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Figure 1: Vase of 637027 particles undergoing fracture at frames 153, 175, 199, 264, and 300.

Abstract
The application of spring-mass systems to the animation of brittle fracture is revisited. The motivation arises
from the recent popularity of peridynamics in the computational physics community. Peridynamic systems can be
regarded as spring-mass systems with two specific properties. First, spring forces are based on a simple strain
metric, thereby decoupling spring stiffness from spring length. Second, masses are connected using a distance-
based criterion. The relatively large radius of influence typically leads to a few hundred springs for every mass
point. Spring-mass systems with these properties are shown to be simple to implement, trivially parallelized, and
well-suited to animating brittle fracture.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—
Curve, surface, solid, and object representations;

1. Introduction

Physically-based modeling and rendering of natural phe-
nomena has gained increasing importance as demands for
realism and detail in animations, particularly within the vi-
sual effects industry, have escalated at a rapid pace. One par-
ticularly important phenomenon is the process of solids un-
dergoing fracture. A simple approach to animating fracture,
demonstrated more than twenty years ago [TF88, NTB∗91],
is to use a spring-mass system and dynamically remove
overly extended springs. Despite significant advances and
the advent of more sophisticated techniques, this simple ap-
proach remains popular. Motivated by recent work in the
computational physics community on peridynamics [Sil00,
ELP13], we describe a particular variation on this approach

that is simple to implement, trivially parallelized, and well-
suited to animating brittle fracture.

Peridynamic systems can be characterized as spring-mass
systems with two particular properties. First, spring forces
are based on a simple strain metric, ε, which normalizes a
spring’s deformed length by its rest length, thereby decou-
pling spring stiffness from spring length. Specifically, the
traditional spring force exerted on node i by node j is

fi =−k(‖xi−x j‖−di j)
xi−x j

‖xi−x j‖
, (1)

where xi and x j are the deformed positions of nodes i and
j, di j is the spring’s rest length, and k is the spring stiffness.
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Instead, peridynamics defines a simple strain metric

ε =
‖xi−x j‖−di j

di j
=
‖xi−x j‖

di j
−1 (2)

and then defines the force as

fi =−k ε
xi−x j

‖xi−x j‖
. (3)

This seemingly small change (note that ε is dimensionless)
has the effect of decoupling a spring’s stiffness, k, from its
rest length. Consequently, springs of different lengths will
share the same stiffness.

The second variation from a standard spring-mass sys-
tem involves the spring connection topology. In a standard
spring-mass system, nodes (point masses) are connected
based on a mesh topology, typically defined using 1-ring
neighborhoods. In peridynamic systems, spring connections
are set between all pairs of nodes that are within a partic-
ular distance from one another. Specifically, given a length
scale, λ, we place a spring between any pair of nodes that
are within a distance δ = Nλ from one other, where N is typ-
ically an integer between 2 and 6. This choice creates net-
works that can involve hundreds of springs per node, which
is far beyond the connectivity found in typical spring-mass
systems.

To model fracture, a spring is removed from the system
whenever its strain exceeds a threshold, τ. It is worth noting
that k and τ depend not only on properties of the material,
but vary with δ. Specifically,

k =
18K
πδ4 and τ =

√
5G
Kδ

(4)

where K is the bulk modulus and G is the fracture energy of
the material [SA04]. See Silling and Askari [SA05] for the
derivation of the spring constant. Note that spring stiffness
decreases quickly with larger values of δ. To model non-
uniformity in solids, one can vary each springs’s τ (we use a
normal distribution with a standard deviation of 2% from the
above mean). To model the fact that some brittle materials
become stronger under compression, the effective threshold,
τ
′, can be updated after a round of force calculations by

τ
′ = τ−αmin(0,εmin), (5)

where α is a user-specified constant (we use 0.25) and εmin
is the minimum strain over the incident springs [SA04].

Finally, we adopt a simple explicit integration scheme,
velocity Verlet. While much maligned for their onerous
timestep restrictions, explicit integration is not only sim-
ple to implement, but, as in solid-fluid coupling, the small
timesteps greatly simplify the modeling of fracture dynam-
ics. With large timesteps, one must model the fracture prop-
agation and the resulting energy release that occurs over the
timestep. In contrast, with small timesteps, we are able to
model fracture propagation by simply remove a subset of

the active springs every timestep and the resulting energy
release is accounted for in the next timestep.

