τ+)− f(x) ≥ 0. (1)

Note that the tolerance comparisons against τ− and τ+ are in exact arithmetic. These comparisons do not
occur in code but rather are used for proving correctness. Only the middle comparison occurs in floating
point. This model allows us to isolate the uncertainties of floating point from other aspects of the analysis.
For each such tolerance τ , the bounding tolerances τ− and τ+ must be chosen so that (1) holds.

Note that if E [g(τ)−f(x)] < |g(τ)−f(x)|, then the sign of F [g(τ)−f(x)] can be determined unambiguously
and agrees with the corresponding exact comparison. In this case, (1) holds trivially. Consider instead the
choices x for which E [g(τ)− f(x)] ≥ |g(τ)− f(x)|. For these x, we require the stricter condition

g(τ−)− f(x) ≤ F [g(τ)− f(x)] ≤ g(τ+)− f(x), (2)

from which τ− and τ+ can be computed given a bound on E [g(τ)− f(x)]. Note that (2) implies (1).

2

Name T− T T+ R[T] description
σ 6.0

√
ǫL 6.5

√
ǫL 7.0

√
ǫL 4ǫ vertex-vertex

τ 4.0
√
ǫL 4.5

√
ǫL 5.0

√
ǫL 4ǫ edge-vertex

σ̂ 5.0
√
ǫL 5.5

√
ǫL 6.0

√
ǫL 4ǫ vertex-vertex degeneracy rejection

κ 10ǫL2 21ǫL2 32ǫL2 4ǫ edge-edge area bound

Figure 1: Tolerances for 2D.

The other type of comparison that we require is a simple comparison against zero, f(x) > 0. To have
any chance at robustness, we must guarantee that we always get these comparisons right. The way we do
that depends on the extent to which we can bound f(x) from zero and the way in which f(x) > 0 is used.
The possibilities that arise are

• |f(x)| > τ− is guaranteed. We ensure E [f(x)] < τ− and perform the test with F [f(x)] > 0.

• If an intersection exists, then |f(x)| > τ+. In this case we ensure E [f(x)] < τ− and perform the
tests F [τ − |f(x)|] ≥ 0 and F [f(x)] > 0. The test F [τ − |f(x)|] ≥ 0 implies no intersection, since
F [τ − |f(x)|] ≥ 0 =⇒ |f(x)| ≤ τ+. On the other hand, F [τ − |f(x)|] < 0 =⇒ |f(x)| > τ−, so that
f(x) > 0 is computed correctly.

4 2D

Before beginning our treatment of the individual cases, we list each tolerances (T) with their corresponding
bounds (T− and T+) in Figure 1 for reference.

4.1 Tolerance Computation

We compute the maximum bounding box edge length for each primitive in the simulation mesh L0 and
for each primitive on the cutting mesh L1. We will process any two primitives if their bounding boxes are
within distance σ+ of one another. Note that σ+ is the maximum of the tolerances. The maximum coordinate
difference that can be obtained (in exact arithmetic) is L̂ = L0 + L1 + σ+. Using L̂ as the upper bound,
σ+ = 8

√
ǫL̂. Thus, we can say L̂ = L0 +L1 +8

√
ǫL̂ or L̂ = L0+L1

1−8
√
ǫ
. Further, we know that F [L̂] > (1− 5ǫ)L̂.

Let k = 1+5ǫ. To account for floating point error, we will instead define L = kL0+L1

1−8
√
ǫ
(which corresponds to

the definition σ+ = 8
√
ǫL we will eventually use). With this definition, F [L] > L̂. Then, L, even though it is

computed under floating point, is an upper bound on the exact difference between coordinates. The relative
errors in the tolerances are shown in Figure 1. Pseudocode for computing tolerances is in Algorithm 1.

Algorithm 1 Computing tolerances in 2D

1: function Compute Tolerances(A,B)
2: La ← maximum bound box edge length of mesh A
3: Lb ← maximum bound box edge length of mesh B
4: s← √ǫ
5: L← 1+5ǫ

1−7s (La + Lb)
6: t = sL
7: σ = 6.5t
8: τ = 4.5t
9: σ̂ = 5.5t

10: κ = 21ǫL2

11: end function

3

4.2 Vertex-Vertex

Let A and B be two vertex locations. If

d2 = ‖A−B‖2 ≤ σ2 (3)

we register a vertex-vertex intersection. In the cases that follow, we may now assume that ‖A−B‖ > σ− in
exact arithmetic. Pseudocode for this case is given in Algorithm 2.

Algorithm 2 Vertex Vertex 2D

1: function Vertex vertex(A,B)
2: if ‖A−B‖2 ≤ σ2 then

3: return true

4: else

5: return false

6: end if

7: end function

Floating point: R[d2] ≤ 5ǫ. E [d2] ≤ 9ǫL2.

Tolerance constraints:

• min(σ+ − σ, σ − σ−) > 8ǫσ.

4.3 Edge-Vertex

Let AB and P be an edge and a vertex. The check we need to perform is

d =
|(A−B)× (P −A)|

‖A−B‖ ≤ τ 0 < a < 1, (4)

where a is the interpolation weight. Let

û = A−B m = ‖û‖ u =
û

m
w = P −A â = u · w ā = m− â a =

â

m
d = |u× w|. (5)

Let us require that τ+ <
√
3
2 σ−. Treating vertex-vertex degeneracies guarantees ‖P−A‖ > σ− and ‖P−B‖ >

σ−. If in addition m ≤ σ̂+ = σ−, we conclude d > τ+ (See Figure 2(a)). Thus, step 7 of Algorithm 3 will not
reject a valid intersection. This additional check allows us to assume m > σ̂− in later stages, which in turn
allows us to protect the division in step 10. Noting that â and ā are signed distances to A and B along the

segment AB, we also have |â| >
√

σ2
− − τ2+ and |ā| >

√

σ2
− − τ2+ (See Figure 2(b)). We use these inequalities

to protect the comparisons in step 17 of Algorithm 3.

