

SketchTester: Analysis and Evaluation of Calligraphic Gesture

Recognizers

Abílio Costa
Dep. de Engª Informática, ISEP - IPP

R. Dr. António Bernardino de Almeida, 431, Porto
amfcalt@gmail.com

João P. Pereira
Dep. de Engª Informática / GECAD, ISEP - IPP

R. Dr. António Bernardino de Almeida, 431, Porto
jjp@isep.ipp.pt

Resumo
As interfaces caligráficas apresentam uma forma natural para utilizadores interagirem com aplicações. Dado

que o núcleo de uma interface caligráfica é o seu reconhecedor, existe a necessidade de avaliação de diversos

reconhecedores antes de optar pela utilização de um. Neste artigo apresentamos uma avaliação de três reco-
nhecedores caligráficos: o reconhecedor de Rubine, o reconhecedor de $1 e o reconhecedor CALI. A avaliação

foi realizada com base em amostras caligráficas reais, desenhadas por 32 participantes, com um conjunto de

símbolos selecionados para utilização num trabalho futuro. Para além disto, discutimos também alguns aperfei-

çoamentos realizados à implementação dos reconhecedores e que ajudaram a obter taxas de reconhecimento

superiores. No final, o CALI obteve a melhor taxa de reconhecimento com 94% de sucesso, seguido do reconhe-

cedor de $1 com 87% e finalmente pelo reconhecedor de Rubine com 79%.

Abstract
Sketch-based interfaces can provide a natural way for users to interact with applications. Since the core of a

sketch-based interface is the gesture recognizer, there is a need to correctly evaluate various recognizers before

choosing one. In this paper we present an evaluation of three gesture recognizers: Rubine’s recognizer, CALI

and the $1 Recognizer. The evaluation was done using real gesture samples drawn by 32 subjects, with a gesture

set arranged for use in a future work. We also discuss some improvements to the recognizers’ implementation

that helped achieving higher recognition rates. In the end, CALI had the best recognition rate with 94% accura-

cy, followed by $1 Recognizer with 87% and finally by Rubine’s recognizer with 79%.

Keywords
Gesture recognition, Calligraphic interfaces, Rubine, CALI, $1 Recognizer.

1. INTRODUCTION
Using pen and paper to draw or sketch something in or-

der to express an idea is very common and also very nat-

ural for us. By using this concept in user interfaces one

can make the interaction process more natural and spon-

taneous.

In the future, we aim to develop a programing library to

aid in the creation of applications for two-dimensional

physics simulations in which the user interacts directly

with the scene using a “pen and paper” style interaction.

Thus, instead of selecting from a menu which objects

compose the scene to be simulated, the user can simply

draw the objects directly in the scene. We hope that de-

veloping a library that integrates a calligraphic interface

and a physics simulation engine will provide a boost for

developers to create new applications around this con-
cept, be they for educational purposes, like an application

used for teaching physics to students using an interactive

whiteboard, or for entertainment purposes, such as a

physics-based game where the user draws parts of the

scene in order to reach a goal, in the same genre as Cray-

on Physics Deluxe [Purho09]. These are only two exam-

ples of a wide range of possibilities.

The library will support three gestures to draw primitives

and other three to define relations between primitives.

The first three gestures are used to draw rectangles, trian-

gles and circles, which can be created by drawing these

symbols directly. To establish relations between primi-
tives the user can draw a zigzag to connect two primitives

with a spring, a cross to pin a primitive over another and

a small circle to connect one primitive over another with

a rotation axis. Since both the circle primitive and the

rotation axis relation use the same gesture1, we only have

in fact five gestures to recognize, presented in Figure 1.

Given that the cross is the only gesture that cannot be

drawn with only one stroke, we opted to replace it with

an alpha, which is an intuitive single-stroke representa-

tion of a cross. We chose to use only single-stroke ges-

tures because besides meeting the needs of our library it
makes the interaction simpler, since using gestures

formed with multi-strokes will force the user to specifi-

cally signalize when a gesture is completely drawn or, if

1 The identification of whether the system should recognize a

circle primitive or a rotation axis relation is done by analyzing
the size of the gesture and whether or not it is drawn over two
existing gestures.

3

using a timer approach, to draw all the gesture’s parts

within a specific time and wait for the recognition to

happen, which may lead to user frustration.

