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ABSTRACT

Characters, like other articulated objects and structures, are typically simulated using articulated dynamics al-
gorithms. There are efficient linear-time algorithms for the simulation of open-chain articulated bodies, but complexity
grows notably under additional constraints such as joint limits, loops or contact, or if the bodies undergo stiff joint
forces. This paper presents a linear-time algorithm for the simulation of open-chain articulated bodies with joint limits
and stiff joint forces. This novel algorithm uses implicit integration to simulate stiff forces in a stable manner, and avoids
drift by formulating joint constraints implicitly. One additional interesting feature of the algorithm is that its practical
implementation entails only small modifications to a popular algorithm.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Virtual Reality—

1. Introduction

Articulated models, consisting of bodies connected by
joints, are popular simulation models for human and non-
human characters [KM98, KRFC09, Fea87], mechanical
structures [WTFO06], or even molecules [RGLO05], to cite just
a few examples. This popularity has attracted a strong at-
tention in the computer graphics and robotics fields for the
design of efficient computational models and algorithms.

The skeleton of characters, in particular, can be described
as an open kinematic chain (i.e., with no loops, but with
branches). There are multiple algorithms capable of solv-
ing articulated dynamics in time linear in the number of
bodies and joints, e.g., using reduced-coordinate formula-
tions [Fea87], Lagrange-multiplier formulations [Bar96], or
handling very general joints [SG10]. A discussion of the ad-
vantages and disadvantages of the various models is given in
Section 2. The complexity of simulating articulated dynam-
ics grows notably, however, if the model cannot be described
as an open kinematic chain. This may happen if the model
incorporates other constraints, such as loops, joint limits, or
contact, or if pairs of bodies interact through stiff forces, e.g.,
joint stiffness.

This work presents a linear-time algorithm for simulating
dynamics of open-chain articulated bodies with joint limits
and stiff joint forces, following a maximal-coordinate for-
mulation based on Lagrange multipliers. To simulate stiff
joint forces in a stable manner and with large time-steps, we
propose the use of implicit integration algorithms with im-
plicit joint constraints, as described in Section 3. Effectively,
the use of implicit integration creates loops in the mathemat-
ical formulation of the problem, preventing the direct appli-

V Ibero-American Symposium in Computers Graphics — STACG 2011

Figure 1: Interactive simulation of a hand with articulated
dynamics and soft finger contact. The hand’s skeleton fol-
lows the motion tracked with a Cyberglove device, and we
use our novel algorithm to simulate its dynamics.

cation of typical linear-time algorithms based on maximal
coordinates.

To solve the implicit constrained problem, we have de-
signed an efficient algorithm, described in Section 4, that
builds on the factorization algorithm by Baraff [Bar96]. No-
tably, this novel algorithm implies small modifications to
Baraff’s, making it very easy to integrate in existing imple-
mentations of articulated body dynamics.

We demonstrate the application of our algorithm to the
simulation of articulated models such as an interactive hand
controlled using a glove device, or an articulated character.
Nevertheless, the method is general and could be applied to
other types of articulated models.
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2. Related Work

An articulated body is a multibody system formed by a set
of bodies (typically rigid, but not necessarily) connected by
joint constraints. A coordinate-set that describes the (uncon-
strained) degrees of freedom of the bodies alone is typically
referred to as maximal coordinates. Effectively, joints reduce
the number of degrees of freedom of the bodies alone, and
a coordinate-set that parameterizes the actual (constrained)
degrees of freedom is typically referred to as generalized
coordinates. There are two major approaches to solving ar-
ticulated body dynamics. Reduced-coordinate formulations
work directly with generalized coordinates. In this approach,
the difficulty lies in finding a proper set of generalized co-
ordinates. Lagrange-multiplier formulations, on the other
hand, work with maximal coordinates, and formulate the dy-
namics problem as a constrained optimization augmented
with new unknowns (i.e., the Lagrange multipliers, which
correspond to joint forces).

For open kinematic chains, which is the type of articulated
body we are interested in, finding a parameterization based
on genealized coordinates is relatively easy, and well-known
reduced-coordinate formulations exist [Fea87]. These meth-
ods are relatively simple under explicit integration, as they
compute the accelerations of the generalized coordinates fol-
lowing a recursive procedure on the tree structure of the ar-
ticulated body. Then, the accelerations are used to integrate
velocities and positions. Under implicit integration, how-
ever, the accelerations depend implicitly on new coordinate
values, and the typical recursive procedures are no longer
valid.