While our point-based geometric representation offers
great simplicity, this simplicity does come at a cost—it is
difficult to generate render geometry. Although the parti-
cle skinning problem has received a great deal of attention
(e.g. [Bli82, BGB11, YT13]), these solutions have largely
targeted smooth materials, like liquids. To model realistic
fracture, we require sharp edges in the visualization geome-
try. This naturally motivates the constructive solid geometry
(CSG) approach used in this paper. Solving these geometric
problems is critical for computer graphics applications and
our solutions comprise the main technical novelity of this
paper.

Because these techniques focus on simplicity, they com-
plement each other and, taken together, provide a simple and
effective approach for realistic animation and rendering of
brittle fracture that is straightforward to implement on the
GPU.

2. Related Work

Fracture has been a topic of interest in computer graph-
ics since the work of Terzopoulos and Fleischer [TF88]
more than 25 years ago. Shortly thereafter, Norton and
colleagues [NTB∗91], described a fully three-dimensional
spring-mass model of fracture that closely resembles our
peridynamics-inspired approach.

As computer hardware improved, researchers turned to
more sophisticated approaches, such as the finite element
method (FEM), to animate deformable bodies and frac-
ture. In this context, the focus has centered on accommo-
dating the discontinuities that arise from fracture. O’Brien
and colleagues [OH99, OBH02] used dynamic remeshing
techniques to align mesh elements with the discontinu-
ities created during fracture. More recently, Busaryev et
al. [BDW13] applied a Delaunay remeshing strategy to frac-
ture of thin surfaces. Müller and Gross [MG04] avoided
remeshing by limiting fracture to follow the faces of the sim-
ulation elements, only requiring the duplication of vertices.
Parker and O’Brien [PO09] also adopted this approach, but
introduced “splinters” to hide the resulting artifacts.

Instead of remeshing and creating new elements, Kauf-
mann and colleagues [KMB∗09] used the extended finite
element method (X-FEM) to modify the underlying basis
functions to account for discontinuities. Similarly, in their
point-based method, Pauly and colleagues [PKA∗05] up-
dated the weight functions that determine how particles in-
teract. Instead of simply disallowing interaction between
separated particles, as we do, weights were reduced as points
moved farther from the crack tip. Yet another alternative,
known as the virtual node method, duplicates elements and
treats them as partially filled [MBF04]. The modal analy-
sis based method of Glondu et al. [GMD13] also adopted
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this approach, but employed an implicit representation of the
fracture surface.

Numerous non-physical techniques have also been em-
ployed, typically relying on clever geometric decomposi-
tions instead of physical definitions of cracks. Smith et
al. presented a constraint-based system based on points
and distances [SWB01], which offers simplicity both in
implementation and user control. Ragavachary employs
Voronoi diagrams to produce fractures [Rag02]. Martinet
et al. employed procedural modeling based on hybrid
trees [MGDA04]. Schvartzman and Otaduy casted fracture
as an optimization using centroidal Voronoi diagrams of high
dimension [SO14]. Müller and colleagues aligned approxi-
mate convex decompositions to fracture surface meshes in
real time [MCK13]. Their algorithm applies dynamically
computed fracture patterns, alleviating the need for prefrac-
turing.

Despite the availability of these more sophisticated
techniques, there has been continued interest in spring-
mass models. In terms of fracture, Hirota et al. use
spring-mass models for both surface [HTK98] and vol-
ume [HTK00] crack generation. More broadly, Lloyd
and colleagues [LSH07] and Natsupakpong and col-
leagues [NCc10] have explored techniques to approximate
finite element methods using spring-mass systems with care-
fully tuned spring constants. Both of these techniques, like
peridynamics, utilize material-driven spring constants. More
recently, Liu and colleagues [LBOK13] investigated fast in-
tegration of spring-mass models.

An interesting connection appears in the popularity of
spring-mass systems for modeling hair. Selle and col-
leagues [SLF08] went beyond connecting only nearest
neighbors and added virtual points and a variety of springs
to address torsion in straight hair, while Iben and col-
leagues [IMP∗13] defined several sophisticated springs for
simulation of curly hair. Peridynamics also goes beyond sim-
ply connecting nearest neighbors, though we connect point
masses based on a spatial range query that is independent of
any mesh structure.

