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Supplemental material: Equivalence of primal and
saddle point formulations

Central to our proposed methodology is the replacement of
the following optimization functional, which we will refer to
as the primal energy formulation

Ẽ(U) = E(U)+
m

∑
i=1

di

2
Ci(U)2 (1)

with an alternative expression that yields the same optimiza-
tion solution, yet exhibits improved numerical conditioning.
In Eq. 1, U ∈ Rn is the vector of free parameters that the
energy Ẽ depends on; in our image deformation problem
this include the x- and y-coordinate components of all nodal
displacement values, but the methodology detailed here ap-
plies to any energy of this form, regardless of application
context. The term E(U) is a component of the energy that
has favorable (or acceptable) numerical conditioning by de-
sign. We will also assume that E(U) is bounded from below
and at least locally convex (in the vicinity of the solution
of interest). The additional terms d1C2

1(U), . . . ,dmC2
m(U) are

penalty functions corresponding to the constraints Ci(U) =
0. A soft constraint would be associated with a low or mod-
erate value of the respective coefficient di. A hard constraint
would conceptually have an infinite penalty coefficient; in
practice, a sufficiently high value would have the same ef-
fect in Eq. 1. As we will see, the alternative formulation can
effectively set such penalty coefficients to infinite values,
while remaining well-defined. However, even finite di val-
ues could lead to detrimental conditioning of Ẽ(U) if they
are disproportionately large relative to E(U).

Our alternative formulation, which we refer to as the sad-
dle point energy reads as follows:

Ê(U , p) = E(U)+
m

∑
i=1

αi piCi(U)−
m

∑
i=1

α
2
i p2

i
2di

. (2)

Here, we have introduced a new set of independent variables
p = (p1, . . . , pm), one for each barrier term Ci. The scalar
coefficients α1, . . . ,αm can be set to any arbitrary value; cer-
tain values will confer better numerical properties, but any
set of values will preserve the equivalence of equations 1
and 2. The claim we will prove is that these two energies at-
tain critical points at locations with matching values of the
parameters in U . That is, if U∗ is a critical point of Eq. 1,
then Eq. 2 has a critical point (U∗, p∗) for some appropriate
value of p = p∗. Conversely, if (U∗, p∗) is a critical point of
the saddle point energy, then U∗ is guaranteed to be a criti-
cal point of the primal energy. In the general case, we expect
that U∗ will be a minimum for Ẽ and (U∗, p∗) will be a saddle
point for Ê (due to its negative coefficients for the terms p2

i ),
but the proof does not depend on the nature of the critical
point.

This claim can be proven by examining the criticality con-
ditions for each energy. For the primal energy to have a crit-

ical point at U∗ the following must hold:

∂Ẽ
∂U

∣∣∣∣
U∗

= 0⇒ ∂E
∂U

∣∣∣∣
U∗
+

m

∑
i=1

diCi(U
∗)

∂Ci

∂U

∣∣∣∣
U∗

= 0. (3)

Respectively, for (U∗, p∗) to be a critical point of Ê the fol-
lowing must hold for the gradient with respect to U :

∂Ê
∂U

∣∣∣∣
U∗, p∗

= 0⇒ ∂E
∂U

∣∣∣∣
U∗
+

m

∑
i=1

αi p
∗
i

∂Ci

∂U

∣∣∣∣
U∗

= 0 (4)

and, at the same time, the partial derivative with respect to
each pk must be zero, thus:

∂Ê
∂pk

∣∣∣∣
U∗, p∗

= 0⇒ αkCk(U
∗)− α

2
k p∗k
dk

= 0

from which we readily obtain:

p∗i =
di

αi
Ci(U

∗). (5)

Substituting Eq. 5 into Eq. 4 yields the criticality condition
(Eq. 3) for the primal energy. Conversely, if Eq. 3 holds,
then by defining p∗ in accordance with Eq. 5 will automati-
cally make the remaining criticality condition for the saddle
point energy (Eq. 4) hold. This concludes our proof. As a
last observation, since the stated equivalence holds for any
value of the di coefficients, we can consider the limit case of
Eq. 2 with di →∞, making the last term converge to zero.
By doing this, the saddle-point energy becomes the true La-
grangian of the constrained problem, and the pi parameters
become equivalent to Lagrange multipliers.

A less obvious aspect of this formulation is how the abil-
ity of the saddle point energy to maintain the critical points
of the primal formulation is unaffected by the specific choice
of the free parameters α1, . . . ,αm. By closer examination of
Eq. 4 we can see that changing a coefficient αi to a different
value α̂i would have been simply equivalent to a change of
variable αi pi← α̂i p̂i or pi← (α̂i/αi)p̂i. Thus, the two dif-
ferent saddle point formulations created with parameter sets
α and α̂ would still have the property of matching the crit-
ical points U∗ of the primal respectively) for the auxiliary
variables. Since the exact value of these is unrelated to our
primary objective of minimizing Eq. 1, we are free to ad-
just them at will, and we typically do so as to optimize the
conditioning of Eq. 2.
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