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Resumo  
As interfaces caligráficas apresentam uma forma natural para utilizadores interagirem com aplicações. Dado 

que o núcleo de uma interface caligráfica é o seu reconhecedor, existe a necessidade de avaliação de diversos 

reconhecedores antes de optar pela utilização de um. Neste artigo apresentamos uma avaliação de três reco-
nhecedores caligráficos: o reconhecedor de Rubine, o reconhecedor de $1 e o reconhecedor CALI. A avaliação 

foi realizada com base em amostras caligráficas reais, desenhadas por 32 participantes, com um conjunto de 

símbolos selecionados para utilização num trabalho futuro. Para além disto, discutimos também alguns aperfei-

çoamentos realizados à implementação dos reconhecedores e que ajudaram a obter taxas de reconhecimento 

superiores. No final, o CALI obteve a melhor taxa de reconhecimento com 94% de sucesso, seguido do reconhe-

cedor de $1 com 87% e finalmente pelo reconhecedor de Rubine com 79%. 

Abstract 
Sketch-based interfaces can provide a natural way for users to interact with applications. Since the core of a 

sketch-based interface is the gesture recognizer, there is a need to correctly evaluate various recognizers before 

choosing one. In this paper we present an evaluation of three gesture recognizers: Rubine’s recognizer, CALI 

and the $1 Recognizer. The evaluation was done using real gesture samples drawn by 32 subjects, with a gesture 

set arranged for use in a future work. We also discuss some improvements to the recognizers’ implementation 

that helped achieving higher recognition rates. In the end, CALI had the best recognition rate with 94% accura-

cy, followed by $1 Recognizer with 87% and finally by Rubine’s recognizer with 79%. 

Keywords 
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1. INTRODUCTION 
Using pen and paper to draw or sketch something in or-

der to express an idea is very common and also very nat-

ural for us. By using this concept in user interfaces one 

can make the interaction process more natural and spon-

taneous. 

In the future, we aim to develop a programing library to 

aid in the creation of applications for two-dimensional 

physics simulations in which the user interacts directly 

with the scene using a “pen and paper” style interaction. 

Thus, instead of selecting from a menu which objects 

compose the scene to be simulated, the user can simply 

draw the objects directly in the scene. We hope that de-

veloping a library that integrates a calligraphic interface 

and a physics simulation engine will provide a boost for 

developers to create new applications around this con-
cept, be they for educational purposes, like an application 

used for teaching physics to students using an interactive 

whiteboard, or for entertainment purposes, such as a 

physics-based game where the user draws parts of the 

scene in order to reach a goal, in the same genre as Cray-

on Physics Deluxe [Purho09]. These are only two exam-

ples of a wide range of possibilities.  

The library will support three gestures to draw primitives 

and other three to define relations between primitives. 

The first three gestures are used to draw rectangles, trian-

gles and circles, which can be created by drawing these 

symbols directly. To establish relations between primi-
tives the user can draw a zigzag to connect two primitives 

with a spring, a cross to pin a primitive over another and 

a small circle to connect one primitive over another with 

a rotation axis. Since both the circle primitive and the 

rotation axis relation use the same gesture1, we only have 

in fact five gestures to recognize, presented in Figure 1. 

Given that the cross is the only gesture that cannot be 

drawn with only one stroke, we opted to replace it with 

an alpha, which is an intuitive single-stroke representa-

tion of a cross. We chose to use only single-stroke ges-

tures because besides meeting the needs of our library it 
makes the interaction simpler, since using gestures 

formed with multi-strokes will force the user to specifi-

cally signalize when a gesture is completely drawn or, if 

                                                        
1 The identification of whether the system should recognize a 

circle primitive or a rotation axis relation is done by analyzing 
the size of the gesture and whether or not it is drawn over two 
existing gestures. 
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using a timer approach, to draw all the gesture’s parts 

within a specific time and wait for the recognition to 

happen, which may lead to user frustration.  

