
Ray Tracing of Large Models on a Multi-Projection Display

Vasco Costa João M. Pereira Joaquim A. Jorge
INESC-ID/IST

Lisboa, Portugal
{vasc,jap,jaj}@vimmi.inesc-id.pt

Resumo
O uso de écrans de grande dimensão, no nosso caso uma ’display wall’ multi-projector, tem vindo a aumentar.
Quando vários utilizadores precisam de visualizar uma cena ou quando um único utilizador necessita de obter
uma visão alargada do problema e requer uma resolução mais elevada que a disponı́vel utilizando os outros
tipos de écran à sua disposição. É natural que as cenas visualizadas neste tipo de écran de alta definição
tenham também uma resolução elevada. Para efeitos de avaliação do desempenho do sistema de visualização
utilizamos modelos 3D com uma complexidade na ordem de dezenas de milhões de triângulos. O sistema
funciona através da subdivisão do écran de grande dimensão em M grupos de amostras em que M é o número de
máquinas no aglomerado de computadores. Cada amostra é sintetizada traçando raios com recurso a um algoritmo
de subdivisão espacial por nós concebido. O sistema permite a visualização a ritmos interactivos de cenas deste tipo.

Abstract
The use of large scale displays, in our case a multi-projector display wall, has been increasing in many appli-
cations where multiple users need to visualize a scene or when a single user needs to have a comprehensive
view of things and requires a larger resolution than otherwise available. Hence it is natural that the scenes
to be viewed should have high resolution as well. For benchmarking purposes we used 3D models with a
complexity in the order of tens of millions of triangles. The system works by subdividing a large screen into
M groups of samples where M is the number of machines in the rendering cluster. Each sample is ray traced
using a spatial subdivision algorithm of our own design. The system is able to render such scenes at interactive rates.

Keywords
Raytracing, Parallel rendering, Distributed applications

1. INTRODUCTION

The use of large displays is increasingly more common for
several kinds of applications due to the increased amount
of information possible to present on such displays, they
also make it possible for more than one person to use a dis-
play for visualization or other purposes. i.e. such displays
are important for applications which are collaborative in
nature or require work on minute detail in several areas in-
cluding architectural, automotive, biomedical, heritage and
others.

In our specific case we were interested in viewing large ar-
chitectural or heritage pieces. For benchmarking purposes
we selected a large scanned model from a standard dataset,
namely the Thai Statue model, with 10 million triangles,
from the Stanford archive.

To solve the specific issue of how to display the data we
used the hardware resources available, namely a cluster of
a dozen PCs, to render the model in a parallel fashion.

There are several standard solutions to visualize models
on a cluster. These often use OpenGL [Shreiner09] based

libraries such as Chromium [Humphreys08], OpenScene-
Graph [Wang10] or OpenSG [Reiners02]. These libraries
provide a large amount of flexibility for someone who
wishes to write an application. However they have diffi-
culty handling large datasets. We were also interested in
evaluating the performance of an alternative rendering al-
gorithm, in this case ray tracing, for this scenario.

Ray tracing backed by an acceleration structure has a per-
formance less sensitive to triangle count and large amounts
of overdraw which will be common in future architectural
scenes we wish to visualize. The currently benchmarked
model has limited depth complexity.

We also decided early on the planning phase that the paral-
lelization algorithm should be as independent of the partic-
ular ray tracing acceleration structure or method as possi-
ble. Hence we decided, contrary to other parallel ray trac-
ing implementations, to focus on the task of assigning the
task of rendering each sample. Since the display has a large
resolution of 4096 × 2304 pixels there should be no issue
in finding enough work to assign to computing nodes of

67



(a) Level 2 macrocells (b) Level 1 cells (c) Grid with per cell
triangle lists: empty
cells are compressed

Figure 1: Multi-level static grid with macrocells for fast empty region traversal

the cluster.

Chapter 2 reviews some related work in the area focus-
ing on grid acceleration structures for parallel ray tracing.
In chapter 3 we present our multi-level static acceleration
structure algorithm. Chapter 4 describes the system archi-
tecture: developed software and the hardware it runs on.
We discuss the system test results in chapter 5. Finally we
present our conclusions and pinpoint directions for future
work.

