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Abstract
The Global Positioning System is well known for not reaching indoor environments. Several Indoor Positioning

System’s have been proposed, but most of these solutions either have high accuracy errors or use expensive material

to attenuate positioning errors. In this paper we propose a Computer Vision routine which is able to compute the

location and orientation on indoor environments. This routine is based on Structure from Motion, an incremental

algorithm which recovers the 3D structure from related photographs. The 3D structures generated are geocoded,

stored in a database, and new photographs can be added at any time. By combining these 3D structures with

the already existing Synthetic Views method for fast location recognition, we are able to compute the indoor GPS

coordinates and orientation of new photographs in less than a second.
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1. INTRODUCTION

Used for civil, commercial and military purposes, the

Global Positioning System (GPS) has proven to be a re-

sourceful and useful service. By using 4 or more satellites,

this system use a trilateration process for world wide loca-

tion recognition. Since the process of trilateration requires

the communication between the subject to be located and

the satellites, occluded zones (by bad weather or buildings)

often hinder this communication which renders the GPS

ineffective.

To complement the GPS in these zones, several Indoor Po-

sitioning System (IPS) solutions were researched. These

solutions were evaluated in several performance metrics

were the most relevant are: accuracy, precision, complex-

ity, robustness, scalability and equipment cost. Presently

there is not any official IPS because the existing solutions

does not balance these metrics.

Further tackling the indoor localization problem, the Com-

puter Vision community has been supporting the use of

Structure from Motion, a Simultaneous Location and Map-

ping (SLAM) technique to geo-registrate photographs with-

out prior information of their location. The advantage of

this system related to other research’s is that it does not

require expensive hardware. A simple photograph taken

from cellphone is all it is needed. But most of the SFM

solutions proposed were only tested on outdoor environ-

ments, where the GPS signal is strong the majority of time.

Besides, the implementation of their complete pipeline is

not publicly available.

So, to offer continuity to this research, we were motivated

to develop a prototype which uses one of the existing Com-

puter Vision fast localization methods to perform image

geocoding on occluded zones, without any prior informa-

tion of where photographs were taken.

In this paper we want to prove that already existing meth-

ods can be applied into indoor with just few modifications.

By developing a prototype, we will offer the necessary

tools for the Computer Vision community to experiment

and improve this research. We also want to show that both

scalability and performance may be achieved without ex-

pensive hardware.

2. RELATED WORK

The task of indoor localization is related with several ar-

eas of research. Taking advantage of Inertial Measurement

Unit’s (IMU) device, [Woodman 08, Patrick 09] proposed

an indoor location system using this measurement device.

The IMU are known for high drifting errors which is accu-

mulated over time. To compensate errors, other research’s

propose to use a combined IMU system with RFID’s

[Ruiz 12] or Ultra-Wideband measurements [Hol 09].

By using Ultrasonic waves, [Priyantha 05, Minami 04,

Hazas 06] propose solutions which use these high accu-

racy waves for indoor localization. Although these solu-

tions compute locations with reduced positioning errors,

the hardware needed for ultra-sonic waves is expensive.

Due to high range coverage and low cost hardware usage,

[J. 00, NI 03, Zhang 10, Das 14] proposed IPS solutions
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which use radio frequencies for location recognition. Sub-

jects to be located are required to carry a small RFID de-

vice which acts as a receiver of tracking information. Al-

though RFID solutions are able to compute positions on

indoor environments, radio frequencies are affected by sig-

nal interference caused by infrastructures.

In [Mao 13, Jung 14], a solution for indoor location sys-

tem using a infrared system was proposed. Subjects to be

located are required to use an infrared device which peri-

odically sends information to infrared sensors positioned

along the building structure. The nearby sensors which are

able to capture the messages, consequently compute the

current position of users.

From the presented state of art it is noticeable that either

the solution uses expensive hardware to attain precise lo-

calization or cheap and inaccurate hardware which is com-

plemented with additional components to attenuate local-

ization errors.

Tackling the localization problem with optical techniques,

research such as [Schindler 07, Irschara 09, Li 10, Li 12]

use Structure from Motion models for location recogni-

tion. Structure from Motion allows the reconstruction of

3D models seen by several related 2D photographs. Since

these models store information of photographs which gave

them origin, new related photographs may be added by

comparing their visual information with the 3D structure.