Peridynamics Over the last fifteen years, the computational
physics community has been exploring a formulation of frac-
ture referred to as “peridynamics” [Sil00, ELP13]. This re-
search has resulted in several useful insights. First, many of
the alternative approaches discussed above for dealing with
discontinuities are somewhat complex and are not without
drawbacks, particularly in difficulty of implementation and
ensuring numerical robustness. By treating objects as col-
lections of point masses inter-connected by springs, we can
simply remove springs to achieve fracture in our systems.
Second, as discussed above, by using a strain metric to mea-
sure the deformation of springs, we can set the spring con-
stants on the basis of material properties rather than in an
ad-hoc manner. Third, by connecting particles over long dis-
tances, we can capture non-local effects.

3. Implementation

Preprocessing We first compute the minimum inter-particle
distance, λ, and then place springs between pairs of particles
that are within distance δ = Nλ from one another. Spatial
queries use a kD-tree of particle positions. The value of N
is thus one of the controls on material properties. We typi-
cally use 2-6, which yields a few hundred springs per par-
ticle. For each particle, we maintain its current position, its
original position, its velocity, the forces upon it, the list of
particles to which it is currently connected, and its current
strain threshold τ.

Time Integration Our implementation uses velocity Ver-
let [SABW82] for numerical integration. Given that we use
an explicit scheme, velocity Verlet provides a good trade off
between speed, stability, and accuracy; symplectic Euler or
leapfrog, which aside from initialization is equivalent to ve-
locity Verlet, would be reasonable alternatives. If x,v, f, and
m are particle position, velocity, forces, and mass, and the
time step is ∆t, an update is given by:

v(t + ∆t
2
)← v(t)+ ∆t

2
f(t)
m

x(t +∆t)← x(t)+v(t + ∆t
2
)∆t

Calculate f(t +∆t) from x(t +∆t)

v(t +∆t)← v(t + ∆t
2
)+

∆t
2

f(t +∆t)
m

GPU Implementation The implementation is in CUDA
with one particle per thread. We use seven CUDA kernels,
which together comprise only 175 lines of code. One of the
kernels handles position updates, and one handles velocity
updates. These are entirely straightforward, as the velocity
Verlet algorithm would suggest. The other five kernels are
devoted to calculation of forces.

The five force kernels, initialization, collection, colli-
sions, springforces, and bodyforces, are called in sequence,
once each per timestep. The initialization kernel loads new
strain limits based on any updates from the previous itera-
tion and resets the hash bins used in the subsequent colli-
sions kernel to empty. The collection kernel is a preliminary
step required for collision detection. We use spatial hash-
ing [THM∗03] to put particle positions into bins. Since hash-
ing executes in parallel (each particle determines its own bin
and adds itself to that bin), we use the CUDA atomic opera-
tions to prevent conflicts.

Each particle executing the collisions kernel then locates
its own bin and checks distances from itself to other parti-
cles in its bin and in the surrounding 26 bins, although some
of these bin checks may be eliminated a priori. The force
model for collision is quadratic repulsion. Specifically, the
force exerted on particle pi by particle p j is

f = Kc

(
‖xi−x j‖−

λ

2

)2 xi−x j

‖xi−x j‖
(6)
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Figure 2: Projectile (force KS = 1e15 Pa) through a glass plate modeled with 131072 particles at frames 18, 20, 23, and 31.

where Kc is a model parameter. We use Kc = 1e8 Pa. Par-
ticles in the same connected component do not collide be-
cause collision forces are only applied at distances less than
λ/2 and the minimum inter-particle spacing is λ.

The springforces kernel essentially follows that of Silling
[SA05], where the particles are regarded as point masses
inter-connected by springs. The springforces kernel, exe-
cuted by each particle, pi, in parallel, carries out three tasks:

1. It determines, for each particle, p j, to which pi is con-
nected, the current strain, ε, between pi and p j . If ε >
max(τi,τ j) the spring is removed.