Floating point: R[m] ≤ 4ǫ. E [m] ≤ 5ǫL. E [d] ≤ 19ǫL. E [â] ≤ 19ǫL. E [ā] ≤ 26ǫL.

Tolerance constraints:

• m > 0, enforced by m ≥ σ̂, with E [m] ≤ 5ǫL, so σ̂− > 5ǫL.

• ā > 0, enforced by ā >
√

σ2
− − τ2+, with E [ā] ≤ 26ǫL, so

√

σ2
− − τ2+ > 26ǫL.

• â > 0, enforced by â >
√

σ2
− − τ2+, with E [â] ≤ 19ǫL, so

√

σ2
− − τ2+ > 19ǫL.

4

Algorithm 3 Edge Vertex 2D

1: function Edge Vertex(A,B, P)
2: if Degenerate intersection then

3: return (false, 0)
4: end if

5: û← A−B
6: m← ‖û‖
7: if m ≤ σ̂ then

8: return (false, 0)
9: end if

10: u← û
m

11: w ← P −A
12: if not |u× w| ≤ τ then

13: return (false, 0)
14: end if

15: â← u · w
16: ā← m− â
17: if â < 0 or ā < 0 then

18: return (false, 0)
19: end if

20: return (true, â
m
)

21: end function

A B

√
3
2 σ̂−

σ̂−

(a) Bound on m.

A B

τ+
σ−

√

σ2
− − τ2+

(b) Bound on â and ā.

Figure 2: Proof illustrations for vertex edge in 2D

5

Q

P

A B
R

S

(a) Area bound for edge-edge, R in AB.

Q

P

A
B R

S
T

U

(b) Area bound for edge-edge, R not in AB.

Figure 3: Proof illustrations for edge edge in 2D.

• τ+ <
√
3
2 σ−.

• σ− = σ̂+.

• min(σ̂+ − σ̂, σ̂ − σ̂−) > 8ǫL.

• min(τ+ − τ, τ − τ−) > 20ǫL.

4.4 Edge-Edge

Let AB and PQ be two edges and let

aA = 2area(APQ) aB = 2area(BPQ) aP = 2area(ABP) aQ = 2area(ABQ). (6)

The edges AB and PQ intersect if aA and aB differ in sign and aP and aQ differ in sign.
Assuming no degeneracy has been registered and an edge-edge intersection exists, min(|aA|, |aB |, |aP |, |aQ|) ≥

κ+, where κ+ = 2τ2−. Since these are symmetrical, it suffices to consider aP . Let ℓ(AB) represent the length of
segment AB. Figure 3(a) and Figure 3(a) show the major cases. In Figure 3(a), the point R on line AB clos-
est to P lies between A and B, so that the edge-vertex degeneracy assumption implies ℓ(PS) ≥ ℓ(PR) > τ−.
Figure 3(b) shows a case where R does not lie between A and B. In this case, ℓ(PR) ≥ ℓ(RU) ≥ ℓ(BT) > τ−.
As before, ℓ(PS) ≥ ℓ(PR) > τ−. Repeating the logic from points A and B gives the equivalent bounds
ℓ(AS) > τ− and ℓ(BS) > τ−. Finally, |aP | = ℓ(AB)ℓ(PR) = (ℓ(AS) + ℓ(BS))ℓ(PR) > 2τ2−.

Assuming the signs differ as required above, the interpolation weights are

αPQ =
aP

aP − aQ
αAB =

aA
aA − aB

, (7)

which can always be computed robustly in floating point. The algorithm is shown in Algorithm 4.

Floating point: E [aP] ≤ 9ǫL2. E [aQ] ≤ 9ǫL2. E [aA] ≤ 9ǫL2. E [aB] ≤ 9ǫL2.

Tolerance constraints:

• κ+ = 2τ2−.

• |aP | > 0, enforced by guaranteeing |aP | > κ− and requiring κ− > E [aP] ≥ 9ǫL2.

• min(κ+ − κ, κ− κ−) > 10ǫL2.

6

Algorithm 4 Edge Edge 2D

1: function Edge Edge(A,B, P)
2: if Degenerate intersection then

3: return (false, 0, 0)
4: end if

5: aP ← (P −A)× (B −A)
6: aQ ← (Q−A)× (B −A)
7: if |aP | ≤ κ or |aQ| ≤ κ or sgn(aP) = sgn(aQ) then
8: return (false, 0, 0)
9: end if

10: aA ← (A− P)× (Q− P)
11: aB ← (B − P)× (Q− P)
12: if |aA| ≤ κ or |aB | ≤ κ or sgn(aA) = sgn(aB) then
13: return (false, 0, 0)
14: end if

15: return (true, aA

aA−aB
, aP

aP−aQ
)

16: end function

4.5 Triangle-Vertex

Let ABC and P be a triangle and a vertex. Let

aA = 2area(PBC) aB = 2area(APC) aC = 2area(ABP). (8)

An intersection occurs if sgn(aA) = sgn(aB) = sgn(aC).
Assuming no degeneracy has been registered and an triangle-vertex intersection exists, min(|aA|, |aB |, |aC |) ≥

κ+, where κ+ = 2τ2−. Since these are symmetrical, it suffices to consider aC . Since |aP | = 1
2ℓ(AB)ℓ(PR),

we need to bound ℓ(AB) and ℓ(PR). If R is on segment AB, then ℓ(PR) > τ− by edge-vertex de-
generacy as shown in Figure 4(a). Otherwise, we have the case shown in Figure 4(a), in which case
ℓ(PR) ≥ ℓ(PW) ≥ ℓ(PS) ≥ τ−. Similar bounds ℓ(PT) > τ− and ℓ(PS) > τ− are obtained when con-
sidering edges AC and BC. In figure Figure 4(a) we see that ℓ(AB) ≥ ℓ(V U) ≥ ℓ(PT) + ℓ(PS) ≥ 2τ−.
Finally, |aP | = 1

2ℓ(AB)ℓ(PR) > 2τ2−.
Since these areas all have the same sign, the barycentric weights are robustly computed in floating point

as
γA =

aA
aA + aB + aC

γB =
aB

aA + aB + aC
γC =

aC
aA + aB + aC

. (9)

The final algorithm is shown in Algorithm 5.