Given the importance of having good gesture recognition, 

since the user must feel the interaction to be as natural 
and unrestrictive as drawing with a pen and a paper, we 

conducted an evaluation of various gesture recognizers in 

order to select the one that best fits our needs. In this 

evaluation we have done two sessions to collect samples 

of the five gestures drawn by various subjects, in order to 

put the recognizers to test with a wide range of data. This 

paper describes that evaluation in detail, along with vari-

ous considerations to achieve higher recognition rates. 

In the next section we present an overview of the related 

work done in the gesture recognition field. This is fol-

lowed by a description of the application we developed to 

test gesture recognizers and the implementation of these 

recognizers. We then present how the evaluation of the 

gesture recognizers was conducted and discuss its results. 

Finally we propose potential future developments of this 

work and present our conclusions.  

2. RELATED WORK 
Given the potential of automatic sketch recognition, a lot 

of work has been done in order to develop recognizers 

capable of dealing with the intrinsic ambiguity of hand-

drawn sketches. Since there is a great variety of sketch 

recognition algorithms, it is only natural that there’s also 

diversity in their characteristics. For example, some rec-

ognizers only work with single-stroke sketches, while 

others are oriented towards multi-stroke sketches. Also, 

whether or not the recognizer can identify sketches inde-

pendently of their orientation, scale, and drawing order 
can greatly affect its usefulness in some domains. Anoth-

er important characteristic is if the recognizer can be 

trained with new gestures, meaning that it can be easily 

expanded, or if its gestures are hardcoded, which makes it 

difficult to change its gesture set to fit a new domain.  

Rubine’s recognizer [Rubine91], a trainable gesture rec-

ognizer, classifies each gesture using a linear classifier 

algorithm with a set of distinct features. Rubine specifies 
11 static geometric features, such as sin/cosine of the 

initial angle of the gesture, distance between the first and 

last points, total gesture’s length, among others. Rubine 

also defined two dynamic features: the maximum speed 

of the gesture and its duration. The recognizer is very 

flexible since features can be easily added or removed to 

make the recognizer fit the application needs. For exam-

ple, [Plimmer07] shows how to improve the recognition 

and make it independent of gesture’s size by removing 

features that involve absolute sizes and adding new ones 

that use ratios instead. For the training process, Rubine’s 

recognizer calculates the features of the training tem-

plates of each gesture class2 and computes the weights of 

those classes based on their features. As pointed by the 

author, the recognizer requires about 15 training tem-

plates per gesture class to be effective, which can make 

the training process a time consuming task. To recognize 

a gesture, the algorithm makes a linear combination of 
the gesture’s features and the weights of each class. The 

class which maximizes that combination is selected as the 

one that the gesture belongs to. The major limitations of 

Rubine’s recognizer are its sensibility to the drawing di-

rection, scale and orientation and being unable to identify 

multi-stroke sketches. Pereira et al. [Pereira04] made 

some modifications to Rubine’s recognizer in order to 

make the algorithm accept multi-stroke sketches, but only 

when drawn with a constant set of strokes as pointed out 

by [Stahovich11]. The authors also present a way to 

make the algorithm insensitive to drawing direction, by 
doing the recognition twice: first with the original sketch 

and then with an inverted sketch. 

CALI [Fonseca02] is an easy to use multi-stroke recog-

nizer that uses Fuzzy Logic and geometric features to 

classify gestures independently of their size or orienta-

tion. Instead of an individual algorithm, CALI is a com-

plete library that can be easily built into an application. 

CALI separates gestures into two types: shapes and 
commands. Shapes can be drawn (and recognized) using 

solid, dashed and bold3 lines, while commands are only 

recognized with solid lines. The recognizer defines a set 

of geometric rules or features to identify each gesture, 

like its thinness, aspect ratio, and many others. For ex-

ample, a Line shape is characterized by being “very thin”. 