2. It updates the effective fracture threshold for the next
timestep, τ

′ = τ−αmin(0,εmin).
3. It accumulates spring forces induced on pi by the parti-

cles to which it is connected.

The bodyforces kernel accumulates force due to grav-
ity, collision with the floor, and, for the glass example, the
force of the projectile. Upon contact with the floor, the y-
component of the velocity of a particle is reflected. We use
a coefficient of restitution of 0.99 (99% of the y-component
is retained). For the projectile, we achieved the best results
using a repulsion force that we formulated experimentally.
The direction of this force is halfway between the unit ve-
locity vector of the projectile and the unit direction of pure
repulsion from the projectile center, which can be computed
by adding these vectors together and normalizing the result.
If c is the center of the projectile and r is its radius, then the
magnitude of the force acting on particle pi is

f = KS

(
16
(
‖xi− c‖− 3r

4

)(
‖xi− c‖− 3r

2

)2
)2/3

(7)

for ‖xi − c‖ ∈ [3r/4,3r/2]. This gives a force that is
quadratic in distance, peaks at r with value KSr2, has rela-
tively slow rise from 3r/4 to r, and yet falls off quickly, but
not discontinuously, away from r. The constant, KS, is an-
other model parameter. We provide video comparisons for
KS = 1e10,1e15, and 1e20 Pa.

4. Modeling Geometry

We experiment with three different choices for generating
particle sets from input objects. The first and simplest is a
regular grid of particles, each representing a cube of mate-
rial of side length λ. While useful for modeling simple, reg-
ular shapes (such as a plate of glass), more complex objects
require more sophisticated techniques.

Mesh-Based Geometry Given an input surface mesh, we
construct a tetrahedral mesh of a fattened shell using a two
step process. First, we initialize a collection of layers using
the input surface as the most exterior, with each layer a fixed
distance inward from the surface. We used six layers of par-
ticles for our vase model, and in practice we found that the
number of layers should be larger than N. On each layer, we
distribute vertices using the variational technique of Meyer
et al. [MKW07]. Working layer-by-layer allows us to control
both the inter-vertex distance in each layer as well as dis-
tance between layers without requiring a 3D optimization.

Finally, we construct a tetrahedral mesh from this point set
using a Delaunay triangulation. We then exclude all tetrahe-
dra whose vertices are either all from the most exterior sur-
face or all from the most interior surface. The barycenters of
remaining tetrahedra become the simulation particles.

Voronoi-Based Geometry While the mesh-based tech-
nique is fairly straightforward, it has two limitations. First, it
means that fracture surfaces are restricted to faces of the un-
derlying tetrahedral mesh, which results in well-known ar-
tifacts [MG04, PO09]. Second, it ties the resolution of the
(surface) render geometry to the resolution of the (volumet-
ric) simulation geometry, strictly limiting visual quality.

We employ a third technique to decouple the surface
mesh resolution from the particle density. Given an arbitrary
surface triangulation, we first compute a point cloud con-
tained within the surface. To keep inter-particle distances
bounded, but still introduce irregularity, we use blue noise
sampling [CGW∗13]. Next, we use clipped Voronoi dia-
grams to construct the volume decomposition [YWLL13].
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Figure 3: Welsh dragon (473380 particles) fracturing on floor, sequence at frames 58, 78, 188, and 258.

Each particle is then associated with a set of triangles (pos-
sibly empty) and a set of planes (Voronoi faces). Conse-
quently, we can use an arbitrary surface mesh, and rely on
the Voronoi description to build geometry for our particles.

Alignment As the particles move during the simulation, we
track which of those springs connecting adjacent geometric
elements have broken. Using the adjacencies of neighbor-
ing geometric elements, we can then compute (with breadth-
first search) the set of connected components at any iteration
of the simulation. The graph of these adjacencies is strictly
contained within the initial spring network, and edges are
removed only when the springs are broken. To align geom-
etry for rendering, we need only compute one (rigid) trans-
formation for each connected component. For any compo-
nent of n particles, given its initial point set (represented as
an n× 3 matrix) P and its current point set Q we compute
the transformation from P to Q using Procrustes superposi-
tion [Kab78, TKA10].