Algorithm 5 Triangle Vertex 2D

1: function Triangle Vertex(A,B, P)
2: if Degenerate intersection then

3: return (false, 0, 0, 0)
4: end if

5: aA ← (B − P)× (C − P)
6: aB ← (P −A)× (C −A)
7: aC ← (B −A)× (P −A)
8: if |aA| ≤ κ or |aB | ≤ κ or |aC | ≤ κ or sgn(aA) 6= sgn(aB) or sgn(aB) 6= sgn(aC) then
9: return (false, 0, 0, 0)

10: end if

11: return (true, aA

aA+aB+aC
, aB

aA+aB+aC
, aC

aA+aB+aC
)

12: end function

7

A B

C

P
T S

V U

R

(a) Area bound for triangle-vertex.

A
B

C

P

R

S

W

(b) P does not project onto AB.

Figure 4: Proof illustrations for triangle vertex in 2D.

Floating point: E [aA] ≤ 9ǫL2. E [aB] ≤ 9ǫL2. E [aC] ≤ 9ǫL2.

Tolerance constraints:

• κ+ = 2τ2−.

• aA > 0, enforced by guaranteeing |aA| > κ− and requiring κ− > E [aA] ≥ 9ǫL2.

• min(κ+ − κ, κ− κ−) > 10ǫL2.

5 3D

5.1 Tolerance Computation

The situation with L in 3D is similar to 2D, except that tolerances will now be of the form 7ǫ
1

4 L̂, so
L̂ = L0+L1

1−7ǫ
1

4

. Further, we know that F [L̂] > (1 − 5ǫ)L̂. Let k = 1 + 5ǫ. To account for floating point

error, we will instead define L = kL0+L1

1−7ǫ
1

4

. With this definition, F [L] > L̂. Then, L, even though it is

computed under floating point, is an upper bound on the difference that could be computed between two
coordinates. Since each tolerance ζ is computed as ζ = cζ

√√
ǫL for some cζ , R[ζ] < 4ǫ. Also, R[ζ2] < 9ǫ

and R[
√

ζ2 − κ2] < 5ǫ. Pseudocode for computing tolerances is in Algorithm 6.

5.2 Vertex-Vertex

Let A and B be two vertex locations. If

d2 = ‖A−B‖2 ≤ σ2 (10)

we register a vertex-vertex intersection. In the cases that follow, we may now assume that ‖A−B‖ > σ− in
exact arithmetic. The algorithm is shown in Algorithm 7.

Floating point: R[d2] ≤ 6ǫ. E [d2] ≤ 16ǫL2.

Tolerance constraints:

• min(σ+ − σ, σ − σ−) > 8ǫσ.

8

Algorithm 6 Computing tolerances in 3D

1: function Compute Tolerances(A,B)
2: La ← maximum bound box edge length of mesh A
3: Lb ← maximum bound box edge length of mesh B
4: s← √ǫ
5: a← √s
6: b← sa
7: L← 1+5ǫ

1−7a (La + Lb)
8: c = aL
9: d = L2

10: e = bLd
11: f = ǫd2

12: σ = 6.5c
13: τ = 4.5c
14: δ = 2.25c
15: γ = 2.25c
16: σ̂ = 5.5c
17: µ = 24e
18: ρ = 56e
19: ξ = 56e
20: λ = 1215f
21: φ = 470f
22: ν = 6844.5f
23: ζ = 1317f
24: end function

Name T− T T+ R[T] description

σ 6.0ǫ
1

4L 6.5ǫ
1

4L 7.0ǫ
1

4L 4ǫ vertex-vertex

τ 4.0ǫ
1

4L 4.5ǫ
1

4L 5.0ǫ
1

4L 4ǫ edge-vertex

δ 2.0ǫ
1

4L 2.25ǫ
1

4L 2.5ǫ
1

4L 4ǫ face-vertex

γ 2.0ǫ
1

4L 2.25ǫ
1

4L 2.5ǫ
1

4L 4ǫ edge-edge

σ̂ 5.0ǫ
1

4L 5.5ǫ
1

4L 6.0ǫ
1

4L 4ǫ vertex-vertex degeneracy rejection
λ 910ǫL4 1215ǫL4 1521ǫL4 4ǫ edge-edge area bound
φ 150ǫL4 470ǫL4 760.5ǫL4 4ǫ edge-edge area bound

µ 16ǫ
3

4L3 24ǫ
3

4L3 32ǫ
3

4L3 4ǫ edge-edge area bound
ν 3422.25ǫL4 6844.5ǫL4 10266.75ǫL4 4ǫ edge-edge area bound

ρ 28ǫ
3

4L3 56ǫ
3

4L3 ≈ 83ǫ
3

4L3 4ǫ edge-edge area bound

ξ 28ǫ
3

4L3 56ǫ
3

4L3 ≈ 83ǫ
3

4L3 4ǫ edge-edge area bound
ζ 658ǫL4 1317ǫL4 ≈ 1976ǫL4 4ǫ edge-edge area bound

Figure 5: Tolerances for 3D.