In addition to the global geometric features, some gesture 

classes are also characterized by local features such as the 

sub-gestures that compose the gesture or whether it has 

intersections. For example, the Cross command is identi-

fied by having two intersecting Line shapes. When an 
input gesture enters the recognition process its features 

are computed and checked against each defined gesture 

rules, using fuzzy sets to find the degree of membership 

to each rule and therefore to each class. Since CALI is a 

non-trainable recognizer, adding new gestures is not an 

easy task, involving hand-coding and analysis of which 

features characterize and distinguish the gesture. To solve 

this limitation the authors also present a trainable recog-

nizer and compare three training algorithms: K-Nearest 

Neighbors, Inductive Decision Tree and Naïve Bayes, the 

latest being the one with highest training efficiency. Nev-

ertheless, the trainable recognizer has a lowest recogni-
tion rate and requires numerous training templates for 

each gesture class. 

                                                        
2 A gesture class represents a unique gesture, but can be made 

from multiple representations of that gesture, i.e. multiple 
templates. 

3 Bold lines are made from multiple overlapping solid strokes. 

Figure 1 – Set of gestures used in our work 
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In [Wobbrock07], Wobbrock et al. present the $1 Recog-

nizer which aims to be easy to understand and quick to 

implement. It is insensitive to scale and orientation of 

sketches, but is sensitive to the drawing direction. One 

major advantage of $1 Recognizer is the simplicity to add 

support for new gestures, requiring only one training 

template per gesture class in most cases. The algorithm 

has basically four major steps, the first three being ap-

plied to both the training templates and the input gesture 

(the one that is to be recognized), and the fourth step only 

to the input gesture. The first step is to resample the point 
path, using simple linear interpolation, so that every ges-

ture (including the training templates) has the same num-

ber of points. This enables a direct point-to-point compar-

ison between input gesture and training templates, inde-

pendently of drawing size and speed. The second step is 

to rotate the gesture to an orientation that is optimal for 

matching and thus reduce the recognition time later. This 

rotation is made based on the angle between the centroid 

of the gesture and the gesture’s first point. The third step 

is to scale the gesture non-uniformly to a square and 

translate its centroid to the origin (0,0). The fourth and 
last step, which is only applied to input gestures, is where 

the actual recognition happens. The input gesture is com-

pared to each training template to find the average dis-

tance between corresponding points and, based on that 

distance, a score is calculated. The training template with 

the biggest score is the one that, according to the recog-

nizer, matches the input gesture. Templates with lower 

score can be used to deal with ambiguity, serving as al-

ternative matches. When the algorithm is computing the 

average path-distance between an input gesture and a 

training template, the input gesture is rotated using the 

Golden Section Search algorithm to find the angle in 
which that distance is minimized. The authors also ex-

plain how to make the recognizer sensitive to scale or 

orientation, for some or all gesture templates.  

In order to solve some of the limitations of the $1 Recog-

nizer, such as not being able to recognizing multi-stroke 

gestures, sensitiveness to the drawing direction, and prob-

lems recognizing uni-dimensional gestures such as lines, 
Anthony et al. extended it and created the $N Recognizer 

[Anthony10]. The algorithm starts by computing all the 

possible combinations of stroke orders and directions for 

each multi-stroke gesture serving as training template and 

creates a single-stroke gesture for each combination, by 

connecting the individual strokes with the order and di-

rection of that combination. These single-stroke gestures 

are used for comparison with the input gesture, using the 

same process as the $1 Recognizer, since multi-stroke 

input gestures are also transformed into single-stroke 

gestures by connecting their individual strokes by the 

order they were drawn. The transformations used in $1 
Recognizer, such as point resampling, rotation to find the 

optimal orientation, and translation of the centroid to the 

origin are also applied by $N to every combined single-

stroke gesture. Despite the improvements over the $1 

Recognizer, $N has problems recognizing gestures made 

with more strokes than defined in the training templates. 

Also, it is not well suited to recognize “messy” gestures 

like a scratch-out, commonly used for erasing-like ac-

tions. 

Lee et al. [Lee07] present a trainable graph-based recog-

nizer that is insensitive to orientation, scale and drawing 

direction and is able to recognize multi-stroke gestures. 

The recognizer uses statistical models to define symbols, 

which makes it deal with the small variations associated 
with hand-drawn gestures naturally. Each gesture is rep-

resented by an attributed relational graph, in which nodes 

depict the type of primitive (line or arc) and its relative 

length4. The edges of the graph represent the geometric 

relationships between primitives, characterized by the 

number of intersections, the intersection angle and the 

intersection location. Gestures are segmented into indi-

vidual primitives using a technique based on the drawing 

speed [Stahovich04], meaning that errors in the segmen-

tation process will propagate to the recognition process. 