5. Rendering

Each particle serves as a base point for an oriented, primitive
geometric element. For the three examples provided here, we
used cubes (glass plate, Figure 2), tetrahedra (falling vase,
Figure 1), and Voronoi polytopes with embedded triangular
mesh surfaces (falling Welsh dragon, Figure 3). The objects
are constructed by the raytracer using CSG, and so elements
that abut or overlap one another will appear as joined in a
single piece.

Primarily, the raytracer executes on an NVIDIA K20 GPU
with a standard allocation of one ray per thread. Each parti-
cle has a radius that describes the extent of its associated
geometric element, and the particles and their radii are used
to construct a kD-tree on the CPU. The kD-tree is flattened
to a 1-dimensional array and loaded into the K20 memory.
Raytracing on the GPU then uses the short-stack algorithm
due to Horn et al. [HSHH07].

Raytracing either transparent cubic elements or opaque
tetrahedral elements is straightforward and needs little ex-
planation, except to note that for transparency, the last geo-

Figure 4: Raytracing polytope with internal mesh.

metric element in the connected collection of elements that
is first hit by the ray must be identified so that its orienta-
tion can be used to determine the exiting refractive ray and
internal reflective ray. Raytracing a Voronoi polytope with
internal triangular mesh (a trimtope) is only slightly more
involved. The important cases are shown in Figure 4.

The Voronoi site of the polytope (point V) determines
the forward/backward orientation of the triangle mesh. The
mesh lies above V, in the forward direction. The ray A will
enter and exit the trimtope without intersecting the triangle
mesh. A secondary ray from the entry point of A to V will
intersect a forward facing triangle, and so the ray is declared
a “miss”. The ray B will also enter and exit without inter-
secting the mesh, but a secondary ray from the entry point to
V will either miss the mesh entirely or hit a backward facing
triangle. In either case, the entry point to the trimtope is de-
clared the “hit” location. The ray C will hit a forward facing
triangle, and that is taken as the “hit” location. The ray D
will hit a backward facing triangle, and so the entry point on
the trimtope is again declared the “hit” location.

In all renderings, we used environment lighting for the
diffuse lighting component and a normalized Blinn-Phong
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shader for the specular component. The environment light-
ing technique employs the approximation due to Ramamoor-
thi and Hanrahan [RH01], which is based on the first 9 spher-
ical harmonic coefficients. The HDR environment “parking
lot” is from HDRI Hub [HDR13], and the woodgrain texture
is from TextureX [Tex13].

6. Results

To evaluate our methods, we created three experimental
setups, which are highlighted in Figures 1 (falling vase),
2 (glass plate / projectile), and 3 (falling Welsh dragon).
For each simulation, our rendering framework varied as de-
scribed above. To better understand peridynamics, we exper-
imented with four parameters: KS, K, δ, and τ. In addition,
we made adjustments to the simulation framework based on
both physical and artistic controls. Table 1 summarizes each
of the models used in our simulations.

Model δ #Parts. Type # Tris.
Glass 3λ 131072 Cubes 73728
Vase 2λ 637027 Tetrahedra 80008
Welsh Dragon 6λ 473380 Trimtopes 499820

Table 1: Model summary, showing values for δ, the number
of particles in each simulation, type of modeling primitive,
and the number of triangles on the surface representation.

Performance Table 2 shows a quantitative analysis of the
performance of each of the three simulation codes. Our ∆t
for all simulations was set to 2−23 = 1.192e−7 seconds, the
nearest power of two to the value of 1e−7 used by Silling
and Askari [SA04]. For the glass plate example, 500 itera-
tions were computed for each rendering frame, while for the
vase and dragon 1000 iterations were used. Consequently,
all videos are in slow-motion.

We used the CUDA 5.5 profiler to measure the time spent
in each of the seven CUDA kernels, and we aggregated the
data across three different iteration ranges to give an esti-
mate of mean occupancy and execution time before, during,
and after impact within each simulation. Across all runs,
the majority of the time (95-99%) was spent in either the
collisions kernel or the springforces kernel, the balance de-
pending on how much collision was occurring. Note that be-
cause the glass simulation can assume the particles are ini-
tially distributed in a regular grid, we can leverage this in our
implementation of certain kernels. Collision was ultimately
treated slightly differently in each simulation as a result.