Algorithm 7 Vertex Vertex 3D

1: function Vertex vertex(A,B)
2: if ‖A−B‖2 ≤ σ2 then

3: return true

4: else

5: return false

6: end if

7: end function

9

5.3 Edge-Vertex

Let AB and P be an edge and a vertex. The check we need to perform is

d =
‖(A−B)× (P −A)‖

‖A−B‖ ≤ τ 0 < a < 1, (11)

where a is the interpolation weight. Let

û = A−B m = ‖û‖ u =
û

m
w = P −A â = u · w ā = m− â a =

â

m
d2 = ‖u× w‖2. (12)

Let us require that τ+ <
√
3
2 σ−. The details of 3D are identical to 2D, except that d now involves a square

root rather than an absolute values. Since our crude approach to bounding roundoff error will not work for

E [d], we instead check d2 against τ2. The bounds |â| >
√

σ2
− − τ2+ and |ā| >

√

σ2
− − τ2+ and the correctness

of the algorithm (see Algorithm 8) are obtained in the same way as in 2D.

Algorithm 8 Edge Vertex 3D

1: function Edge Vertex(A,B, P)
2: if Degenerate intersection then

3: return (false, 0)
4: end if

5: û← A−B
6: m← ‖û‖
7: if m ≤ σ̂ then

8: return (false, 0)
9: end if

10: u← û
m

11: w ← P −A
12: if not ‖u× w‖2 ≤ τ2 then

13: return (false, 0)
14: end if

15: â← u · w
16: ā← m− â
17: if â < 0 or ā < 0 then

18: return (false, 0)
19: end if

20: return (true, â
m
)

21: end function

Floating point: R[m] ≤ 4ǫ. E [m] ≤ 7ǫL. E [d2] ≤ 261ǫL2. E [â] ≤ 31ǫL. E [ā] ≤ 42ǫL.

Tolerance constraints:

• m > 0, enforced by m ≥ σ̂, with E [m] ≤ 7ǫL, so σ̂− > 7ǫL.

• ā > 0, enforced by ā >
√

σ2
− − τ2+, with E [ā] ≤ 42ǫL, so

√

σ2
− − τ2+ > 42ǫL.

• â > 0, enforced by â >
√

σ2
− − τ2+, with E [â] ≤ 31ǫL, so

√

σ2
− − τ2+ > 31ǫL.

• τ+ <
√
3
2 σ−.

10

P

Q

A

B

A′

B′

R

C

D

d

d
M

α

β

θ

(a) A

P

Q

A

B

A′

B′

R

C

D

d

d
M

N

N ′ L

L′

(b) B

P

Q

A

B

A′

B′

R

C

D

d

d
M

(c) C

Figure 6: Proof illustrations for edge edge in 3D.

• σ− = σ̂+.

• min(σ̂+ − σ̂, σ̂ − σ̂−) > 9ǫL.

• min(τ+ − τ, τ − τ−) >
131ǫL2

τ
.

5.4 Edge-Edge

Let AB and PQ be two edges. Let

u = B −A v = Q− P w = P −A r = u× v m2 = ‖r‖2 n = r × w (13)

The distance d and interpolation weights a (from A to B) and b (from P to Q) are

d̂ = r · w â = n · v b̂ = n · u d =
|d̂|
m

a =
â

m2
b =

b̂

m2
ā = m2 − â ā = m2 − â (14)

and the intersection should be registered if â > 0, ā > 0, b̂ > 0, b̄ > 0, and d̂2 < γ2m2. In the case that an
intersection has occurred but no degenerate intersection has been registered, we can bound both m, â, ā, b̂,
and b̄ from zero.

5.4.1 Bound on m

Let C be the point on AB closest to PQ, and R is the point on PQ closest to AB. Assume WLOG
β = ℓ(AC) = min(ℓ(AC), ℓ(BC), ℓ(PR), ℓ(QR)). Let A′ and B′ be the points A and B projected down
to the plane Z containing PQ and parallel to AB as shown in Figure 6(a). Assume also that the angle
θ = A′RP is the smaller of the two angles made between A′B′ and PQ. Let M be the point on PQ closest
to A′. Let α = ℓ(A′M) and note that β = ℓ(AC) = ℓ(A′R). sin θ = α

β
. Note that the definition of β implies

that M will lie on segment PQ. Since ℓ(AM) is an edge-vertex pair, ℓ(AM) > τ−. ℓ(AA′) is the distance

from AB to the plane of A′B′, so ℓ(AA′) = d ≤ γ+. β ≥ α = ℓ(A′M) =
√

ℓ(AM)2 − ℓ(AA′)2 >
√

τ2− − γ2
+.

Using the definition of β, ‖u‖ = ℓ(AB) = ℓ(AC) + ℓ(BC) ≥ 2β and ‖v‖ = ℓ(PQ) = ℓ(PR) + ℓ(QR) ≥ 2β.
Finally, m = ‖r‖ = ‖u× v‖ = ‖u‖‖v‖ sin θ ≥ (2β)(2β)α

β
= 4αβ > 4(τ2− − γ2

+).

5.4.2 Bound on â

In Figure 6(b), A′ and A project onto line PQ at M , B′ and B project onto line PQ at K (not shown),
P projects onto lines AB and A′B′ at N and N ′, and Q projects onto lines AB and A′B′ at L and

11

L′. Triangles RA′M , RB′K, RPN ′, and RQL′ are similar triangles. Since β = ℓ(AC) = ℓ(A′R) =

min(ℓ(AC), ℓ(BC), ℓ(PR), ℓ(QR)) = min(ℓ(A′R), ℓ(B′R), ℓ(PR), ℓ(QR)), we also have
√

τ2− − γ2
+ ≤ α =

ℓ(A′M) = min(ℓ(A′M), ℓ(B′K), ℓ(PN ′), ℓ(QL′)).
Let D be a point on line RC such that |RD| = m > 0. |â| = |(r×w) ·v| = |((D−R)×(P−A)) ·(Q−P)| =

|((D −R)× (P −A′)) · (Q− P)| = |((D − P)× (A′ − P)) · (Q− P)| = 6 |vol(A′DPQ)| = 2m area(A′PQ) =
mℓ(A′M)(ℓ(PR)+ ℓ(QR)) > 2m(τ2−− γ2

+) > 8(τ2−− γ2
+)

2. The same bounds apply to the symmetrical cases

|ā|, |b̂|, and |b̄|.