When an input gesture arrives, the recognizer compares it 

to each trained gesture class and computes a dissimilarity 
score based on six error metrics, each one with a different 

weight on the resulting score. This dissimilarity score is 

then converted to a similarity score which is used to iden-

tify the gesture class that classifies the input gesture. 

Since the same gesture can be drawn with varying num-

ber of primitives and drawing orders, comparing input 

gestures and training templates is not straightforward and 

presents a graph matching problem. To solve this, the 

authors evaluate and propose five approximate matching 

techniques. For the training process, an average attributed 

relational graph is created for each gesture class, by aver-
aging the graphs of multiple training templates. One limi-

tation of this approach is that all training templates of a 

gesture class must be drawn with a consistent drawing 

order or consistent orientation. 

Vatavu et al. [Vatavu09] present a trainable recognizer 

that uses elastic deformation energies to classify single-

stroke gestures. The recognizer is naturally insensitive to 

gesture scale and orientation, since the same gesture has 
similar curvature functions independently of the drawing 

orientation or size, but is sensitive to drawing direction 

and starting point within the gesture. To classify a ges-

ture, the recognizer computes its curvature function, 

based on trajectory analysis, and calculates the alignment 

cost to each gesture class to find the one that minimizes 

that cost. Computing the curvature function for each class 

is done by averaging the functions of multiple training 

templates for that class. 

In [Sezgin05], the authors present a multi-stroke sketch 

recognizer, based on Hidden Markov Models (HMM), 

that is capable of recognizing individual sketches in 

complex scenes even if the scene is not yet completed, 

i.e. while it is being drawn, and without the need to pre-

segment5 it. On the other hand it can only recognize 

sketches in their trained orientations, thus being sensitive 

                                                        
4 The length of the primitive in relation to the total gesture’s 

length. 

5 Pre-segmenting a scene means isolating individual sketches or 
gestures in the scene. 
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to orientation. The algorithm first creates discret observa-

tion sequences of the scene by identifying various geo-

metric primitives such as sloped lines, horizontal/vertical 

lines, polylines, among others, with the aid of the Early 

Sketch Processing Toolkit [Sezgin01]. Then, for each 

trained HMM, it computes the likelihood for various sub-

sections of the scene given that HMM. Using these like-

lihoods, it builds a graph in which the shortest path gives 

the most likely segmentation of the scene, that is, the 

individual sketches in the scene. Finally, it classifies each 

segment (the individual sketch) by finding the HMM that 
maximizes the probability of generating that segment. 

Since the recognition relies on the stroke order of the 

trained templates, it is not well suited for domains where 

the stroke ordering cannot be predicted. Also, because 

HMMs are suited for sequences, it cannot recognize sin-

gle-stroke sketches, unless they are pre-segmented. 

PaleoSketch [Paulson08] is a low-level non-trainable 

sketch recognizer for single-stroke primitives. When rec-
ognizing a gesture, it starts with a pre-recognition phase, 

where it removes consecutive duplicate points, cleans 

drawing noise from the beginning and the end of the ges-

ture, and computes various graphs and values that charac-

terize that gesture. After the pre-recognition process is 

done, the actual recognition is made. PaleoSketch uses 

multiple individual sub-recognizers, where each indicates 

whether or not the input gesture matches a given primi-

tive. Since a gesture can be recognized by more than one 

sub-recognizer and since each sub-recognizer only re-

turns whether the stroke matches or not, without any 
“matching score”, the results are passed to a hierarchy 

function for sorting. This function uses a corner finding 

algorithm to find the minimum number of lines to cor-

rectly describe the input gesture and compares that to the 

minimum number of lines defined for each sub-

recognizer’s primitive, ordering the results accordingly. 

PaleoSketch is insensitive to orientation, scale and draw-

ing order, but can only recognize low-level primitives. 