Because querying new photographs to a large database

is highly inefficient, [Schindler 07, Irschara 09, Li 12] de-

vised routines which accelerate the query phase by retriev-

ing a set of potential useful information from the database

to locate new photographs. If a new photograph validates

a pose verification, then it is correctly placed within the

model and the GPS position is returned. The advantage of

these research’s is allowing location recognition while only

requiring cheap hardware such mobile-phone cameras.

3. IMAGE GEOCODING PROTOTYPE

From the state of art Computer Vision solutions, we de-

cided to use the Synthetic Views method [Irschara 09] on

our location recognition prototype. This choice was moti-

vated by the result of their work which proves that image

based localization in large environments can be made in

real time.

Since this method was only experimented on outdoor envi-

ronments, the following sub-sections offer a brief overview

of the inherent problems of indoor SFM models. After-

wards we explain how the SFM model can be used to re-

trieve GPS coordinates when querying photographs to be

geocoded. And the last subsection will provide the ex-

planation of the implementation of our prototype and the

available software used to complete the Synthetic Views

pipeline.

3.1. Understanding Indoor Models

Although the theory of image geocoding on outdoor and

indoor places should be the same, we questioned ourselves

why the state of art research do not address experiments

into indoor environments. Driven by this curiosity, we

started by exploring the SFM process to understand to out-

put of 3D models. To do so, we chose VisualSFM [Wu b],

one of the available free to use SFM software’s to recon-

struct indoor models. Data sets for both indoor and outdoor

environments were gathered and we found that:

• Indoor environments are less descriptive than outdoor.

These environments often contain areas with few dec-

oration like blank walls. Since features are defined in

areas where a sudden discrepancy on intensity occurs

(edges, corners, ridges), indoor images often contain

less number of features;

• Indoor narrow areas prevent good baseline pho-

tographs. The SFM reconstruction strongly depends

on a chosen pair of photographs to start an incre-

mental reconstruction. A good baseline pair is of-

ten a pair which contains a wide area of common

features to support the further positioning of pho-

tographs. Due to the existence of narrow rooms, corri-

dors, entrances, it is often difficult to take good base-

line photographs.

Figure 1. Example of the reduction of fea­
tures extracted on indoor environments,
where each blue point is a feature extracted.
At the left, about 10100 features were ex­
tracted by how descriptive the church facade
is. At the left, only 1621 were extracted.

Due to these facts 3D models were often partitioned into

3 or more sub-models to avoid degeneracy. Although the-

oretically, these models are still usable to perform image

geocoding, practically each sub-model may contain dif-

ferent levels of drifting, which may create pose estima-

tions with different levels of errors even when taken in

the same environment. As a workaround to this problem,

we increased the number of photographs and decreased the

distance between photographs positions, which slightly in-

creased the quality of 3D models. Since more photographs

are required, each with less features than outdoor models,

we had to adjust some thresholds used in Synthetic Views.

3.2. Geocoding with Structure from Motion

So, to geocode a photograph means to retrieve the associ-

ated GPS information through other geographic informa-

tion. Using the SFM algorithm we are able to recover

the structure seen by several photographs and place the

168 EPCG 2014, Leiria, Nov 13–14



Figure 2. Example of an indoor reconstruc­
tion using VisualSFM (at the left). This
structure represents an amphitheater (at the
right). Analyzing the 3D structure recovered,
few 3D points are visible and the structure
semantic is hard to notice.

inputted photographs relatively to the generated structure.

Although we may add new photographs to the reconstruc-

tion by continuing the incremental SFM process, none of

the outputted data contains geographic information. There-

fore, to relate the 3D referential (where models are recon-

structed) to the GPS coordinate system (where models are

located in the world), the respective GPS coordinates of

each photograph used on the model reconstruction must

be injected in the system. With both coordinate systems

(3D and GPS) available, it is possible to approximate a 4x4

transformation matrix G which maps 3D positions X into

GPS coordinates.

gpscoords = X.G (1)

The G matrix can be obtained by computing an affine trans-

formation using a set of coordinates from both 3D and GPS

systems. This matrix can also be used to transform the di-

rection vector into GPS, since vectors can be represented

as two points. In this case, the GPS direction can be repre-

sented in cardinal directions.