5.4.3 Algorithm

Pseudocode for the edge edge case is shown in Figure 9. The main difficulty in proving correctness is the
form of the comparison on line 14. We must be able to bound E [m] ≪ m for reasonable bounds to be
found for γ− and γ+. There are two difficulties with doing this. The first is that no bounds on E [m] can be
derived using the simple automated framework in Section 2, and the second complication is that E [m2] can

be derived but not R[m2]. Using the test d̂2 ≤ γ2m2 rather than |d̂| ≤ γm avoids the need to compute m
entirely.

DerivingR[m2] from E [m2] can be achieved by boundingm2 from below. Unfortunately, the bound onm2

only holds provided the intersection exists, but the test on line 14 must be reliable even when no intersection
exists since it might otherwise allow an edge edge pair that is too distant to be counted as an intersection.
The solution to this is to bound m2 first using the test on line 9, where λ+ = 16(τ2− − γ2

+)
2. If the test

on line 9 causes the algorithm to terminate, then F [λ −m2] ≥ 0, in which case m2 ≤ λ+ = 16(τ2− − γ2
+)

2

implies no intersection. If the algorithm continues to line 12, then m2 ≥ λ−. Correctness of line 14 depends
on suitably choosing γ− and γ+.

What remains is to check the signs of â, ā, b̂, and b̄. Following the established logic, we would do two
checks for each, namely |â| ≤ φ and â < 0, where φ+ = 8(τ2− − γ2

+)
2. If either test succeeds, there is no

intersection. Both tests together are equivalent (even under floating point) to the test â ≤ φ. The logic is
the same for the other three sign checks, so line 22 performs the remaining checks correctly. Note that the
way ā was computed and checked for sign implies that â

m2 will be computed between 0 and 1 in floating
point. The case of b̄ is similar, so that my returned results are robust (there may be some accuracy loss,
however).

5.4.4 Addressing γ2m2 − d̂2

We want F [γ2m2 − d̂2] ≥ 0 to imply γ2
+m

2 − d̂2 ≥ 0, and F [γ2m2 − d̂2] < 0 to imply γ2
−m

2 − d̂2 < 0, and
we prove that the tolerances given in Figure 5 will guarantee this.

Since m2 > λ− = 910ǫL4 and E [m2] ≤ 129ǫL4, R[m2] < 129
910 . Using R[γ2] < 10ǫ we have R[γ2m2] <

(1 + 12ǫ)R[m2] + 12ǫ < 1
7 and then E [γ2m2] < 1

7γ
2m2.

Note that if d̂2 − E [d̂2] > γ2m2 + E [γ2m2], we will have F [γ2m2 − d̂2] < 0, so that the sign can be

computed unambiguously. Thus, we can restrict ourselves to the case d̂2 − E [d̂2] ≤ γ2m2 + E [γ2m2] or

d̂2 ≤ 8
7γ

2m2 + E [d̂2]. We also have F [d̂2] ≤
(

d̂+ E [d̂]
)2

(1 + ǫ) = d̂2 + d̂2ǫ+ 2d̂E [d̂](1 + ǫ) + E [d̂]2(1 + ǫ) and

F [d̂2] ≥
(

d̂− E [d̂]
)2

(1−ǫ) = d̂2−d̂2ǫ−2d̂E [d̂](1−ǫ)+E [d̂]2(1−ǫ), so E [d̂2] ≤ d̂2ǫ+2d̂E [d̂](1+ǫ)+E [d̂]2(1+ǫ) ≤

(87γ
2m2 + E [d̂2])ǫ+ 2

√

8
7γ

2m2 + E [d̂2]E [d̂](1 + ǫ) + E [d̂]2(1 + ǫ).

12

Let g(x) = (87γ
2m2 + x)ǫ+ 2

√

8
7γ

2m2 + xE [d̂](1 + ǫ) + E [d̂]2(1 + ǫ)− x. Note that

g

(

2

35
γ2m2

)

=

(

8

7
γ2m2 +

2

35
γ2m2

)

ǫ+ 2

√

8

7
γ2m2 +

2

35
γ2m2E [d̂](1 + ǫ) + E [d̂]2(1 + ǫ)− 2

35
γ2m2

= γ2m2

(

6

5
ǫ− 2

35

)

+ 2

√

6

5
γmE [d̂](1 + ǫ) + E [d̂]2(1 + ǫ)

≤ γ2m2

(

6

5
ǫ− 2

35

)

+ 2

√

6

5
γm(47ǫL3)(1 + ǫ) + (47ǫL3)2(1 + ǫ)

=

(

γm

(

6

5
ǫ− 2

35

)

+ 94

√

6

5
ǫL3(1 + ǫ)

)

γm+ (47ǫL3)2(1 + ǫ)

≤
(

(2.25ǫ
1

4L)(4(τ2− − γ2
+))

(

6

5
ǫ− 2

35

)

+ 94

√

6

5
ǫL3(1 + ǫ)

)

γm+ (47ǫL3)2(1 + ǫ)

=

(

351

4
ǫ

3

4L3

(

6

5
ǫ− 2

35

)

+ 94

√

6

5
ǫL3(1 + ǫ)

)

γm+ (47ǫL3)2(1 + ǫ)

=

(

351

4

(

6

5
ǫ− 2

35

)

+ 94

√

6

5
ǫ

1

4 (1 + ǫ)

)

ǫ
3

4L3γm+ (47ǫL3)2(1 + ǫ)

≤ −5ǫ 3

4L3γm+ (47ǫL3)2(1 + ǫ)

≤ −5ǫ 3

4L3(2.25ǫ
1

4L)(4(τ2− − γ2
+)) + (47ǫL3)2(1 + ǫ)

≤ −1755

4
ǫ

3

2L6 + (47ǫL3)2(1 + ǫ)

=

(

−1755

4
+ 472ǫ

1

2 (1 + ǫ)

)