2. PREVIOUS WORK

Ray tracing over a cluster of PCs [Wald02, Benthin06] has
been an active area of research since the past decade. Ize
et al worked on sort-middle cluster ray tracing using grids
[Ize06] as well as how to optimize such a task using bound-
ing volume hierarchies (BVH) on a cluster [Ize11] with an
Infiniband interconnect. Their work divides acceleration
structure (grid, BVH) cells among the cluster nodes so it
is possible to view large models which would otherwise
not fit in available memory. The issue with parallelizing an
acceleration structure in such a fashion is the large perfor-
mance penalty, up to 10× slower, in their case compared
to the case where it is simply replicated in full.

Grid acceleration structures [Fujimoto86] subdivide the
space of the scene into cubically shaped cells. The 3D
DDA cell traversal method for ray tracing introduced by
Fujimoto et al. was later improved [Amanatides87]. This
more recent traversal method is still commonly used today.
Macrocells [Wald06] can be used to speed up empty space
traversal during ray tracing.

Further improvements include efficient compression of the
grid acceleration structure via the row displacement algo-
rithm [Lagae08]. It reduces grid memory footprint by a
factor of 20 : 1 by compressing the empty grid cells which
would otherwise use large amounts of memory (see Fig-
ure 2).

Figure 2: Row displacement compression.

3. MULTI-LEVEL STATIC GRIDS

In order to render complex scenes, with tens of millions
of triangles, on current hardware it is necessary to use a
spatial subdivision acceleration structure of some sort. In
this way geometry which is either obscured or otherwise
out of view is not processed resulting in interactive frame
rates.

For this work we decided to use a multi-level static grid
ray tracing acceleration structure of our own design. Since
present hardware architectures have multiple levels of
cache with varying bandwidth and latency it is advisable
to reduce the working set to a minimum amount of mem-
ory. To further enhance rendering performance we speeded
up cell traversal with a multi-level hierarchy of macrocells.
The macrocells enable faster ray traversal (2× faster in
scanned scenes) by skipping large empty regions of space
(see Figure 1). In short the macrocell structure is a small
3D bit array which allows the trivial rejection of empty re-
gions of space with minimum cache memory usage.

Improvements to the basic algorithm (macrocells, row dis-
placement compression) enable the use of a finer grid res-
olution than would otherwise be possible with conven-
tional algorithms which have severe memory bandwidth
and cache thrashing issues [Costa10].

To pick the resolution of the rectangular axis aligned cells
for a given scene in a grid we employ an heuristic. The
heuristic usually involves the number of triangles in a
scene, the scene’s bounding box extents or volume, as well
as a user defined density parameter. This parameter aims to
make the number of cells M linear in regards to the num-
ber of triangles N in a scene, where:

M = ρN (1)

ρ is the grid density. The number of cells M is equal to the
grid resolution Mx ×My ×Mz. Cubically shaped cells
work best, and most heuristics take this into account. In
this work a ρ value of 32 is used.

We use the following heuristic to pick the grid resolution:

Mi = Si
3

√
ρN

V
(i ∈ {x, y, z}) (2)

Si is the scene bounding box size in dimension i, V is the
bounding box volume.

68 20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012



Figure 3: Visualization of the Thai Statue model (10 million triangles) which shows the ray tracing complexity for the given
scene. Ray tracing was done using a multi-level static grid acceleration structure. Cell traversal costs are displayed in red,
while triangle intersection costs are displayed in green.

The rendering time when using an acceleration structure of
this type is approximately:

trendering = tcell traversals + ttriangle intersections (3)

Figure 3 shows an example of the ray tracing complexity
of the scene.

4. SYSTEM ARCHITECTURE

We developed parallel ray tracing rendering system soft-
ware which is run on a cluster of PCs.

We replicate the entire dataset on all cluster nodes. We are
working on a Gigabit Ethernet cluster with much worse
bandwidth and latency characteristics than the Infiniband
used in [Ize11] so we chose not to use their kind of solu-
tion. This is done prior to visualization. Since the dataset
is large but each node we have contains a limited amount
of memory (1 GB DRAM) we needed to employ several
forms of compression to enable the model to fit into the
available memory space. We hope to upgrade the cluster
powering the display soon which will enable us to further
improve performance in the near future.