A significant difference among the runs was the size of
the radius, δ, used for computing the initial set of springs. In
the dragon example, δ was set significantly higher (δ = 6λ),
resulting in a maximum of 517 initial springs, whereas the
maximum number of springs were 121 and 185 for the glass
and vase examples. The net result was a significantly larger

Model Iter. Range Occupancy Total Time (s.)
Glass 0 - 1k 0.570 30.171

50k - 51k 0.725 226.888
100k - 101k 0.726 239.864

Vase 120k - 121k 0.622 268.888
160k - 161k 0.622 268.236
200k - 201k 0.626 265.479

Welsh 100k - 110k 0.395 525.335
Dragon 200k - 201k 0.395 511.017

300k - 301k 0.393 505.449

Table 2: Mean GPU occupancy and execution time for each
simulation at 1000 iteration ranges before, during, and after
fracture.

time spent in the springforces kernel as opposed to the col-
lisions kernel. This affects mean occupancy, since collisions
achieved an occupancy of 0.75 vs. 0.375 for springforces.

Projectile Force Figure 5 shows a comparison of projectile
force (KS, 1e10,1e15, and 1e20 Pa) both at the point of im-
pact as well as during impact (approximately 5.96e−5 sec-
onds later). In this case, while the apparent energy increases
with KS, the dominant crack patterns of the glass are identi-
cal because we selectively weakened a set of springs in the
glass/projectile simulation. While we did this by using a ran-
dom walk, an artist could use this same control to determine
where cracks occur (selective weakening was not used in the
other examples.)

Figure 5: Comparison of projective impact at frame 21 for
varying projectile force KS = 1e10,1e15,1e20 Pa from left
to right.

A visual comparison of the three runs shows that when
the projectile force is weaker, the glass behaves as if it is be-
ing struck with a blunt hammer. Nevertheless, at the highest
force, the projectile punches through the glass, effectively
disintegrating a hole along the way. Controlling these pa-
rameters, as well as other body forces, allows for a fairly
diverse set of fracture behaviors.

Spring Force In a second experiment, we varied the bulk
modulus, K, of the falling vase. Instead of targeting a spe-
cific value (such as K = 32.81e9 Pa for glass), we varied
the value of K for the vase and dragon examples until we
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Figure 6: Comparison of vase impact at frame 227 for vary-
ing bulk modulus K = 2.94e8,2.94e9,8.82e9 Pa from left to
right.

Figure 7: Comparison of dragon impact at frame 177 for
varying radius δ = 2λ,3λ,6λ from left to right.

achieved a desired look. Our default, K = 2.94e9 Pa for both
the vase and dragon, creates a less brittle object, similar to
clay earthenware. To demonstrate the parameter’s effect, we
show two additional fractures of the vase for K = 2.94e8
and K = 8.82e9, a 10-fold decrease and a 3-fold increase.
See Figure 6.

With less brittle material, i.e., lower K and hence weaker
springs, the vase quickly crumbles into dust. The object acts
almost as a fluid. With a higher K, we get more dust and
larger chunks, indicative of the resistance to stretching from
the stiffer springs. Note that if we increased K further, the
vase would explode on impact, as the brittleness of the object
would produce instabilities relative to any major collision.

Spring Radius In general, using only the 1-neighbors (δ =
λ) for the peridynamic spring network leads to unrealistic
phenomena. Our springs are set to be relatively stiff com-
pared with other uses in computer graphics, and there is no
damping. External body forces cause the mesh to flex and
break quickly. A larger radius of springs leads to a benefi-
cial network large enough to provide non-local effects and
rigidity to the system.

Figure 7 shows a comparison of the dragon mesh shortly
after impact when using two radii, δ = 2λ and δ = 3λ, that
are smaller than the nominal radius of 6λ used in Figure 3.
These radius values correspond to a maximum number of
bonds between masses of 24 and 72, compared with the
510 used at δ = 6λ. The network with the fewest number
of springs disintegrates upon contact with the floor, slowing
the eventual rotation of the object. While the value of 3λ

does lead to some larger chunks, there is also a large cloud
of dust emerging.

Figure 8: Comparison of vase impact at frame 190 with
strain limits τ = 0.01,0.005,0.001,0.0005,0.0002 decreas-
ing from left to right.