ǫ
3

2L6

≤ −400ǫ 3

2L6

< 0

Further, if x ≥ 2
35γ

2m2 then

g′(x) = ǫ+
E [d̂](1 + ǫ)
√

8
7γ

2m2 + x
− 1

≤ ǫ+
E [d̂](1 + ǫ)
√

γ2m2
− 1

= ǫ+
E [d̂](1 + ǫ)

γm
− 1

≤ ǫ+
47ǫL3(1 + ǫ)

(2.25ǫ
1

4L)(4(τ2− − γ2
+))
− 1

= ǫ+
188ǫ

1

4 (1 + ǫ)

351
− 1

≤ ǫ+
188ǫ

1

4 (1 + ǫ)

351
− 1

< −0.9

Thus, I conclude that g(x) < 0 for all x ≥ 2
35γ

2m2. Since g(E [d̂2]) ≥ 0, we must have E [d̂2] < 2
35γ

2m2.

13

We know F [γ2m2 − d̂2] < 0 implies F [γ2m2] − F [d̂2] < 0, which leads to 0 > F [γ2m2] − F [d̂2] >

γ2m2 − E [γ2m2] − d̂2 − E [d̂2] > γ2m2 − 1
7γ

2m2 − d̂2 − 2
35γ

2m2 ≥ 4
5γ

2m2 − d̂2 > γ2
−m

2 − d̂2. Similarly

F [γ2m2 − d̂2] ≥ 0 implies F [γ2m2] − F [d̂2] ≥ 0, which leads to 0 ≤ F [γ2m2] − F [d̂2] ≤ γ2m2 + E [γ2m2] −
d̂2 + E [d̂2] ≤ γ2m2 + 1

7γ
2m2 − d̂2 + 2

35γ
2m2 ≥ 6

5γ
2m2 − d̂2 ≤ γ2

+m
2 − d̂2.

Algorithm 9 Edge Edge 3D

1: function Edge Edge(A,B, P,Q)
2: if Degenerate intersection then

3: return (false, 0, 0)
4: end if

5: u← B −A
6: v ← Q− P
7: r ← u× v
8: m2 ← ‖r‖2
9: if m2 ≤ λ then

10: return (false, 0, 0)
11: end if

12: w ← P −A
13: d̂← r · w
14: if not d̂2 ≤ γ2m2 then

15: return (false, 0, 0)
16: end if

17: n← r × w
18: â = n · v
19: b̂ = n · u
20: ā = m2 − â
21: b̄ = m2 − b̂
22: if â ≤ φ or b̂ ≤ φ or ā ≤ φ or b̄ ≤ φ then

23: return (false, 0, 0)
24: end if

25: return (true, â
m2 ,

b̂
m2)

26: end function

Floating point: E [m2] ≤ 129ǫL4. E [d̂] ≤ 47ǫL3. E [d̂2] ≤ 589ǫL6. E [â] ≤ 129ǫL4. E [b̂] ≤ 129ǫL4.
E [ā] ≤ 281ǫL4. E [b̄] ≤ 281ǫL4. m2 ≤ 12L4.

Tolerance constraints:

• λ+ = 16(τ2− − γ2
+)

2

• φ+ = 8(τ2− − γ2
+)

2

• m2 ≤ λ with E [m2] ≤ 129ǫL4 leads to min(λ+ − λ, λ− λ−) > 130ǫL4

• â ≤ φ with E [â] ≤ 129ǫL4 leads to min(φ+ − φ, φ− φ−) > 130ǫL4.

• ā ≤ φ with E [ā] ≤ 281ǫL4 leads to min(φ+ − φ, φ− φ−) > 282ǫL4.

• d̂2 ≤ γ2m2, addressed in Section 5.4.4.

14

5.5 Triangle-Vertex

Let ABC and P be a triangle and a vertex. Then, Let

u = B −A v = C −A w = P −A r = u× v m2 = ‖r‖2 n = r × w (15)

Now, the signed distance d and barycentric weights a, b, c can be computed from

d̂ = r · w ĉ = −n · u b̂ = n · v â = m2 − b̂− ĉ d =
d̂

m
c =

ĉ

m2
b =

b̂

m2
a =

â

m2
. (16)

The intersection criterion is now d̂2 ≤ δ2m2, â > 0, b̂ > 0, and ĉ > 0. If satisfied and no degenerate
intersection was registered, then we can bound m, â, b̂, and ĉ from zero.

Algorithm 10 Triangle Vertex 3D

1: function Triangle Vertex(A,B,C, P)
2: if Degenerate intersection then

3: return (false, 0, 0, 0)
4: end if

5: u← B −A
6: v ← C −A
7: r ← u× v
8: m2 ← ‖r‖2
9: if m2 ≤ ν then

10: return (false, 0, 0, 0)
11: end if

12: w ← P −A
13: d̂← r · w
14: if not d̂2 ≤ δ2m2 then

15: return (false, 0, 0, 0)
16: end if

17: n← r × w
18: b̂ = n · v
19: ĉ = −n · u
20: â = m2 − b̂− ĉ
21: if â ≤ ζ or b̂ ≤ ζ or ĉ ≤ ζ then

22: return (false, 0, 0, 0)
23: end if

24: return (true, â
m2 ,

b̂
m2 ,

ĉ
m2)

25: end function

5.5.1 Bound on m

Let P ′ be P projected into the plane ABC as shown in Figure 7(a). P projects to lines AB, AC, and BC
at T , S, and R respectively. If R lies between B and C, then ℓ(PR) > τ−. Since ℓ(P ′P) = d ≤ δ+, we

have ℓ(P ′R) >
√

τ2− − δ2+, with similar bounds for ℓ(P ′S) and ℓ(P ′T). If R projects beyond B and C, the

same bound can be obtained from ℓ(P ′S) or ℓ(P ′T) using the same logic as in the 2D case. Note that the

inradius r of ABC must satisfy r >
√

τ2− − δ2+. Noting also that the ratio of the area of the incircle to

the area of the triangle must satisfy πr2

area(ABC) ≤ π

3
√
3
, with equality for an equilateral triangle, we have

m = 2area(ABC) ≥ 6
√
3r2 > 6

√
3(τ2− − δ2+).