Given the importance of having good gesture recognition,

since the user must feel the interaction to be as natural
and unrestrictive as drawing with a pen and a paper, we

conducted an evaluation of various gesture recognizers in

order to select the one that best fits our needs. In this

evaluation we have done two sessions to collect samples

of the five gestures drawn by various subjects, in order to

put the recognizers to test with a wide range of data. This

paper describes that evaluation in detail, along with vari-

ous considerations to achieve higher recognition rates.

In the next section we present an overview of the related

work done in the gesture recognition field. This is fol-

lowed by a description of the application we developed to

test gesture recognizers and the implementation of these

recognizers. We then present how the evaluation of the

gesture recognizers was conducted and discuss its results.

Finally we propose potential future developments of this

work and present our conclusions.

2. RELATED WORK
Given the potential of automatic sketch recognition, a lot

of work has been done in order to develop recognizers

capable of dealing with the intrinsic ambiguity of hand-

drawn sketches. Since there is a great variety of sketch

recognition algorithms, it is only natural that there’s also

diversity in their characteristics. For example, some rec-

ognizers only work with single-stroke sketches, while

others are oriented towards multi-stroke sketches. Also,

whether or not the recognizer can identify sketches inde-

pendently of their orientation, scale, and drawing order
can greatly affect its usefulness in some domains. Anoth-

er important characteristic is if the recognizer can be

trained with new gestures, meaning that it can be easily

expanded, or if its gestures are hardcoded, which makes it

difficult to change its gesture set to fit a new domain.

Rubine’s recognizer [Rubine91], a trainable gesture rec-

ognizer, classifies each gesture using a linear classifier

algorithm with a set of distinct features. Rubine specifies
11 static geometric features, such as sin/cosine of the

initial angle of the gesture, distance between the first and

last points, total gesture’s length, among others. Rubine

also defined two dynamic features: the maximum speed

of the gesture and its duration. The recognizer is very

flexible since features can be easily added or removed to

make the recognizer fit the application needs. For exam-

ple, [Plimmer07] shows how to improve the recognition

and make it independent of gesture’s size by removing

features that involve absolute sizes and adding new ones

that use ratios instead. For the training process, Rubine’s

recognizer calculates the features of the training tem-

plates of each gesture class2 and computes the weights of

those classes based on their features. As pointed by the

author, the recognizer requires about 15 training tem-

plates per gesture class to be effective, which can make

the training process a time consuming task. To recognize

a gesture, the algorithm makes a linear combination of
the gesture’s features and the weights of each class. The

class which maximizes that combination is selected as the

one that the gesture belongs to. The major limitations of

Rubine’s recognizer are its sensibility to the drawing di-

rection, scale and orientation and being unable to identify

multi-stroke sketches. Pereira et al. [Pereira04] made

some modifications to Rubine’s recognizer in order to

make the algorithm accept multi-stroke sketches, but only

when drawn with a constant set of strokes as pointed out

by [Stahovich11]. The authors also present a way to

make the algorithm insensitive to drawing direction, by
doing the recognition twice: first with the original sketch

and then with an inverted sketch.

CALI [Fonseca02] is an easy to use multi-stroke recog-

nizer that uses Fuzzy Logic and geometric features to

classify gestures independently of their size or orienta-

tion. Instead of an individual algorithm, CALI is a com-

plete library that can be easily built into an application.

CALI separates gestures into two types: shapes and
commands. Shapes can be drawn (and recognized) using

solid, dashed and bold3 lines, while commands are only

recognized with solid lines. The recognizer defines a set

of geometric rules or features to identify each gesture,

like its thinness, aspect ratio, and many others. For ex-

ample, a Line shape is characterized by being “very thin”.

In addition to the global geometric features, some gesture

classes are also characterized by local features such as the

sub-gestures that compose the gesture or whether it has

intersections. For example, the Cross command is identi-

fied by having two intersecting Line shapes. When an
input gesture enters the recognition process its features

are computed and checked against each defined gesture

rules, using fuzzy sets to find the degree of membership

to each rule and therefore to each class. Since CALI is a

non-trainable recognizer, adding new gestures is not an

easy task, involving hand-coding and analysis of which

features characterize and distinguish the gesture. To solve

this limitation the authors also present a trainable recog-

nizer and compare three training algorithms: K-Nearest

Neighbors, Inductive Decision Tree and Naïve Bayes, the

latest being the one with highest training efficiency. Nev-

ertheless, the trainable recognizer has a lowest recogni-
tion rate and requires numerous training templates for

each gesture class.

2 A gesture class represents a unique gesture, but can be made

from multiple representations of that gesture, i.e. multiple
templates.