Strain Limits Varying the strain limit, τ, is similar to
varying the toughness parameter used in FEM-based frac-
ture [OH99]. Using the formula defined in Eq.5, a reason-
able value of τ for a glass object would be 0.0005 [SA04].
Nevertheless, for the dragon and vase we wanted to reduce
fragility, and so we varied this threshold to produce a vari-
ety of effects shown in Figure 8. In particular, at the highest
value, the vase simply bounces off the floor, whereas each
decreasing value causes less bounce and more fragile crum-
ble. At the lowest value, the impact with the floor causes the
entire vase to crumble almost instantaneously.

7. Discussion

Undoubtedly, we are not the first computer graphics re-
searchers to use spring-mass systems to animate fracture, to
connect springs over long distances, or to base spring forces
on a strain metric. Nevertheless, motivated by peridynamics,
we are the first to combine these techniques and show their
viability for animating brittle fracture in computer graphics.
The power of our approach is its simplicity. Discontinuities
arising from fracture are trivially handled and the method is
highly amenable to GPU implementations.

Limitations and Future Work Foremost among limita-
tions is the difficulty of generating geometry for rendering
from the underlying point based simulation data. This chal-
lenge is not unique to our approach but plagues all point-
based approaches. Nevertheless, while particle skinning has
been studied in the case of smooth surfaces, very little work
has been done for generating surfaces with sharp features
from particle data. Using Procrustes superposition can lead
to minor popping artifacts when large chunks are connected
by only a few remaining springs and those springs break,
leading to a sudden change in the Procrustes transform.
These artifacts could be addressed by smoothly transition-
ing to the new transforms using a method analagous to a
proportional-derivative controller.

Second, the simplicity of spring-mass systems does come
at a cost—it is far more difficult to handle arbitrary material
models. Indeed, our approach is limited to a single Poisson
ratio, 0.25. However, recent work in peridynamics promises
to circumvent this restriction [ELP13]. Moreover, we are
currently limited to modeling brittle fracture. While some
ductility has been shown to be important for animation of
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fracture [OBH02], inclusion of a volume-preserving plastic-
ity model in a spring-mass framework is non-trivial.

Third, as in most physics-based animation methods, tun-
ing parameters can be a tedious task. While a variety of phe-
nomena can be achieved, the parameters, K, Kc, KS, δ, τ, α,
and ρ (mass density, we use 2200 kg/m3 in our experiments),
all must be tuned. Fortunately, some of these can be set to
physically measured quantities, while others have recom-
mended values from the peridynamics community [SA04].

Our force model for collision is approximate, and can lead
to missed collisions when small, fast moving elements pen-
etrate through each other. This situation is avoided, in gen-
eral, by using longer springs and having the object break into
fewer, larger chunks.

While peridynamics makes no explicit assumptions about
the particle sampling, the relationship between sampling
density and the simulation quality remains unexplored. We
have explored both regular and irregular sampling tech-
niques, but in general we have maintained uniform density
requirements. There is an expectation that in the presence of
nonuniformity, the appropriate value of N might also have to
vary. Both of these design choices currently have an intimate
relationship with debris size as well as the noise/graininess
of the resulting solids. Understanding these relationships
further would benefit the model, as would modifying the ren-
dering stage to take advantage of more complex sampling
techniques. Moreover, the level of detail in our fracture pat-
terns is tied to the initial particle sampling. Adapting the par-
ticle sampling to better resolve cracks and other simulation
features could dramatically improve the results.

An important area of future work involves doing a full
comparison to both other meshless methods as well as finite
element techniques. In particular, it would be interesting to
better understand the differences between our approach and
FEM. This comparison could be used to evaluate both the
computational differences as well as different definitions of
strain and their efficacy under various sampling strategies.

Finally, our current implementation uses explicit integra-
tion. While this choice admits straightforward and highly
parallel implementation, it does require many timesteps per
frame. Taking larger timesteps would not only require im-
plicit integration, but also new techniques to propagate frac-
ture over a single timestep and a different approach to col-
lision detection. Alternatively, our simple explicit scheme
could be improved by employing asynchronous integration
similar to Harmon et al. [HVS∗09]. Addressing these limi-
tations and improving the performance are promising direc-
tions for future work.
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