15

A

B

C
P ′

P

T

S

R

(a) Area bound for triangle-vertex.

Figure 7: Proof illustrations for triangle vertex in 3D.

5.5.2 Bound on â, b̂, and ĉ

Let s = P ′ − P and V = |vol(ABP ′P)| = 1
6 |((P ′ − A) × (P − A)) · (B − A)| = 1

6 |((P ′ − P) × (P −
A)) · (B − A)| = 1

6 |(s × w) · u|. Since s = ± d
m
r, |ĉ| = | − n · u| = |(r × w) · u| = m

d
|(s × w) · u| =

6m
d
V = 2m

d
ℓ(PP ′)area(ABP ′) = 2m area(ABP ′). The bound area(ABP ′) > τ2− − δ2+ is obtained from

min(ℓ(P ′R), ℓ(P ′S), ℓ(P ′T)) >
√

τ2− − δ2+ as in the 2D case. Finally, |ĉ| > 2m(τ2− − δ2+) > 12
√
3(τ2− − δ2+)

2.

5.5.3 Algorithm

Pseudocode for the face-vertex case is shown in Figure 10. This algorithm and its correctness follows the
edge-edge case rather closely. Line 9 bounds m2 from zero using the fact that m2 > ν+ = (6

√
3(τ2−−δ2+))

2 =
108(τ2− − δ2+)

2 whenever an intersection should be registered. In particular, if the comparison on line 9
succeeds and the algorithm terminates, then we know that no intersection should have been registered. This
test allows the test on line 14 to be reliable. The correctness of the test on line 14 will follow from choosing
δ− and δ+ properly.

What remains is the check on the signs of â, b̂, and ĉ on line 21. Following the logic of the edge-edge case,
we use tests of the form â ≤ ζ, where ζ+ = 12

√
3(τ2− − δ2+)

2, since this covers both the sign and magnitude

checks on â that would otherwise be required. The roundoff error analysis for d̂2 ≤ δ2m2 is identical to the
edge-edge case and is omitted here.

Floating point: E [m2] ≤ 129ǫL4. E [d̂] ≤ 47ǫL3. E [â] ≤ 445ǫL4. E [b̂] ≤ 129ǫL4. E [ĉ] ≤ 129ǫL4.

Tolerance constraints:

• ν+ = 108(τ2− − δ2+)
2

• ζ+ = 12
√
3(τ2− − δ2+)

2

• m2 ≤ ν with E [m2] ≤ 129ǫL4 leads to min(ν+ − ν, ν − ν−) > 130ǫL4

• â ≤ ζ with E [â] ≤ 445ǫL4 leads to min(ζ+ − ζ, ζ − ζ−) > 446ǫL4.

• b̂ ≤ ζ with E [b̂] ≤ 129ǫL4 leads to min(ζ+ − ζ, ζ − ζ−) > 130ǫL4.

• ĉ ≤ ζ with E [ĉ] ≤ 129ǫL4 leads to min(ζ+ − ζ, ζ − ζ−) > 130ǫL4.

16

• d̂2 ≤ δ2m2, identical to the case addressed in Section 5.4.4, since γ− = δ−, γ = δ, γ+ = δ+, and the
values E [m2] and E [d̂] are the same.

5.6 Triangle-Edge

Let ABC and PQ be a triangle and an edge and

vA = 6vol(BCPQ) vB = 6vol(CAPQ) vC = 6vol(ABPQ) (17)

vP = 6vol(ABCP) vQ = 6vol(ABCQ). (18)

The triangle intersection barycentric coordinates are given by

γA =
vA

vA + vB + vC
γB =

vB
vA + vB + vC

γC =
vC

vA + vB + vC
αP =

vP
vP − vQ

αQ =
vQ

vP − vQ
. (19)

The intersection criteria are that αP and αQ differ in sign but that γA, γB , and γC agree in sign. If these
conditions are met, we show the above computations to be robust.

Be begin with a bound on |vP | and |vQ|. Consider the case shown in Figure 8(a), where P projects
to plane ABC at a point P in triangle ABC and Q projects to a point Q′ outside triangle ABC. Then,
ℓ(PP ′) > δ− and ℓ(QQ′) ≥ ℓ(SR) > γ−. Thus, we see that, in general, ℓ(PP ′) > min(γ−, δ−). |vP | =
6 |vol(ABCP)| = 2area(ABC)ℓ(PP ′). Note that min(ℓ(DT), ℓ(DU), ℓ(DV)) > γ−, so that the case of
bounding area(ABC) is analogous to that considered in Section 5.5.1 and leads to 2area(ABC) > 6

√
3γ2

−.

Finally, |vP | = 2area(ABC)ℓ(PP ′) > 6
√
3γ2

− min(γ−, δ−) = ξ+.
Next, we consider a bound on |vA|, |vB |, and |vC |. Here, |vA| = 6 |vol(BCPQ)| = 6 |vol(BCPD)| +

6 |vol(BCDQ)| = 2area(DBC)ℓ(PP ′) + 2area(DBC)ℓ(QQ′). Bounding area(DBC) is analogous to the
proof in Section 4.5 using min(ℓ(DT), ℓ(DU), ℓ(DV)) > γ−, leading to 2 area(DBC) > 2γ2

−. Finally, |vA| =
2area(DBC)(ℓ(PP ′) + ℓ(QQ′)) > 4γ2

− min(γ−, δ−) = µ+.
The logic for Algorithm 11 is very similar to that of Algorithm 4 and Algorithm 5, where we perform

separate sign and magnitude comparisons.