It is worth noting that reduced-coordinate formulations
have been extended to support modeling of constrains for
character animation [KM98], parallel solutions [Fea99a,
Fea99b], or adaptive simulation [RGLOS5]. But, most impor-
tantly, the work of Hadap [HadO6] constitutes a reduced-
coordinate formulation that is very close in spirit to our
work. It supports both joint constraints and stiff joint forces,
and it solves them all using implicit integration and with lin-
ear cost.

Baraff [Bar96], instead, advocates for Lagrange multiplier
formulations over reduced-coordinate ones. Even though
reduced-coordinate formulations may often be superior in
terms of performance (after all, the effective system they
solve is smaller), there are interesting arguments to develop
Lagrange-multiplier formulations. As argued by Baraff,
Lagrange-multiplier formulations are simpler to formulate
in the general case, allow handling arbitrary constraints in a
unified manner (including non-holonomic constraints such
as friction, contact, or joint limits), and are far superior
from the perspective of code modularity, as the implemen-
tation of the different bodies in the system is completely
disjoint. We should point out, however, that recent work
by Si and Guenter uses symbolic differentiation to handle
general scleronomic joints in a reduced-coordinate formu-
lation [SG10]. Adding to Baraff’s discussion, we also argue
that Lagrange-multiplier approaches are superior to reduced-
coordinate ones under implicit integration, precisely because
of modularity and the possibility to handle different types of
bodies and constraints in a unified manner.

Baraff presented a linear-time algorithm to solve artic-
ulated body dynamics of open kinematic chains using the

Lagrange-multipliers formulation, only for explicit inte-
gration. Previous approaches in computer graphics solved
Lagrange-multipliers problems by formulating joint-space
inertias (i.e., JM_l.IT), but the resulting matrix is generally
not sparse for systems with branches. Baraff also designed
anticipation algorithms to handle additional constraints such
as contact, loops or joint limits, but then the solution is
far more inefficient, as each additional constraint incurs a
cost linear in the number of bodies and joints simply in a
matrix-setup step. Weinstein et al. [WTF06] also propose a
maximal-coordinate formulation for articulated bodies, han-
dling joints and contact all in a unified manner. As opposed
to Baraff’s direct solver, they propose a Gauss-Seidel-type
iterative algorithm.

In this work, we present an efficient linear-time algo-
rithm that can handle joint limits and contacts, modeling
them using stiff penalty forces instead of constraints. Hairer
et al. [HLWO02] present an interesting connection between
stiff forces and constraints in the context of numerical inte-
gration. To ensure stable simulation under stiff forces, our
algorithm is based on implicit integration, and we demon-
strate that its implementation involves easy-to-implement
modifications to Baraff’s original algorithm. Implicit inte-
gration has been successfully used in computer graphics for
the simulation of systems with stiff forces using large time
steps [BWOS]. It is often used in the simulation of uncon-
strained deformations [MGO04], but there are also solutions
that support deformation constraints [GHF*07] or contact
constraints [OTSGO09]. Choe et al. [CCKO05] use a maxi-
mal coordinate formulation with stiff joint forces to model
hair. They substitute all joints with soft constraints, and in-
tegrate the dynamics using implicit integration. Since their
method is intended for hair, they do not handle branching,
and then the resulting system is tri-diagonal and can be triv-
ially solved with linear cost. Implicit integration has also
been used for the simulation of articulated characters sur-
rounded by a layer of deformable tissue [GOT*07], but the
solution approximates the interaction between the various
components.

Recently, computer graphics researchers have pointed out
limitations of classic implicit integration algorithms such as
backward Euler in terms of energy preservation. Symplec-
tic integrators, instead, can provide both stability and energy
preservation [KYT*06], but their computational cost is often
higher, as they require full solves of the non-linear implicit
equations, and the convergence of non-linear solvers such as
Newton imposes restrictions on the time-step under highly
non-linear situations.

3. Articulated Dynamics Model

In this section, we describe the formulation of articulated
body dynamics using implicit integration. First, we recall
the explicit approach based on acceleration constraints, and
then we introduce our implicit approach based on position
constraints. We conclude with the description of the general
formulation for a multibody system, highlighting the differ-
ences between implicit and explicit approaches.