For more complex gestures (such as rectangles or trian-

gles), one needs to add a higher-level recognizer on top 

of PaleoSketch. 

The need to compare and evaluate the performance of 

various sketch recognizers is not something new. In 

[Schmieder09] a toolkit to automatically evaluate recog-

nition algorithms is presented. In addition to sketch data 

collection and labeling, the toolkit allows the integration 

of multiple trainable and non-trainable recognizers, 

which can be tested simultaneously. After testing, the 

toolkit outputs the results in the form of a Microsoft Ex-
cel file or screenshots of the gestures that have been mis-

classified. As a proof of concept, the authors also present 

and discuss experimental results of the evaluation of six 

gesture recognizers: CALI, Microsoft Ink Analyser, $1 

Recognizer, Rubine’s recognizer with the extended fea-

tures used in InkKit, PaleoSketch, and a recognizer using 

Dynamic Time Warping techniques. 

 

3. IMPLEMENTATION 
In order to test the sketch recognition algorithms, we de-

veloped SketchTester, an application that enables us to 

rapidly prototype and incorporate recognition algorithms. 

With this application we are able to individually test each 

algorithm against drawn gestures and immediately see the 

recognition results (recognized gesture, recognition score, 

and other alternative matches with lower score). It also 

provides a graphical interface to add/remove training 

templates to/from each trainable recognizer, automatical-

ly saving them to hard-disk in a recognizer-specific file. 
As shown in Figure 2, to collect sketch samples from 

subjects SketchTester offers a window that specifies what 

gesture should be drawn and, after the gesture is submit-

ted, shows the recognition result of each recognizer. The 

application keeps asking for random gestures until a pre-

defined number of samples of each gesture is collected, 

point at which the recognition rates of each recognizer 

are presented. Each of the submitted sample gesture and 

corresponding results are saved to a file, so that we can 

analyze it later. 

 

Figure 2 – Interface used to collect gesture samples from 

subjects 

SketchTester also incorporates functionality to review 

collected gesture samples, save them as bitmap files, and 

extract data from them, such as total number of correctly 
recognized gestures. Another important feature of 

SketchTester is the possibility to reprocess multiple files 

of collected samples. This was particularly useful since 

we made some improvements to the recognizers after the 

collection of samples from subjects. By reprocessing 

those samples, their recognition results were updated 

according to the improved recognizers. 

In SketchTester we implemented three popular recogniz-
ers: the $1 Recognizer, Rubine’s recognizer, and CALI. 

The algorithms of the first two recognizers were imple-

mented according to the descriptions given by their au-

thors in [Wobbrock07] and [Rubine91], respectively. In 

the case of CALI, since it exists in the form of a library, it 

was only necessary to integrate it with SketchTester. An-

other important note is that we didn’t implement any re-

jection for gestures with low score, since we always want 

a result even if it is a low-scored match. 

As regards to training templates, $1 Recognizer was first 

trained with 2 templates for each gesture while Rubine’s 

6 20o EPCG, Viana do Castelo, Portugal, 24-26 outubro 2012



 

 

recognizer was trained with 15 templates for each ges-

ture. Also, since $1 and Rubine’s recognizer are sensitive 

to the drawing direction, when adding a new training 

template the application automatically creates a copy of 

the template but with inverted drawing direction, adding 

it to the same gesture class as the original template in the 

case of $1 or to a new class in the case of Rubine’s rec-

ognizer 

CALI was also subject to changes. First we disabled the 

recognition of gestures we don’t need, such as the “copy” 

gesture, lines, arrows, and some others. Also, since we 

don’t need to discriminate circles from ellipses, we al-

ways classify an input gesture as a circle whether it is 

recognized by CALI as circle or ellipse. The same logic 

applies to rectangles and diamonds, where they are both 

classified as rectangles. By removing unneeded gestures 

from the recognizer and grouping similar gestures we 

expect to increase the recognition success. Furthermore, 

we added support for the alpha gesture in CALI by hard-
coding a new gesture class in which we defined two fea-

tures that where selected based on empirical observa-

tions: the ratio between the area of the largest quadrilat-

eral and the area of the convex hull (Alq/Ach), and the ratio 

between the perimeter of the largest quadrilateral and 

perimeter of the convex hull (Plq/Pch). The fuzzy sets as-

sociated with these features are presented in Figure 3. 