3 Bold lines are made from multiple overlapping solid strokes.

Figure 1 – Set of gestures used in our work

4 20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012

In [Wobbrock07], Wobbrock et al. present the $1 Recog-

nizer which aims to be easy to understand and quick to

implement. It is insensitive to scale and orientation of

sketches, but is sensitive to the drawing direction. One

major advantage of $1 Recognizer is the simplicity to add

support for new gestures, requiring only one training

template per gesture class in most cases. The algorithm

has basically four major steps, the first three being ap-

plied to both the training templates and the input gesture

(the one that is to be recognized), and the fourth step only

to the input gesture. The first step is to resample the point
path, using simple linear interpolation, so that every ges-

ture (including the training templates) has the same num-

ber of points. This enables a direct point-to-point compar-

ison between input gesture and training templates, inde-

pendently of drawing size and speed. The second step is

to rotate the gesture to an orientation that is optimal for

matching and thus reduce the recognition time later. This

rotation is made based on the angle between the centroid

of the gesture and the gesture’s first point. The third step

is to scale the gesture non-uniformly to a square and

translate its centroid to the origin (0,0). The fourth and
last step, which is only applied to input gestures, is where

the actual recognition happens. The input gesture is com-

pared to each training template to find the average dis-

tance between corresponding points and, based on that

distance, a score is calculated. The training template with

the biggest score is the one that, according to the recog-

nizer, matches the input gesture. Templates with lower

score can be used to deal with ambiguity, serving as al-

ternative matches. When the algorithm is computing the

average path-distance between an input gesture and a

training template, the input gesture is rotated using the

Golden Section Search algorithm to find the angle in
which that distance is minimized. The authors also ex-

plain how to make the recognizer sensitive to scale or

orientation, for some or all gesture templates.

In order to solve some of the limitations of the $1 Recog-

nizer, such as not being able to recognizing multi-stroke

gestures, sensitiveness to the drawing direction, and prob-

lems recognizing uni-dimensional gestures such as lines,
Anthony et al. extended it and created the $N Recognizer

[Anthony10]. The algorithm starts by computing all the

possible combinations of stroke orders and directions for

each multi-stroke gesture serving as training template and

creates a single-stroke gesture for each combination, by

connecting the individual strokes with the order and di-

rection of that combination. These single-stroke gestures

are used for comparison with the input gesture, using the

same process as the $1 Recognizer, since multi-stroke

input gestures are also transformed into single-stroke

gestures by connecting their individual strokes by the

order they were drawn. The transformations used in $1
Recognizer, such as point resampling, rotation to find the

optimal orientation, and translation of the centroid to the

origin are also applied by $N to every combined single-

stroke gesture. Despite the improvements over the $1

Recognizer, $N has problems recognizing gestures made

with more strokes than defined in the training templates.

Also, it is not well suited to recognize “messy” gestures

like a scratch-out, commonly used for erasing-like ac-

tions.

Lee et al. [Lee07] present a trainable graph-based recog-

nizer that is insensitive to orientation, scale and drawing

direction and is able to recognize multi-stroke gestures.

The recognizer uses statistical models to define symbols,

which makes it deal with the small variations associated
with hand-drawn gestures naturally. Each gesture is rep-

resented by an attributed relational graph, in which nodes

depict the type of primitive (line or arc) and its relative

length4. The edges of the graph represent the geometric

relationships between primitives, characterized by the

number of intersections, the intersection angle and the

intersection location. Gestures are segmented into indi-

vidual primitives using a technique based on the drawing

speed [Stahovich04], meaning that errors in the segmen-

tation process will propagate to the recognition process.

When an input gesture arrives, the recognizer compares it

to each trained gesture class and computes a dissimilarity
score based on six error metrics, each one with a different

weight on the resulting score. This dissimilarity score is

then converted to a similarity score which is used to iden-

tify the gesture class that classifies the input gesture.

Since the same gesture can be drawn with varying num-

ber of primitives and drawing orders, comparing input

gestures and training templates is not straightforward and

presents a graph matching problem. To solve this, the

authors evaluate and propose five approximate matching

techniques. For the training process, an average attributed

relational graph is created for each gesture class, by aver-
aging the graphs of multiple training templates. One limi-

tation of this approach is that all training templates of a

gesture class must be drawn with a consistent drawing

order or consistent orientation.