Algorithm 11 Triangle Edge 3D

1: function Triangle Edge(A,B,C, P,Q)
2: if Degenerate intersection then

3: return (false, 0, 0, 0, 0)
4: end if

5: vA ← ((B −Q)× (C −Q)) · (P −Q)
6: vB ← ((C −Q)× (A−Q)) · (P −Q)
7: vC ← ((A−Q)× (B −Q)) · (P −Q)
8: if |vA| ≤ µ or |vB | ≤ µ or |vC | ≤ µ or sgn(vA) 6= sgn(vB) or sgn(vB) 6= sgn(vC) then
9: return (false, 0, 0, 0, 0)

10: end if

11: vP ← ((A− P)× (B − P)) · (C − P)
12: vQ ← ((A−Q)× (B −Q)) · (C −Q)
13: if |vP | ≤ ξ or |vQ| ≤ ξ or sgn(vP) = sgn(vQ) then
14: return (false, 0, 0, 0, 0)
15: end if

16: return (true, vA

vA+vB+vC
, vB

vA+vB+vC
, vC

vA+vB+vC
, vP

vP−vQ
)

17: end function

Floating point: E [vA] ≤ 47ǫL3. E [vB] ≤ 47ǫL3. E [vC] ≤ 47ǫL3. E [vP] ≤ 47ǫL3. E [vQ] ≤ 47ǫL3.

17

A

B

C
D

Q′

P ′

P

Q

R

S

T

U

V

(a) Area bound for triangle-edge.

Figure 8: Proof illustrations for triangle edge in 3D.

Tolerance constraints:

• µ+ = 4γ2
− min(γ−, δ−)

• ξ+ = 6
√
3γ2

− min(γ−, δ−)

• vA > 0, enforced by guaranteeing |vA| > µ− and requiring µ− > E [vA] ≥ 47ǫL3.

• vP > 0, enforced by guaranteeing |vP | > ξ− and requiring ξ− > E [vP] ≥ 47ǫL3.

• min(µ+ − µ, µ− µ−) > 48ǫL3.

• min(ξ+ − ξ, ξ − ξ−) > 48ǫL3.

• Similar bounds for vB , vC , and vQ

5.7 Tetrahedron-Vertex

Let ABCD and P be a tetrahedron and a vertex. Let

vA = 6vol(PBCD) vB = 6vol(APCD) (20)

vC = 6vol(ABPD) vD = 6vol(ABCP) (21)

An intersection occurs if all have the same sign. Since these volumes all have the same sign, the barycentric
weights are robustly computed as

γA =
vA

vA + vB + vC + vD
γB =

vB
vA + vB + vC + vD

(22)

γC =
vC

vA + vB + vC + vD
γD =

vD
vA + vB + vC + vD

. (23)

If an intersection exists and no degeneracy is registered, then |vA|, |vB |, |vC |, and |vD| can be bounded.
We begin by bounding the distances from P to the face planes of the tetrahedron. In Figure 9(a), point P
projects to point J in triangle ABD but a point K on plane ABC outside triangle ABC. The degeneracy
assumption immediately gives ℓ(PJ) > δ−. For the more difficult case, PK must intersect one of the other
faces of the tetrahedron at L, so that ℓ(PK) ≥ ℓ(PL) > δ−. Thus, the distance from P to any of the
tetrahedron’s bounding planes is larger that δ−.

18

A

B

C

D

P

K

L
J

(a) Area bound for tetrahedron-vertex.

A

B

C

D

P

R
U

S

T

U ′

(b) Area bound for tetrahedron-vertex.

Figure 9: Proof illustrations for tetrahedron vertex in 3D.

Next consider the setup in Figure 9(b), where DP intersects ABC at R. It can be seen that the
distance ℓ(RU) from R to an edge of triangle ABC can be bounded as ℓ(RU) ≥ ℓ(PU ′) > δ−, since
P is bounded away from plane ABD. Similarly, ℓ(RS) > δ− and ℓ(RT) > δ−. Using the same logic
as Section 5.5.1, we conclude 2 area(ABC) > 6

√
3δ2−. If P projects to K in the plane of ABC, then

|vD| = 6 |vol(ABCP)| = 2 ℓ(PK)area(ABC) > 6
√
3δ3−. The same bound is obtained for the other volumes.

Thus, min(|vA|, |vB |, |vC |, |vD|) ≥ 6
√
3δ3− = ρ+.

The logic for Algorithm 12 is very similar to that of Algorithm 11.

Algorithm 12 Tetrahedron Vertex 3D

1: function Tetrahedron Vertex(A,B,C,D, P)
2: if Degenerate intersection then

3: return (false, 0, 0, 0, 0)
4: end if

5: vA ← ((B − P)× (C − P)) · (D − P)
6: vB ← ((P −A)× (C −A)) · (D −A)
7: vC ← ((B −A)× (P −A)) · (D −A)
8: vD ← ((B −A)× (C −A)) · (P −A)
9: if |vA| ≤ ρ or |vB | ≤ ρ or |vC | ≤ ρ or |vC | ≤ ρ then

10: return (false, 0, 0, 0, 0)
11: end if

12: if sgn(vA) 6= sgn(vB) or sgn(vB) 6= sgn(vC) or sgn(vC) 6= sgn(vD) then
13: return (false, 0, 0, 0, 0)
14: end if

15: return (true, vA

vA+vB+vC+vD
, vB

vA+vB+vC+vD
, vC

vA+vB+vC+vD
, vD

vA+vB+vC+vD
)

16: end function

Floating point: E [vA] ≤ 47ǫL3. E [vB] ≤ 47ǫL3. E [vC] ≤ 47ǫL3. E [vD] ≤ 47ǫL3.

Tolerance constraints:

• ρ+ = 6
√
3δ3−

• vA > 0, enforced by guaranteeing |vA| > ρ− and requiring ρ− > E [vA] ≥ 47ǫL3.

19

• min(ρ+ − ρ, ρ− ρ−) > 48ǫL3.

• Similar bounds for vB , vC , and vD

20