3.1. Acceleration Constraints

Let us start considering a simple articulated body consisting
of two bodies a and b connected through a joint. The dynam-
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ics of the two bodies can be described by the Newton-Euler
equations

Mgvq +Jg7v:Fa(qa7Va7Qb7Vb) and (1)
M ¥y, + 5 A = Fy(Qa, Va, b, Vp)-

Here, q includes both the position and orientation of a rigid
body, v includes its linear and angular velocity, M is a 6 X 6
mass matrix, J is the Jacobian of the constraints, and F the
vector of forces and torques. These may include gravita-
tional and inertial forces, joint elasticity and damping.

Baraff differentiates joint constraints to formulate linear
constraints on body accelerations. For the example above,
his approach considers a constraint

C(qa,qp) =0 — C=JaVa+Ipv,=0. )

Given Eq. (1) and Eq. (2) together, Baraff’s approach com-
putes accelerations that satisfy the constraints, and then
integrates these accelerations to obtain the new velocities
and positions. Unfortunately, acceleration constraints suffer
from drift. Baraff addresses drift using stabilization forces,
but this effectively means that the formulation does not sat-
isfy hard constraints.

3.2. Implicit Position Constraints

We propose two main differences w.r.t. Baraff’s formulation.
First, we avoid drift by formulating implicit position con-
straints, i.e., constraints on the body positions at the end of
the time step. Second, we handle stiff joint forces in a sta-
ble manner by integrating the dynamics equations with im-
plicit methods. We model joint limits using stiff joint forces,
which are handled robustly with our approach. Appendix A
describes the derivative terms for joint forces.

With backward Euler implicit integration, the Newton-
Euler equations with implicit position constraints can be
rewritten as:

Aava+ Ay +IEA =Dy, 3)
ApaVa+Apvy +Ih A= by,
Java+Jpvp =by,

with A = Mg — ArSee — AP 5 by = Mava + ArFa —

At ‘35“ Va0 — At gljl“ V1,0, and similarly for the rest of the A
and b terms. The discretized joint constraints are obtained
by linearizing them at the beginning of the time step, with

oC oC !
Jo= 35,3, = 2€, and by = — 3 C(du0, a0).

3.3. Formulation for a Multibody System

For an articulated body with an arbitrary number of bod-
ies and joints, we group all body velocities in a vector v,
and then the implicit integration of the constrained Newton-
Euler equations can be expressed as:

Av+J A =b, )
JV = b?v

Following Baraff’s approach, we construct a vector x
of unknowns that groups all the body velocities and joint
forces. But the ordering of the vector is not arbitrary, it must
follow a perfect elimination order for the system at hand.
For a sparse linear system of size n, the existence of a perfect
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elimination order implies that it can be factorized and solved
with cost O(n). A perfect elimination order exists for all
sparse matrices whose incidence graph is acyclic [DER86],
which is the case for articulated bodies connected as an open
kinematic chain.

@@

® ®
o o

Figure 2: Articulated body example with 6 bodies (squares)
and 5 joints (circles).

To establish the ordering of unknowns, we construct a tree
with all bodies and joints as nodes. If one of the joints is a
fixed joint, then this joint must be the root node, otherwise
any body or joint may act as root. Then, the ordering of x is
determined in a way such that a node’s index must be greater
than its children’s indices. The ordering can be computed by
performing a depth-first search or breadth-first search start-
ing at the root node, with n the index of the root node.

Given the appropriate reordering of the system, Eq. (4)
can be written as Hx = z. For the example in Fig. 2 (repro-
duced from [Bar96]), with root joint 5, the matrix could be

A3 J5, 0 0 A 0 0 0 0 0 0
Jy 0 0 0 Jp O 0O 0 0 0 0
0 0 Ay J,Ap 0 0 0 0 0 ©
0 0 Jyyg 0 Jsp O O 0 O O O
Ay I Asy I3, Ay 00, A 0 0 0 0
H= 0 0 0 0 Jo O J; 0 0 0 0 (®)]
0 0 0 0 ApJ], Ay J A5 0 0
0 0 0 0 0 0 Jyy 0 Jys O O
0 0 0 0 0 0 As Jis As Asg JLg
0 0 0 0 0 0 0 0 Ag Ag Jig
00 0 0 0 0 0 0 Js5Js6 O

In Baraff’s formulation, matrix H contains non-zero
blocks only at diagonal terms corresponding to bodies, and
at off-diagonal terms corresponding to joint forces and joint
constraint equations. In our formulation, matrix H also con-
tains non-zero blocks for every pair of bodies that exert
some force or torque on each other. Nevertheless, such terms
are not arbitrary, and they correspond to joint forces (i.e.,
joint elasticity or joint limits) acting between adjacent bodies
in the articulated body. Actually, adjacent bodies constitute
grandchild-grandparent pairs in the tree. The next section
describes an algorithm that exploits this property to factor-
ize and solve the constrained dynamics equations with cost
O(n).