Vatavu et al. [Vatavu09] present a trainable recognizer

that uses elastic deformation energies to classify single-

stroke gestures. The recognizer is naturally insensitive to

gesture scale and orientation, since the same gesture has
similar curvature functions independently of the drawing

orientation or size, but is sensitive to drawing direction

and starting point within the gesture. To classify a ges-

ture, the recognizer computes its curvature function,

based on trajectory analysis, and calculates the alignment

cost to each gesture class to find the one that minimizes

that cost. Computing the curvature function for each class

is done by averaging the functions of multiple training

templates for that class.

In [Sezgin05], the authors present a multi-stroke sketch

recognizer, based on Hidden Markov Models (HMM),

that is capable of recognizing individual sketches in

complex scenes even if the scene is not yet completed,

i.e. while it is being drawn, and without the need to pre-

segment5 it. On the other hand it can only recognize

sketches in their trained orientations, thus being sensitive

4 The length of the primitive in relation to the total gesture’s

length.

5 Pre-segmenting a scene means isolating individual sketches or
gestures in the scene.

20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012 5

to orientation. The algorithm first creates discret observa-

tion sequences of the scene by identifying various geo-

metric primitives such as sloped lines, horizontal/vertical

lines, polylines, among others, with the aid of the Early

Sketch Processing Toolkit [Sezgin01]. Then, for each

trained HMM, it computes the likelihood for various sub-

sections of the scene given that HMM. Using these like-

lihoods, it builds a graph in which the shortest path gives

the most likely segmentation of the scene, that is, the

individual sketches in the scene. Finally, it classifies each

segment (the individual sketch) by finding the HMM that
maximizes the probability of generating that segment.

Since the recognition relies on the stroke order of the

trained templates, it is not well suited for domains where

the stroke ordering cannot be predicted. Also, because

HMMs are suited for sequences, it cannot recognize sin-

gle-stroke sketches, unless they are pre-segmented.

PaleoSketch [Paulson08] is a low-level non-trainable

sketch recognizer for single-stroke primitives. When rec-
ognizing a gesture, it starts with a pre-recognition phase,

where it removes consecutive duplicate points, cleans

drawing noise from the beginning and the end of the ges-

ture, and computes various graphs and values that charac-

terize that gesture. After the pre-recognition process is

done, the actual recognition is made. PaleoSketch uses

multiple individual sub-recognizers, where each indicates

whether or not the input gesture matches a given primi-

tive. Since a gesture can be recognized by more than one

sub-recognizer and since each sub-recognizer only re-

turns whether the stroke matches or not, without any
“matching score”, the results are passed to a hierarchy

function for sorting. This function uses a corner finding

algorithm to find the minimum number of lines to cor-

rectly describe the input gesture and compares that to the

minimum number of lines defined for each sub-

recognizer’s primitive, ordering the results accordingly.

PaleoSketch is insensitive to orientation, scale and draw-

ing order, but can only recognize low-level primitives.

For more complex gestures (such as rectangles or trian-

gles), one needs to add a higher-level recognizer on top

of PaleoSketch.

The need to compare and evaluate the performance of

various sketch recognizers is not something new. In

[Schmieder09] a toolkit to automatically evaluate recog-

nition algorithms is presented. In addition to sketch data

collection and labeling, the toolkit allows the integration

of multiple trainable and non-trainable recognizers,

which can be tested simultaneously. After testing, the

toolkit outputs the results in the form of a Microsoft Ex-
cel file or screenshots of the gestures that have been mis-

classified. As a proof of concept, the authors also present

and discuss experimental results of the evaluation of six

gesture recognizers: CALI, Microsoft Ink Analyser, $1

Recognizer, Rubine’s recognizer with the extended fea-

tures used in InkKit, PaleoSketch, and a recognizer using

Dynamic Time Warping techniques.

3. IMPLEMENTATION
In order to test the sketch recognition algorithms, we de-

veloped SketchTester, an application that enables us to

rapidly prototype and incorporate recognition algorithms.

With this application we are able to individually test each

algorithm against drawn gestures and immediately see the

recognition results (recognized gesture, recognition score,

and other alternative matches with lower score). It also

provides a graphical interface to add/remove training

templates to/from each trainable recognizer, automatical-

ly saving them to hard-disk in a recognizer-specific file.
As shown in Figure 2, to collect sketch samples from

subjects SketchTester offers a window that specifies what

gesture should be drawn and, after the gesture is submit-

ted, shows the recognition result of each recognizer. The

application keeps asking for random gestures until a pre-

defined number of samples of each gesture is collected,

point at which the recognition rates of each recognizer

are presented. Each of the submitted sample gesture and

corresponding results are saved to a file, so that we can

analyze it later.