3.3. Synthetic Views Implementation

So, to develop the image geocoding prototype, we started

by exploring an existing, uncompleted SFM code at

[SFM]. Although we did not need the entire SFM rou-

tine (as we already had VisualSFM for reconstructions, we

recycled functions which allow pose verification and pose

estimations. For feature processing we decided to use SIFT

[Lowe 04] as a feature descriptor, since it is also used in

[Irschara 09].

The Synthetic Views method is divided into 2 phases:

• An offline phase where 3D models are refined into

a compressed yet representative structure, and stored

into an image database;

• An online phase where the image database is used to

geocode incoming images.

As stated in [Irschara 09, p. 2], 3D models outputted by

SFM often contain several redundant descriptors. In or-

der to reduce the feature repeatability, [Irschara 09, p. 2]

propose the use of Mean Shift Clustering [Comaniciu 02].

This method applies a global threshold to cluster features

which have an high level of similarity, without losing the

pose estimation capability. In our implementation we used

the mean of the descriptors associated to each 3D point.

Although this may lead to a much more aggressive com-

pression, after performing few tests we noticed that the in-

formation kept is still capable of allowing a good feature

matching rate. As both orientation and scale will be needed

afterwards, we also compute their mean for each 3D point

and extrapolate them into the 3D coordinate system. While

the 3D orientation is given by the mean of the direction

of each associated 2D point to the respective camera view

points, the 3D scale is computed by the following equation.

scale3D =
scale ∗ distanceviewTo3DPoint

focallength
(2)

After compressing relevant information, artificial cameras

are placed uniformly around the 3D model and each one

takes a snapshot. To place each camera, we compute the

model ground plane by approximating a plane to the posi-

tion of each original view. This plane is then divided into

a grid and 12 views (each with 30°viewing direction dif-

ference) are placed into each grid position. Since indoor

models are narrower than outdoor models, we do not tilt

the viewing direction of each synthetic view by 10°as in

[Irschara 09, p. 4]. For each placed synthetic view, 3D vis-

ible points are re-projected into these cameras and artificial

photographs are created, each containing the compressed

2D and 3D point information. A 3D point is only visible

by a given synthetic view if:

• Its position lies within the camera view frustrum

culling;

• The scale of 3D point is higher than 1 in terms of

Difference of Gaussian (DoG);

• The difference of its 3D orientation with the viewing

direction of the current synthetic view is lower than

30°(face culling).

This process is done iteratively until we fill the ground

plane with synthetic views. With all the views placed, the

best views to represent the model are selected. To do this

selection, each synthetic view is evaluated by their view

coverage. Both original views and synthetic views are used

to build a square binary matrix, where 1 means that a view

A covers B and 0 the opposite. For outdoor models we con-

sider the proposed values for view coverage, so, a view A

covers B if A contains at least 150 points seen by B. For in-

door, to adapt to the reduction of points per view explained

in 3.1 this threshold is set to 30 points. Beside this condi-

tion, it is also defined that each view covers itself. The best

views to represent the 3D model are retrieved by applying

the greedy algorithm described in [Irschara 09, p. 4]).

The information of the best synthetic views are then stored

in 3D documents containing 3D visible points, their associ-

ated 2D points, compressed descriptors and a GPS matrix
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G described in 3.2 which is computed before compressing

the models. Also, their descriptors are injected into a vo-

cabulary tree to support the geocoding process.