4. Linear Factorization Algorithm

Baraff proposed an algorithm for a factorization of the type
H=LDL”, withDa block-diagonal matrix and L a lower
triangular matrix. Baraff’s algorithm processes matrix H one
row at a time. It exploits the property that, under explicit in-
tegration, for every row, at most one block to the right of the
diagonal is non-zero. This block stores the matrix relating a
node to its parent. In essence, Baraff’s algorithm performs
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the factorization by computing Schur complements on 2 x 2
blocks.

With implicit integration of joint forces, each row may
contain up to two non-zero blocks to the right of the diag-
onal. For a row corresponding to a body, these two blocks
represent the connection to the parent joint and to the grand-
parent body. Given two bodies a and b connected by a joint
J, with j the parent of a (i.e., j = p(a)), and b the grand-
parent of a (i.e., b = g(a)), our factorization algorithm must
handle matrix blocks of the form

Aq Jg Aab
Jo 0 Jp . (6)
A T Ay

We propose a factorization algorithm that employs par-
ent and grandparent relationships to compute the solution to
the problem Hx = z in time linear in the number of bod-
ies and joints. This algorithm involves small modifications
to the original algorithm proposed by Baraff, hence it would
be very easy to integrate in existing articulated-body imple-
mentations based on Baraff’s algorithm.

The linear-system solver executes three loops over the
nodes of the articulated body. First, a forward loop (i.e., in
increasing index order, from leaves to root) computes the
factoriztion itself. Then, another forward loop solves the
problem Lx(V) = z. Finally, a backward loop (i.e., in de-
creasing index order, from root to leaves) solves the prob-
lems Dx? = x(1) and L”x = x®. If a simulation requires
the solution to multiple problems involving the same matrix
H, the factorization may be performed only once and reused
in multiple solves.

The following algorithm describes our linear-time factor-
ization for articulated bodies with implicit integration:

procedure sparsefactor
fori=1ton
for j € child(i)
H;; = H;; — H}H;;Hj;
for k € child(j)
H;; = H;; — H{;Hy Hy
if p(i) # null
T
H; o) = H;py —H;H;H; o)
if p(i) # null
—1
H;,;) =H; H;;;
if g(i) # null
—1
Hi o) = By Hig()

And the following algorithm describes the computation
of the solution vector once the factorization has been per-
formed:

procedure sparsesolve
fori=1ton
X; —1Z;
for j € child(i)
X =X; — HlTij
for k € child()
X; =X; — H,ﬁ X}
fori=ntol
X; — H;lxi
if p(i) # null
Xi = Xi — M3 Xp()
if g(i) # null
Xi = Xi — H g Xg(s)

Time in microseconds

g

=X

10 100 1000 10000
Number of bones

Figure 4: Log-scale plot showing the running time per
frame of the hanging articulated chain in the image, as a
function of the number of bones.

Both algorithms are written following the notation in the
work of Baraff [Bar96]. We highlight in blue the small ad-
ditions to the original algorithm, which clearly demonstrate
the simplicity to achieve stable implicit integration. Note that
the factorization stores the terms of D and L in place of the
original matrix H, hence the notation refers to blocks of H
at all times. Similarly, when the algorithm terminates, the
vector X contains the solution, i.e., the values of constraint
forces A and body velocities v.

5. Experiments and Results

We have implemented our algorithm on a quad-core 2.4 GHz
PC with 3 GB of memory and a GeForce 8800 GTS. Our
prototype implementation is not parallelized, hence we only
make use of one of the four cores in the machine.

To verify the linear time complexity of our algorithm in
practice, we have simulated articulated chains of various
lengths. The plot in Fig. 4 indicates a cost of 22ms/frame
for 1000 links, and 285ms/frame for 10000 links. The actual
running time is just slightly superlinear due to faster memory
access on smaller problems.