Figure 2 – Interface used to collect gesture samples from

subjects

SketchTester also incorporates functionality to review

collected gesture samples, save them as bitmap files, and

extract data from them, such as total number of correctly
recognized gestures. Another important feature of

SketchTester is the possibility to reprocess multiple files

of collected samples. This was particularly useful since

we made some improvements to the recognizers after the

collection of samples from subjects. By reprocessing

those samples, their recognition results were updated

according to the improved recognizers.

In SketchTester we implemented three popular recogniz-
ers: the $1 Recognizer, Rubine’s recognizer, and CALI.

The algorithms of the first two recognizers were imple-

mented according to the descriptions given by their au-

thors in [Wobbrock07] and [Rubine91], respectively. In

the case of CALI, since it exists in the form of a library, it

was only necessary to integrate it with SketchTester. An-

other important note is that we didn’t implement any re-

jection for gestures with low score, since we always want

a result even if it is a low-scored match.

As regards to training templates, $1 Recognizer was first

trained with 2 templates for each gesture while Rubine’s

6 20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012

recognizer was trained with 15 templates for each ges-

ture. Also, since $1 and Rubine’s recognizer are sensitive

to the drawing direction, when adding a new training

template the application automatically creates a copy of

the template but with inverted drawing direction, adding

it to the same gesture class as the original template in the

case of $1 or to a new class in the case of Rubine’s rec-

ognizer

CALI was also subject to changes. First we disabled the

recognition of gestures we don’t need, such as the “copy”

gesture, lines, arrows, and some others. Also, since we

don’t need to discriminate circles from ellipses, we al-

ways classify an input gesture as a circle whether it is

recognized by CALI as circle or ellipse. The same logic

applies to rectangles and diamonds, where they are both

classified as rectangles. By removing unneeded gestures

from the recognizer and grouping similar gestures we

expect to increase the recognition success. Furthermore,

we added support for the alpha gesture in CALI by hard-
coding a new gesture class in which we defined two fea-

tures that where selected based on empirical observa-

tions: the ratio between the area of the largest quadrilat-

eral and the area of the convex hull (Alq/Ach), and the ratio

between the perimeter of the largest quadrilateral and

perimeter of the convex hull (Plq/Pch). The fuzzy sets as-

sociated with these features are presented in Figure 3.

These two features alone were not enough, because most

of the times CALI would classify an input alpha gesture

as both alpha and zigzag6. To prevent alphas from being

misrecognized as zigzags we defined that zigzags can’t
have any intersections, and that alphas must have an in-

tersection situated at more than 10% away from the limits

of the gesture, meaning that each of the alpha’s tails must

make more than 10% of the gesture.

Figure 3 – Fuzzy sets defined for the alpha gesture

After analyzing the samples collected from subjects, we

found that the implemented recognizers could be im-

proved. In Rubine’s recognizer we added three more

classes (plus three “duplicates” with inverted drawing

direction) per gesture to contemplate different orienta-

tions. Figure 4 exemplifies how the rectangle gesture

would be represented in each of the four classes. Before

the inclusion of new classes to represent various orienta-

tions, only the orientation represented in the top-left side

of Figure 4 was present.

6 The zigzag gesture is originally called WavyLine in CALI.

Figure 4 – Representation of four classes for the rectangle

gesture contemplating different orientations; the circles

mark start and end points

For the $1 Recognizer, one possible improvement we
found was adding training templates describing rectan-

gles and triangles starting at the middle of an edge, since

the first version only had templates starting at vertices.

We also added training templates with different starting

vertices for these two gestures in order to contemplate

every drawing possibility, but without overdoing it, since

the algorithm is insensitive to drawing orientation and so

we don’t need templates of the gesture starting in every

vertex.

We have also improved CALI implementation, by setting

the minimum size of each of the alpha’s tails to 7% in-

stead of 10%. Also, we defined that a zigzag can have

intersections as long as the distance along the gesture

between the two intersecting points is less than 13% of

the total gesture’s length. Finally, the distance along the

gesture between the two intersecting points in an alpha

must be more than 20%.

The rationale behind these improvements will be de-

scribed in the next section of this paper.

4. EVALUATION
In our effort towards finding the recognizer which best

fits our purpose and has the greatest recognition rate we

collected 1550 gesture samples from 32 subjects.

4.1 Method
We conducted two sessions to collect gesture samples,

each session with 16 subjects. Using the SketchTester

application and following a guide document7, each sub-

ject was asked to draw 10 samples of every of gesture,

for a total of 50 samples per subject which provided us

with 1550 gesture samples8. Both sessions were conduct-
ed at our institution where 9 subjects used the institu-

tion’s desktop computers with traditional mice. The re-

maining 23 subjects had personal laptops and about 25%

of them used the laptop’s built-in touchpads and the re-

maining subjects used conventional mice. All the subjects

were MSc students.