Vocabulary Tree is a structure which allows the creation

of an image database, where the descriptors of images are

transcribed into ’words‘ and propagated through a n-ary

balanced tree. The main idea behind the vocabulary tree

is that similar descriptors will be propagated to the same

leafs. When querying an image against the vocabulary tree,

the more similarity the propagation is, the higher the prob-

ability of 2 images positively match when performing fea-

ture matching. Furthermore, this image database structure

is scalable and adaptable to higher databases as it allows

the creation of trees with more levels (which refines the re-

sult of queries) and more branches (which allows a better

descriptor distinction). Although [Irschara 09, p. 5] used

a vocabulary tree which benefits the use of the GPU to

speed up the top document retrieval and their probabilistic

scoring function which allows a more precise retrieval of

the top best documents to match, we are using the imple-

mentation available in [Snavely ] which corresponds to the

vocabulary tree researched in [Nist 06]. This decision was

based on the fact that we needed the full compression pro-

cess available as soon as possible and the vocabulary tree

document retrieval available at [Snavely ] was outputting

the desired results in our experiments.

After compressing enough models, in the online phase new

photographs are queried against the image database and a

pose estimation is delivered whenever a positive match is

returned.

The online phase of our prototype is defined by the follow-

ing operations:

• Feature Extraction on the query photograph;

• Query vocabulary tree for top matches;

• Feature match between the query image and the syn-

thetic views retrieved;

• Solve Perspective-N-Point Ransac to pose estimate

the query image;

• Compute the GPS position and orientation.

To perform feature extraction and matching we used Sift-

GPU [Wu a] a fast and accurate implementation of SIFT

[Lowe 04] which benefits the computers GPU and the

CUDA toolkit to fasten heavy matrix operations. For fea-

ture extraction we extract around 1280 features for the

query image, as it is an high enough number to contain rel-

evant features for the pose estimation phase. The descrip-

tors extracted are then queried in the vocabulary tree and

the top 10 best documents are retrieved. Feature matching

is then performed between the query and 3D documents

features. Once a positive match is found, we try to compute

the projection matrix by applying the Perspective-N-Point

Ransac supplied by the OpenCV library [Ope] to evaluate

the coherency of the 2D query points with the 3D docu-

ment points. If the computed projection matrix validates

at least 10 inlier points, we define the query image as pose

estimated. Using the G matrix stored within the 3D docu-

ment which matched the current image to geocode, the 3D

position and orientation returned by the pose estimation are

extrapolated into GPS coordinates.

The source code developed for our prototype can be found

at [Amorim 14].

4. DATASET AND RESULTS

To evaluate the performance of Synthetic Views for geocod-

ing photographs we gathered a data set of 443 indoor and

802 outdoor of geocoded photographs from locations in

Braga, Montalegre and Viana do Castelo in Portugal.

Figure 3. Some of the indoor photographs
used to evaluate the performance of our pro­
totype.

From these photographs, we built 12 3D models with Vi-

sualSFM, which resulted in 215403 3D points projected

by 808293 features extracted. We then applied the Syn-

thetic Views compression on the reconstructed models to

remove the excess of information stored in the vocabulary

tree. Table 1 shows the compression value obtained with

our prototype.

Original Number of Descriptors 808293

Compressed Number of Descriptors 231942

Table 1. Number of descriptors before and
after applying the compression.

From the selected locations, another set of 25 indoor and

25 outdoor geocoded photographs were collected and se-

quentially geocoded to the compressed database. Their as-

sociated GPS coordinates were only used to compute pre-

cision errors between the estimated coordinates and their

ground truth. Table 2 provides the estimation rate and time

spent on geocoding each photograph and Table 3 presents

the average time spent on each operation when geocoding

a single photograph. Each query photograph used has 1000

pixels width and 750 height.

These results were attained on a computer with a CPU In-

tel i5-4200U 1.6 GHz with a GPU nVidia GeForce 820M,

while using the CUDA version of SiftGPU and a vocabu-

lary tree of 5 levels and 10 branches to store documents.

So, analysing the provided tables, with Synthetic Views

we were able to compress redundant descriptors on our
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Indoor Outdoor

Geocode Rate 16 (64%) 22 (88%)

Precision Recall [0.307, 4.050] m [0.252, 7.620] m

Mean Precision 1.160 m 2.560 m

Mean Time 0.451 s 0.520 s

Table 2. Overall statistics from pose estimat­
ing 25 indoor and 25 outdoor 1000x750 pho­
tographs with Synthetic Views.