Below we describe the heuristics used and the software and
hardware architectures of the implemented system in fur-
ther detail.

4.1. WORKLOAD DIVISION ALGORITHMS

We divide the screen samples among the cluster nodes to
split the workload. The cluster node assigned to work on
that sample ray traces the full ray tree for the ray inter-
secting that point in the view area. We use a couple of
heuristics to decide how to split the workload, namely the
interleaved and tiled heuristics.

All of these heuristics are static in nature. They are easy to
compute quickly but do not take the displayed scene char-

acteristics into account. If we had feedback on the ren-
dering cost of each work unit of interest (sample, tile) we
could attempt to do dynamic load balancing during the ren-
dering process. This could be done with a parallel sched-
uler of some sort.

4.1.1. INTERLEAVED HEURISTIC

In the interleaved heuristic we farm out samples in the fol-
lowing fashion: sample i is assigned to machine:

i mod M (4)

where M is the number of machines in the cluster.

For a cluster with a dozen machines: sample 0 is worked by
machine 0, sample 1 is worked by machine 1, ..., sample 12
is worked by machine 0, sample 13 is worked by machine
1, ...

4.1.2. TILED HEURISTIC

In the tiled heuristic we subdivide the screen into tiles of
8× 8 samples each. This should allow for increased mem-
ory coherency during ray tracing compared to the previous
interleaved heuristic which has worse memory coherency
in particular for clusters with large numbers of machines
where samples are further apart.

Figure 4: Interleaved heuristic sample distribution for a
cluster with two nodes.

20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012 69



In the tiled heuristic we farm out tiles in the same fashion
as we farm out samples in the interleaved heuristic: tile t is
assigned to machine:

t mod M (5)

where M is the number of machines in the cluster.

For example, for a cluster with a dozen machines: tile 0
is worked by machine 0, tile 1 is worked by machine 1,
..., tile 12 is worked by machine 0, tile 13 is worked by
machine 1, ...

Figure 5: Tiled heuristic sample distribution for a cluster
with two nodes.

4.2. SOFTWARE ARCHITECTURE

All task assignment work is performed by the Compositor
Server (CS). The CS runs on a separate machine. Render-
ing machines connect to the CS as they are brought on-
line.The CS is resilient to rendering machine breakdowns
and allows dynamic joining and leaving of rendering pro-
cesses.

Each rendering machine contains a process which does the
rendering of the samples it is assigned to. Upon the begin-
ning of each frame the CS sends a packet to each rendering
machine with the instructions on which samples it needs to
process. The results are then sent back to the CS as soon
as work on the frame is finished. This ensures there is no
visible tearing or other rendering glitches.

Once a frame is finished rendering the CS outputs the re-
sults to the screen, which may be the display wall, or any
other OpenGL rendering surface.

The software was programmed in ANSI C++ without use
of machine specific assembly instructions or intrinsics.

The scene memory usage can be computed as requiring
12 bytes per triangle for storing vertex index information
(three machine words for each vertex index), plus 12 bytes
for each vertex (three floating point numbers per coor-
dinate). In this way we can reduce the storage require-
ments for those mesh triangles which have shared ver-
texes. Ray/triangle intersections are computed using the
Möller-Trumbore [Möller05] intersection algorithm be-
cause it does not require any additional memory.

4.3. COMPOSITOR PACKETS

The compositor server interacts with the rendering servers
using two kinds of packets as shown in Figures 6, 7.

The output samples are sent as uncompressed RGB data
using one byte per color component.

machine-id : int
machines : int
eye : float[3]
ll : float[3]
u : float[3]
v : float[3]
xres : int
yres : int

Figure 6: Packets written to each rendering process.

packet-size : int
samples-rgb : byte[packet-size]

Figure 7: Packets read from each rendering process.

4.4. HARDWARE ARCHITECTURE

The rendering cluster contains twelve PCs with a Pentium
4 CPU at 3.0 GHz each with 1 GB of RAM. The composi-
tor server runs on a similarly specced machine. The cluster
machines run the Linux operating system.