Since our evaluation aims to test the recognition of sin-

gle-stroke gestures with no drawing restrictions, we
asked the subjects to freely draw the five gestures pre-

sented in Figure 1 with diversified sizes, orientations and

shapes.

7 http://dei.isep.ipp.pt/~i060687/guiao_recolha_caligrafica.pdf

8 1550 and not 1600 because two subjects provided less than 50
samples each.

20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012 7

4.2 Results
As previously described, we made some improvements to

the recognizers and their training templates after analyz-

ing the first recognition results of the collected gesture

samples. Then, we reprocessed these samples with the

improved recognizers. In this section we will present the

recognition results obtained before and after the im-

provements and discuss how these improvements affect

the recognition rates.

To make sure the collected samples fit the domain in

which we intend to use the recognizers, we first cleaned

them by removing samples that do not match the request-

ed gesture (e.g., the subject was asked to draw a rectangle

and drew a circle) and samples drawn incorrectly (e.g.,

gestures drawn with multiple overlapping lines or ges-

tures that don’t represent any of the five required ges-

tures). As expected, cleaning the samples enhanced the

recognition rates, especially with CALI whose improve-

ment reached 11%. This enhancement is shown in Figure
5, with a side-by-side comparison of the recognition rates

of the three algorithms before and after cleaning the sam-

ples, with CALI achieving the highest rates.

Figure 5 – Recognitions rates before and after cleaning the

collected sample gestures

In order to understand why Rubine’s recognizer obtained

such low recognition rates we need to examine the indi-

vidual recognition rates of each gesture. As presented in

Figure 6, the recognition rates of the triangle and circle

gestures are 26% and 27% respectively, which is ex-

tremely low and far from the remaining gestures’ rates.

After reviewing individual samples it was clear that what
was affecting the recognition of these gestures was the

diversification in drawing orientations. We also noticed

that users have a tendency to draw rectangles starting

with the top-left vertex, which explains why that particu-

lar gesture was not suffering much with the orientation

sensitivity problem, since the training samples had that

same orientation. Interestingly, the drawing orientation

had a low impact on the recognition of the zigzag gesture,

mainly because it is very distinctive from the remaining

gestures in terms of features, and since we did not im-

plement gesture rejection, it is recognized even with a
low recognition score.

Figure 6 – Recognition rates of each gesture with each rec-

ognizer

To increase Rubine’s recognizer recognition rates we

needed to overcome the problem of rotation dependence.

As described earlier, the solution was to add new classes

representing each gesture in different orientations. As

show in Figure 7, this greatly increased the recognition
rates and, despite a slight decrease in the recognition of

the rectangle gesture, the overall recognition rate with

Rubine’s recognizer was improved to 79%, against the

previous 58%.

Figure 7 – Recognition rates for each gesture with Rubine’s

recognizer, before and after adding gesture classes repre-

senting multiple orientations

Regarding the $1 Recognizer, the most problematic ges-
tures were rectangles and triangles, with recognition rates

of 56% and 75% respectively. We found that both ges-

tures needed training templates with starting points at

different vertices and also at the middle of edges. We also

found that a training template representing right triangles

was needed. After these additions to $1 Recognizer’s

training templates the recognition rates of rectangles and

triangles were improved and, despite a decrease in the

recognition rates of circles and alphas, the global recogni-

tion rate of the algorithm was improved to 87% against

the previous 82%. We then tried to improve the recogni-
tion of circles and alphas, since they were affected in

these changes, but found no success. Figure 8 shows the

recognition rates for each gesture before and after the

addition of the new training templates.

77% 76%

55%

88%
82%

58%

0%

20%

40%

60%

80%

100%

CALI 1$ Rubine

Before cleaning After cleaning

0%

20%

40%

60%

80%

100%

CALI 1$ Rubine

Rectangle

Triangle

Circle

Alpha

ZigZag

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Before After

8 20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012

Figure 8 - Recognition rates for each gesture with $1 Recog-

nizer, before and after improving its training templates

Despite CALI already reaching a fairly high recognition

rate of 88%, analyzing the results for individual gesture

rates suggests that it could be further improved. As show

in Figure 6, the alpha and zigzag gestures have low
recognition rates when compared to the other gestures,

which may be due to the changes we’ve made to the orig-

inal CALI source code to include the alpha gesture, dis-

cussed previously. Further investigation showed that

many alphas with short tails were simply not recognized.