Indoor Outdoor

Keypoint Extraction (1280) 0.216 0.230

Vocabulary Tree (top 10) 0.178 0.181

F. Matcher (1280x2500) 0.015 * N 0.015 * N

PnP Ransac 0.001 * N 0.001 * N

Compute GPS Coordinates 0.0001 0.0001

Table 3. Computational time expressed in
seconds for each operation on Synthetic
Views. The value N indicates the number
of top documents to retrieve. On feature
matching, the computational time is based
on a comparison of 1280 query features with
2500 document features. Both number of
features are based on the mean of features
extracted and features stored within 3D doc­
uments.

database by more than 71% of its initial value. As stated

before, we increased the number of photographs taken per

environment and decreased the distance between the pho-

tographs positions. This resulted in more stable indoor

models, but with an high level of redundancy, which justi-

fies the advantage of the compression phase made by Syn-

thetic Views.

Although the compression rate is high, we were able to

geocode 16 indoor and 22 outdoor photographs from our

input data set of 50 photographs. Due to the discrepancy

of indoor successful geocoded photographs to outdoor, we

believe that this method is still not adapted to indoor en-

vironments. When compressing our database, we noticed

that indoor models required more synthetic views placed

compared to outdoor. Since each indoor view shares few

features with other views due to reasons explained in 3.1,

for some indoor models the 30 points coverage thresh-

old was not allowing a good coverage, which justifies the

need of an higher number of views to completely cover

indoor models. Lowering this threshold degenerated all

indoor models and hindered the geocoding process. As

the source of this problem comes from the consistency of

indoor models, we propose the use of special wide angle

cameras to augment the environment coverage (more fea-

tures per photograph) and increase the overlap between

photographs. Reconstructing indoor environments with

these photographs should deliver refined indoor models.

The accuracy of our prototype should also be improved.

Successfully geocoded indoor photographs were located

with a mean precision error of 1.160 meters. Outdoor

photographs reached the 2.560 meters errors. While, for

oudoor models, 2 meters errors may not imply inaccurate

localization, for indoor the same errors may place pho-

tograph behind walls or bellow floors more often. Here,

we proposed the use of Multicore Bundle Adjustment

[Wu 11], to locally optimize positioning errors. This algo-

rithm benefits the GPU and CPU to fasten the optimization,

which allows more accurate precision while maintaining

the geocoding performance.

As for the geocoding speed of this method, with our

database we are able to geocode new indoor photographs

with a computational time ranging from 0.410 seconds

to 0.554 seconds and outdoor photographs from 0.427 to

0.571 depending on which top document query images

match. It is natural that outdoor photographs spend more

time to be geocoded compared to indoor, since we are pro-

cessing an higher amount of extracted features.

Although we did not evaluate our prototype with larger

data sets, the only operation that should need adjusting is

the vocabulary tree querying. As the database increases,

more descriptor distinction is required in order to not con-

fuse the top documents retrieved. As stated before, the

number of levels and branches of the tree may be adjusted

to the stored information.

5. CONCLUSION AND FUTURE WORK

We presented a method which leverages speed with scala-

bility to solve the indoor localization problem. Our contri-

bution was the development of a running prototype. Our

indoor geocode system is able to receive images to be

geocoded and delivers their GPS position and orientation.

By making available our code to the Computer Vision com-

munity we are contributing to the discussion and refine-

ment of state of the art mechanisms used in indoor local-

ization problem.

As future work, we aim to improve our Synthetic Views

based prototype, by integrating the vocabulary described

in [Irschara 09, p. 5] and apply the Multicore Bundle Ad-

justment on the final geocoding position. We believe that

this will greatly boost the performance and refine the accu-

racy of our system in larger scales.

In the short future, we will prepare and share some data

sets, for indoor spaces, to use for benchmarking different

tools and approaches. These data sets will improve and

speed up the evaluation of new methods.

To further prove the utility of our image based geocod-

ing system, we will develop a client-server service where

users can send photographs from their mobile phones, to

be geocoded. Our server returns the estimated GPS posi-

tion of the photograph sent.

Image geocoding based on feature prioritization [Li 10] is

also being explored in the recent literature. We are very

interested in the development of another prototype, based

on Prioritized Features, to see how it compares in terms of

accuracy, speed and scalability, with the existent synthetic
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views based prototype.
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