The cluster is connected via Gigabit Ethernet. The avail-
able network bandwidth from the rendering machines to
the compositor server was benchmarked using iperf at 680
Mbits/sec.

The display wall is a canvas illuminated by twelve pro-
jectors with a 4 × 3 geometry. Each projector runs at
1024× 768 resolution. The canvas surface has dimensions
of 4.00m× 2.25m.

5. RESULTS AND DISCUSSION

For each test statistics were gathered over an interval of
five seconds of rendering in order to collect enough sam-
ples to reduce measuring error.

The test scene consisted of the ten million triangle Thai
Statue from the Stanford 3D Scanning Repository. This
scene is large enough to be representative of the kinds of
scenes we wish to be able to visualize in the future.

The tests were run using zero to twelve rendering machines
in action to measure the speedup achieved from adding
more machines to the system. Running the tests with zero
ray tracing machines connected to the compositor server
also allowed us to measure the speed at which it is able to
send frames to the screen without any time being spent in
ray tracing whatsoever.

Each frame has a resolution of 1024×512 with one sample
per pixel. A frame is then scaled up to 4096× 2304 screen
resolution using the bilinear filtering facilities provided by
OpenGL. This frame resolution was selected because our
version of OpenGL does not support non power of two tex-
tures and this provided a similar aspect ratio to the actual
screen resolution. This resolution also allows us to achieve
interactive ray tracing frame rates for the scene in question.

As expected the bandwidth incoming to the compositor
server remains constant since incoming data is composed
of sampled pixels resulting from the ray tracing algorithm

70 20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012



0 1 2 3 4 5 6 7 8 9 10 11 12

number of machines

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000
to

ta
l 
b
y
te

s 
re

a
d
 /

 f
ra

m
e

interleaved tiled

(a) Bandwidth incoming to compositor server

0 1 2 3 4 5 6 7 8 9 10 11 12

number of machines

0

100

200

300

400

500

600

700

800

to
ta

l 
b
y
te

s 
w

ri
tt

e
n
 /

 f
ra

m
e

interleaved tiled

(b) Bandwidth outgoing from compositor server

Figure 8: The above charts show the bandwidth used by the compositor server while rendering a single frame.

0 1 2 3 4 5 6 7 8 9 10 11 12

number of machines

0

0.2

0.4

0.6

0.8

1

ti
m

e
 (

s)

display write read

(a) Interleaved rendering algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12

number of machines

0

0.2

0.4

0.6

0.8

1

ti
m

e
 (

s)

display write read

(b) Tiled rendering algorithm

Figure 9: The above charts show the time required to render a single frame using each of the two heuristics.

which are xres × yres × 3 in size no matter what the
number of machines in the cluster is. Outgoing bandwidth
scales linearly with the number of machines in the clus-
ter since the compositor server sends one packet to each
machine telling it which rays it must render.

Running the tests showed we have a bottleneck sending
each frame from the compositor server to the large screen
display. This can clearly be seen in Figure 9. Just to dis-
play a blank screen takes a whole 114ms which results in
a frame rate of 8.77 FPS.

This means the rendering time for one frame will always be
inferior to this value. This requires more in depth investi-
gation of our setup. We are using Chromium for doing the
2D frame scaling and screen blitting operations and this
may be the bottleneck given the large size of the texture
and/or the way we are displaying it. For the tiled render-
ing ray tracing algorithm it gets so ridiculous it takes more
time to display the frame to the screen than to ray trace the
whole scene.

The speedup is clearly sublinear. This may be due to a
bottleneck in the compositor server which is not multi-
threaded: the machine running it does not support the
OpenMP parallelization primitives that we have in our im-
plementation. Yet there is a clear performance improve-

ment even at the larger cluster sizes.

The goal of achieving speedup versus a single machine is
clearly achieved since the ray tracing rendering operation
is around 4× faster with the whole cluster rather than a
single machine. However the performance speedup peters
out as the number of machines in the cluster grows. Lin-
ear ray tracing speedup is observed with two machines but
speedup starts decreasing as more machines are added to
the configuration.