After detailed examination of the collected gestures we

found that 7% was the optimal value as the minimum

relative size of the gesture’s tails. In relation to the zigzag

gesture, we found that many subjects made small inter-

sections when drawing zigzags and since we first speci-

fied that zigzags must not have intersections, many were

recognized as alphas. After inspecting the collected sam-
ples, we specified that zigzags can have intersections but

only when the two intersecting points are not more than

20% away from each other. We also updated the alpha

gesture so that the distance between the two intersecting

points must be more than 20% of the total gesture’s

length. As presented in Figure 9, these changes to CALI

had a positive impact on the recognition of alphas and

zigzags, without affecting the other gestures.

By analyzing the first recognition results of the samples

collected from subjects, we were able to identify flaws in

our implementation of the recognizers. As show in Figure

10, our attempts to correct these flaws where successful

and all the recognizers reached higher recognition rates,

with CALI achieving the best rates, followed by $1 and

then by Rubine’s recognizer. Also, Figure 10 shows that

even after improving the recognizers, the respective

standard deviations are high, which is caused by a signif-

icant disparity in the individual recognition rates of each

gesture. This suggests the possibility that the recognizers
can still be improved. If we were able to improve the

recognition of the gestures with lowest rates, the overall

recognition rate would increase and the standard devia-

tion would decrease, meaning that the recognizer would

be recognizing all the gestures in a balanced way.

Figure 10 – Overall recognitions rates before and after im-

proving the recognizers, along with the standard deviation

of the final rates

In [Schmieder09], to show the potential of their automat-

ed recognizer evaluation toolkit, the authors conducted an

experiment in which they evaluate six recognizers, in-

cluding the same three we evaluated, with three basic
single-stroke gestures9: circle, rectangle and line. In their

experiment, Rubine’s recognizer had the best recognition

with a 96% success rate, followed by $1 Recognizer with

89% and CALI with 84%. While at first these results can

seem to contradict our evaluation’s results, with CALI

and Rubine’s recognizer inverting positions, they can be

easily explained. While we used the original feature set in

Rubine’s algorithm, they implemented the extended fea-

ture set used in InkKit [Plimmer07], which explains why

Rubine’s recognizer achieved such high recognition rates.

In respect to CALI, they consider circles and ellipses as
independent gestures, unlike our evaluation where we

don’t need to differentiate these two gestures and consid-

er both as one. In their results, there have been 94 circles

misclassified as ellipses, in a total of 730 evaluated ges-

tures. If we consider these 94 ellipses as being correctly

classified, effectively merging circles and ellipses, the

recognition rate for CALI increases to 96%. If we also

merge rectangles and diamonds it rises to 98%. These

9 There’s also a second experiment which we won’t cover on

this paper because it is done with Entity Relationship (ER) di-
agrams instead of basic gesture shapes.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Before After

88%
82%

58%

94%
87%

79%

5,8% 5,2% 6,5%

0%

20%

40%

60%

80%

100%

CALI 1$ Rubine

Before After Final std. dev.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Before After

Figure 9 – Recognition rates for each gesture with CALI,

before and after updating the recognition source code of

the alpha and zigzag gestures

20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012 9

rates are close to those obtained in our evaluation. Re-

garding $1 Recognizer, both evaluations yield similar

results. Finally, it is important to notice that since they

used fewer gestures than us it is normal that they ob-

tained higher recognition rates, as the misclassifications

tend to increase with the number of gestures.

5. FUTURE WORK
In the future we could implement more recognizers in

SketchTester, and even improve Rubine’s features as

described in [Plimmer07], in order to also evaluate them

against the collected samples. The inclusion of other ges-

tures could also be subject of study if the library is ex-

tended beyond five gestures.

An evaluation of the recognizers with gestures collected

using touchscreens or interactive whiteboards would also
be an interesting evaluation, since these are the kind of

devices that most benefit from calligraphic interfaces.

Since the improvements to the recognizers were made

and evaluated using the same set of gesture samples, it

would be important to re-evaluate these improvements

with new samples, in order to confirm that they are valid

not only for our sample set but also to generic samples.

Finally, although the most relevant result of recognition

is the gesture with the highest score, a study considering

the first two or three high-score results could be relevant

in cases where the application presents a list of alterna-

tive matches to solve ambiguity.