These two features alone were not enough, because most 

of the times CALI would classify an input alpha gesture 

as both alpha and zigzag6. To prevent alphas from being 

misrecognized as zigzags we defined that zigzags can’t 
have any intersections, and that alphas must have an in-

tersection situated at more than 10% away from the limits 

of the gesture, meaning that each of the alpha’s tails must 

make more than 10% of the gesture. 

 

Figure 3 – Fuzzy sets defined for the alpha gesture 

After analyzing the samples collected from subjects, we 

found that the implemented recognizers could be im-

proved. In Rubine’s recognizer we added three more 

classes (plus three “duplicates” with inverted drawing 

direction) per gesture to contemplate different orienta-

tions. Figure 4 exemplifies how the rectangle gesture 

would be represented in each of the four classes. Before 

the inclusion of new classes to represent various orienta-

tions, only the orientation represented in the top-left side 

of Figure 4 was present. 

                                                        
6 The zigzag gesture is originally called WavyLine in CALI. 

 

Figure 4 – Representation of four classes for the rectangle 

gesture contemplating different orientations; the circles 

mark start and end points 

For the $1 Recognizer, one possible improvement we 
found was adding training templates describing rectan-

gles and triangles starting at the middle of an edge, since 

the first version only had templates starting at vertices. 

We also added training templates with different starting 

vertices for these two gestures in order to contemplate 

every drawing possibility, but without overdoing it, since 

the algorithm is insensitive to drawing orientation and so 

we don’t need templates of the gesture starting in every 

vertex. 

We have also improved CALI implementation, by setting 

the minimum size of each of the alpha’s tails to 7% in-

stead of 10%. Also, we defined that a zigzag can have 

intersections as long as the distance along the gesture 

between the two intersecting points is less than 13% of 

the total gesture’s length. Finally, the distance along the 

gesture between the two intersecting points in an alpha 

must be more than 20%. 

The rationale behind these improvements will be de-

scribed in the next section of this paper. 

4. EVALUATION 
In our effort towards finding the recognizer which best 

fits our purpose and has the greatest recognition rate we 

collected 1550 gesture samples from 32 subjects. 

4.1 Method 
We conducted two sessions to collect gesture samples, 

each session with 16 subjects. Using the SketchTester 

application and following a guide document7, each sub-

ject was asked to draw 10 samples of every of gesture, 

for a total of 50 samples per subject which provided us 

with 1550 gesture samples8. Both sessions were conduct-
ed at our institution where 9 subjects used the institu-

tion’s desktop computers with traditional mice. The re-

maining 23 subjects had personal laptops and about 25% 

of them used the laptop’s built-in touchpads and the re-

maining subjects used conventional mice. All the subjects 

were MSc students. 

Since our evaluation aims to test the recognition of sin-

gle-stroke gestures with no drawing restrictions, we 
asked the subjects to freely draw the five gestures pre-

sented in Figure 1 with diversified sizes, orientations and 

shapes.  

                                                        
7 http://dei.isep.ipp.pt/~i060687/guiao_recolha_caligrafica.pdf 

8 1550 and not 1600 because two subjects provided less than 50 
samples each. 
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4.2 Results 
As previously described, we made some improvements to 

the recognizers and their training templates after analyz-

ing the first recognition results of the collected gesture 

samples. Then, we reprocessed these samples with the 

improved recognizers. In this section we will present the 

recognition results obtained before and after the im-

provements and discuss how these improvements affect 

the recognition rates. 

To make sure the collected samples fit the domain in 

which we intend to use the recognizers, we first cleaned 

them by removing samples that do not match the request-

ed gesture (e.g., the subject was asked to draw a rectangle 

and drew a circle) and samples drawn incorrectly (e.g., 

gestures drawn with multiple overlapping lines or ges-

tures that don’t represent any of the five required ges-

tures). As expected, cleaning the samples enhanced the 

recognition rates, especially with CALI whose improve-

ment reached 11%. This enhancement is shown in Figure 
5, with a side-by-side comparison of the recognition rates 

of the three algorithms before and after cleaning the sam-

ples, with CALI achieving the highest rates. 