We have also applied our algorithm to several animation
examples that illustrate its applicability. Fig. 3 shows some
snapshots of a robot that is dragged from its left hand inter-
actively using a Phantom Omni haptic device. Articulated
dynamics resolve the configuration of the robot’s arm as
the user pulls the hand, and in the accompanying video we
demonstrate the effects of turning joint torques on and off.
‘We use spherical joints for the shoulder, the elbow and the
wrist, and hinge joints for the fingers.
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Figure 3: Left: A robot is pulled from its left hand using a haptic device, and the user perceives the effect of joint stiffness.

Middle and Right: Different configurations of the robot character.

Last, Fig. 5 and Fig. 1 show an interactive simulation of a
human hand. The skeleton of the hand consists of 16 bones
and 15 joints, and it is connected through linear and torsional
springs to a user’s hand motion, tracked with a Cyberglove
in real time. The skeleton model includes joint limits and
joint stiffness, and it is connected to a deformable model that
captures flesh deformation. The simulation of the full hand,
with soft finger contact, runs at 21 fps on average, but the
solution to articulated dynamics with our algorithm has a
comparatively negligible cost of 0.36 ms/frame.

6. Discussion and Future Work

In this paper, we have described an algorithm for the sim-
ulation of open-chain articulated models with stiff forces.
Our algorithm extends the maximal-coordinate formulation
of Baraff [Bar96] to support implicit integration of joint
forces and implicit joint constraints. Notably, this extension
can be implemented in practice with small modifications
to Baraff’s original algorithm. There were already reduced-
coordinate formulations to tackle articulated dynamics with
stiff forces [Had06], but our maximal-coordinate solution is
much simpler to formulate and it offers advantages in terms
of code modularity and implementation complexity.

The results shown in this paper illustrate several possi-
ble applications of our algorithm, capturing efficiently elas-
tic properties of flesh and joints. As observed by Kry and
Pai [KPO06], joint compliance is a key aspect of operations
such as grasping and manipulation. However, the algorithm
is applicable to arbitrary open-chain articulated bodies, or
even deformable objects with a skeletal structure. Hadap’s
work [Had06] shows good example applications, which in-
clude hair, plants, trees, etc. For deformable objects, the sur-
face is defined through smooth interpolation of bone trans-
formations.

There are still multiple open problems in the simulation
of articulated dynamics. Perhaps the most relevant one is
the design of an algorithm for linear-time dynamics under
arbitrary kinematic loops and contact constraints. Efficient
coupling of skeletal dynamics to a surrounding deformable
flesh is also a remaining hard problem. Unlike joint stiff-
ness, which is localized and can be efficiently handled with
our algorithm, a full deformable flesh removes the branch-
ing structure of the equations and is not amenable to efficient
factorization algorithms.
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Appendix A: Derivatives of Joint Torques

Let us consider two bodies a and b with orientations R, and
Rj,. Their relative rotation is R = RaRZ, which can be de-
fined as a rotation ¢ around an axis u.

We consider joint torques of the form Ty = —k - (ou),
which resist the relative rotation. To implement implicit inte-
gration with such joint torques, we need to compute deriva-
tives of the form %g: =—k- g%':, etc., with 0, the linearized

rotation angles of body a.

The derivative of the angle-axis of rotation can be ex-
pressed as:

opu 0 T
00, 25in¢(R +0). 7

For small rotation angles, the derivative can be computed as:

. obu
6,

I ®)

Proof:

Let us consider a differential rotation of body a, d8,.
Then, the new relative rotation is (I + d0};)R, where d6
is a skew-symmetric matrix that represents a cross product
with vector d6,. After this differential rotation, we can also

express a differential change in the angle-axis of rotation,
which becomes ¢u+d(¢u).

By definition of angle-axis, the rotation of a vector in the
direction of the rotation axis leaves the vector intact. Then,
we can express the following identity:

(I+d6})R(ou+d(ou)) = du+d(¢u). 9)

Operating, and applying the property of the rotation axis to
Rou = ¢u, we get:

(R —T)d(ou) = ou*d8,. (10)
Now, we premultiply both sides by (R? 41) to obtain:

(R—R")d(¢u) = (R" +T)ou*d0, = ou* (R” +1)d6,.
(11)
Next, we apply the matrix form of Rodrigues’ rotation for-
mula, R = cos ¢ + sinou™ + (1 — cos¢)uu’ :

2sinou*d(ou) = ou* (R? +1)d6, (12)

Last, eliminating u* from both sides of the equation leads to
the derivative

dpu ¢ T
00, ZSinq)(R +D. 13
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