6. CONCLUSION
In this work we’ve collected sample gestures from vari-

ous subjects and evaluated three popular gesture recog-

nizers to find the one that best fits in the interaction layer

of our physics simulation library. We’ve also presented

some insights on how the implementations of these rec-

ognizers can be improved to yield better results. Also,

despite the specificity of the tested data, our work can

serve as a base to others exploring gesture recognizers.

To conclude, both CALI and $1 are good candidates for

our library since both achieved high recognition results.

Also, we are confident that if the improved features de-

scribed in [Plimmer07] where implemented in Rubine’s

recognizer, it could have results as good as the results of

the other two recognizers. Nevertheless, since CALI ar-

chived higher rates it shall be selected to integrate our

library.

7. ACKNOWLEDGMENTS
We wish to thank all the participants in the recognizer

evaluation sessions. We are also grateful to Manuel J.

Fonseca for providing us the CALI library source code.

8. REFERENCIES
[Anthony10] Lisa Anthony, Jacob O. Wobbrock. 2010. A

lightweight multistroke recognizer for user interface

prototypes. In Proceedings of Graphics Interface

2010 (GI '10), 245-252.

[Fonseca02] Manuel J. Fonseca, César Pimentel, and

Joaquim A. Jorge. 2002. CALI: An online scribble

recognizer for calligraphic interfaces. In AAAI Spring
Symposium on Sketch Understanding, 51-58.

[Lee07] WeeSan Lee, Levent Burak Kara, and Thomas F.

Stahovich. 2007. An efficient graph-based recognizer

for hand-drawn symbols. In Computers & Graphics

31, 554-567.

[Paulson08] Brandon Paulson and Tracy Hammond.

2008. PaleoSketch: accurate primitive sketch recogni-
tion and beautification. In Proceedings of the 13th in-

ternational conference on Intelligent user interfaces

(IUI '08), 1-10

[Pereira04] Pereira, J. P., Branco, V. A., Jorge, J. A., Sil-

va, N. F., Cardoso, T. D., and Ferreira, F. N. 2004.

Cascading recognizers for ambiguous calligraphic in-

teraction. In Eurographics Workshop on Sketch-Based
Interfaces and Modeling.

[Plimmer07] Beryl Plimmer and Isaac Freeman. 2007. A

toolkit approach to sketched diagram recognition. In

Proceedings of the 21st British HCI Group Annual

Conference on People and Computers: HCI...but not

as we know it (BCS-HCI '07), vol. 1.

[Purho09] Petri Purho. 2009. Crayon Physics Deluxe.
<http://crayonphysics.com/>

[Rubine91] Rubine, Dean. 1991. Specifying gestures by

example. In Proceedings of the 18th annual confer-

ence on Computer graphics and interactive tech-

niques (SIGGRAPH '91), 329-337.

[Schmieder09] Paul Schmieder, Beryl Plimmer, and Ra-
chel Blagojevic. 2009. Automatic evaluation of sketch

recognizers. In Proceedings of the 6th Eurographics

Symposium on Sketch-Based Interfaces and Modeling

(SBIM '09), 85-92.

[Sezgin01] Tevfik Metin Sezgin, Thomas Stahovich, and

Randall Davis. 2001. Sketch based interfaces: early

processing for sketch understanding. In Proceedings
of the 2001 workshop on Perceptive user interfaces

(PUI '01), 1-8.

[Sezgin05] Tevfik Metin Sezgin and Randall Davis.

2005. HMM-based efficient sketch recognition. In

Proceedings of the 10th international conference on

Intelligent user interfaces (IUI '05), 281-283.

[Stahovich04] Thomas F. Stahovich. 2004. Segmentation

of pen strokes using pen speed. In Proceedings of

2004 AAAI fall symposium on making pen-based in-

teraction intelligent and natural, 152-158.

[Stahovich11] Thomas F. Stahovich. 2011. Pen-based

Interfaces for Engineering and Education. In Sketch-

based Interfaces and Modeling, 119-152.

[Vatavu09] Radu-Daniel Vatavu, Laurent Grisoni, and

Stefan-Gheorghe Pentiuc. 2009. Gesture Recognition
Based on Elastic Deformation Energies. In Gesture-

Based Human-Computer Interaction and Simulation,

vol. 5085, 1-12.

[Wobbrock07] Jacob O. Wobbrock, Andrew D. Wilson,

and Yang Li. 2007. Gestures without libraries,

toolkits or training: a $1 recognizer for user interface

prototypes. In Proceedings of the 20th annual ACM
symposium on User interface software and technology

(UIST '07), 159-168.

10 20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012