 
Figure 5 – Recognitions rates before and after cleaning the 

collected sample gestures 

In order to understand why Rubine’s recognizer obtained 

such low recognition rates we need to examine the indi-

vidual recognition rates of each gesture. As presented in 

Figure 6, the recognition rates of the triangle and circle 

gestures are 26% and 27% respectively, which is ex-

tremely low and far from the remaining gestures’ rates. 

After reviewing individual samples it was clear that what 
was affecting the recognition of these gestures was the 

diversification in drawing orientations. We also noticed 

that users have a tendency to draw rectangles starting 

with the top-left vertex, which explains why that particu-

lar gesture was not suffering much with the orientation 

sensitivity problem, since the training samples had that 

same orientation. Interestingly, the drawing orientation 

had a low impact on the recognition of the zigzag gesture, 

mainly because it is very distinctive from the remaining 

gestures in terms of features, and since we did not im-

plement gesture rejection, it is recognized even with a 
low recognition score.  

 
Figure 6 – Recognition rates of each gesture with each rec-

ognizer 

To increase Rubine’s recognizer recognition rates we 

needed to overcome the problem of rotation dependence. 

As described earlier, the solution was to add new classes 

representing each gesture in different orientations. As 

show in Figure 7, this greatly increased the recognition 
rates and, despite a slight decrease in the recognition of 

the rectangle gesture, the overall recognition rate with 

Rubine’s recognizer was improved to 79%, against the 

previous 58%. 

 
Figure 7 – Recognition rates for each gesture with Rubine’s 

recognizer, before and after adding gesture classes repre-

senting multiple orientations 

Regarding the $1 Recognizer, the most problematic ges-
tures were rectangles and triangles, with recognition rates 

of 56% and 75% respectively. We found that both ges-

tures needed training templates with starting points at 

different vertices and also at the middle of edges. We also 

found that a training template representing right triangles 

was needed. After these additions to $1 Recognizer’s 

training templates the recognition rates of rectangles and 

triangles were improved and, despite a decrease in the 

recognition rates of circles and alphas, the global recogni-

tion rate of the algorithm was improved to 87% against 

the previous 82%. We then tried to improve the recogni-
tion of circles and alphas, since they were affected in 

these changes, but found no success. Figure 8 shows the 

recognition rates for each gesture before and after the 

addition of the new training templates. 
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Figure 8 - Recognition rates for each gesture with $1 Recog-

nizer, before and after improving its training templates 

Despite CALI already reaching a fairly high recognition 

rate of 88%, analyzing the results for individual gesture 

rates suggests that it could be further improved. As show 

in Figure 6, the alpha and zigzag gestures have low 
recognition rates when compared to the other gestures, 

which may be due to the changes we’ve made to the orig-

inal CALI source code to include the alpha gesture, dis-

cussed previously. Further investigation showed that 

many alphas with short tails were simply not recognized. 

After detailed examination of the collected gestures we 

found that 7% was the optimal value as the minimum 

relative size of the gesture’s tails. In relation to the zigzag 

gesture, we found that many subjects made small inter-

sections when drawing zigzags and since we first speci-

fied that zigzags must not have intersections, many were 

recognized as alphas. After inspecting the collected sam-
ples, we specified that zigzags can have intersections but 

only when the two intersecting points are not more than 

20% away from each other. We also updated the alpha 

gesture so that the distance between the two intersecting 

points must be more than 20% of the total gesture’s 

length. As presented in Figure 9, these changes to CALI 

had a positive impact on the recognition of alphas and 

zigzags, without affecting the other gestures. 