6. CONCLUSIONS AND FUTURE WORK

Clearly the cause of the bottleneck in displaying a frame to
the multi-projector screen must be figured out and solved
before any further improvements in ray tracing perfor-
mance are to be attempted. It presently constitutes the ma-
jority of the time spent during rendering in our implemen-
tation.

Another thing which needs to be attempted is multi-
threading the compositor server. The compositor server
must handle multiple ray tracing machines at the same time
and the current implementation may be the cause of the
sublinear ray tracing performance speedup. The tiled ren-
dering heuristic has proved superior but globally the results
are not as impressive as expected in the current implemen-
tation.

20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012 71



Figure 10: Rendering of the Thai Statue (10 Mtri) on the 4.00m × 2.25m display wall. The hardware powering this
application consists of a ray tracing cluster of twelve machines with the screen compositor server running on a separate
machine.

7. ACKNOWLEDGEMENTS

We would like to thank the Stanford 3D Scanning Reposi-
tory for the Thai Statue model.

This work was supported by national funds through FCT
- Fundação para a Ciência e a Tecnologia, under project
PEst-OE/EEI/LA0021/2011.

8. REFERENCES

[Amanatides87] J. Amanatides and A. Woo. A fast voxel traver-
sal algorithm for ray tracing. In Proceedings of EURO-
GRAPHICS, volume 87, pages 3–10, 1987.

[Benthin06] C. Benthin. Realtime Ray Tracing on Current CPU
Architectures. PhD thesis, Saarland University, 2006.

[Costa10] V. Costa, J. Pereira, and J. Jorge. Multi-level hashed
grid construction methods. In WSCG, 2010.

[Fujimoto86] A. Fujimoto, T. Tanaka, and K. Iwata. Arts: Ac-
celerated ray-tracing system. Computer Graphics and Ap-
plications, IEEE, 6(4):16–26, 1986.

[Humphreys08] G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P.D. Kirchner, and J.T. Klosowski. Chromium:
a stream-processing framework for interactive rendering on
clusters. In ACM SIGGRAPH ASIA 2008 courses, page 43.
ACM, 2008.

[Ize06] T. Ize, I. Wald, C. Robertson, and S.G. Parker. An eval-
uation of parallel grid construction for ray tracing dynamic
scenes. In Proceedings of the IEEE Symposium on Interac-
tive Ray Tracing, pages 47–55, 2006.

[Ize11] T. Ize, C. Brownlee, and C.D. Hansen. Real-time ray
tracer for visualizing massive models on a cluster. In Pro-

ceedings of the 2011 Eurographics Symposium on Parallel
Graphics and Visualization, 2011.

[Lagae08] Ares Lagae and Philip Dutré. Compact, fast and ro-
bust grids for ray tracing. Computer Graphics Forum (Pro-
ceedings of the 19th Eurographics Symposium on Render-
ing), 27(8), 2008.

[Möller05] T. Möller and B. Trumbore. Fast, minimum stor-
age ray/triangle intersection. In International Conference
on Computer Graphics and Interactive Techniques. ACM
Press New York, NY, USA, 2005.

[Reiners02] D. Reiners. OpenSG: A scene graph system for flex-
ible and efficient realtime rendering for virtual and aug-
mented reality applications. PhD thesis, Darmstadt Univer-
sity, 2002.

[Shreiner09] D. Shreiner. OpenGL programming guide: the
official guide to learning OpenGL, versions 3.0 and 3.1.
Addison-Wesley Professional, 2009.

[Wald02] I. Wald, C. Benthin, and P. Slusallek. A flexible and
scalable rendering engine for interactive 3d graphics. Com-
puter Graphics Group, Saarland University, 2002.

[Wald06] I. Wald, T. Ize, A. Kensler, A. Knoll, and S.G. Parker.
Ray tracing animated scenes using coherent grid traver-
sal. In ACM Transactions on Graphics (TOG), volume 25,
pages 485–493. ACM, 2006.

[Wang10] R. Wang and X. Qian. OpenSceneGraph 3.0. Packt
Publishing, 2010.

72 20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012