By analyzing the first recognition results of the samples 

collected from subjects, we were able to identify flaws in 

our implementation of the recognizers. As show in Figure 

10, our attempts to correct these flaws where successful 

and all the recognizers reached higher recognition rates, 

with CALI achieving the best rates, followed by $1 and 

then by Rubine’s recognizer. Also, Figure 10 shows that 

even after improving the recognizers, the respective 

standard deviations are high, which is caused by a signif-

icant disparity in the individual recognition rates of each 

gesture. This suggests the possibility that the recognizers 
can still be improved. If we were able to improve the 

recognition of the gestures with lowest rates, the overall 

recognition rate would increase and the standard devia-

tion would decrease, meaning that the recognizer would 

be recognizing all the gestures in a balanced way. 

 
Figure 10 – Overall recognitions rates before and after im-

proving the recognizers, along with the standard deviation 

of the final rates 

In [Schmieder09], to show the potential of their automat-

ed recognizer evaluation toolkit, the authors conducted an 

experiment in which they evaluate six recognizers, in-

cluding the same three we evaluated, with three basic 
single-stroke gestures9: circle, rectangle and line. In their 

experiment, Rubine’s recognizer had the best recognition 

with a 96% success rate, followed by $1 Recognizer with 

89% and CALI with 84%. While at first these results can 

seem to contradict our evaluation’s results, with CALI 

and Rubine’s recognizer inverting positions, they can be 

easily explained. While we used the original feature set in 

Rubine’s algorithm, they implemented the extended fea-

ture set used in InkKit [Plimmer07], which explains why 

Rubine’s recognizer achieved such high recognition rates. 

In respect to CALI, they consider circles and ellipses as 
independent gestures, unlike our evaluation where we 

don’t need to differentiate these two gestures and consid-

er both as one. In their results, there have been 94 circles 

misclassified as ellipses, in a total of 730 evaluated ges-

tures. If we consider these 94 ellipses as being correctly 

classified, effectively merging circles and ellipses, the 

recognition rate for CALI increases to 96%. If we also 

merge rectangles and diamonds it rises to 98%. These 

                                                        
9 There’s also a second experiment which we won’t cover on 

this paper because it is done with Entity Relationship (ER) di-
agrams instead of basic gesture shapes.  
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Figure 9 – Recognition rates for each gesture with CALI, 

before and after updating the recognition source code of 

the alpha and zigzag gestures 
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rates are close to those obtained in our evaluation. Re-

garding $1 Recognizer, both evaluations yield similar 

results. Finally, it is important to notice that since they 

used fewer gestures than us it is normal that they ob-

tained higher recognition rates, as the misclassifications 

tend to increase with the number of gestures. 

5. FUTURE WORK 
In the future we could implement more recognizers in 

SketchTester, and even improve Rubine’s features as 

described in [Plimmer07], in order to also evaluate them 

against the collected samples. The inclusion of other ges-

tures could also be subject of study if the library is ex-

tended beyond five gestures. 

An evaluation of the recognizers with gestures collected 

using touchscreens or interactive whiteboards would also 
be an interesting evaluation, since these are the kind of 

devices that most benefit from calligraphic interfaces. 

Since the improvements to the recognizers were made 

and evaluated using the same set of gesture samples, it 

would be important to re-evaluate these improvements 

with new samples, in order to confirm that they are valid 

not only for our sample set but also to generic samples. 

Finally, although the most relevant result of recognition 

is the gesture with the highest score, a study considering 

the first two or three high-score results could be relevant 

in cases where the application presents a list of alterna-

tive matches to solve ambiguity. 

6. CONCLUSION 
In this work we’ve collected sample gestures from vari-

ous subjects and evaluated three popular gesture recog-

nizers to find the one that best fits in the interaction layer 

of our physics simulation library. We’ve also presented 

some insights on how the implementations of these rec-

ognizers can be improved to yield better results. Also, 

despite the specificity of the tested data, our work can 

serve as a base to others exploring gesture recognizers. 

To conclude, both CALI and $1 are good candidates for 

our library since both achieved high recognition results. 

Also, we are confident that if the improved features de-

scribed in [Plimmer07] where implemented in Rubine’s 

recognizer, it could have results as good as the results of 

the other two recognizers. Nevertheless, since CALI ar-

chived higher rates it shall be selected to integrate our 

library. 
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