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ABSTRACT

Water simulation, and more generically fluid simulation, is an important research topic in computer graphics. In
3D Eulerian Navier-Stokes-based water simulations, surface tracking and rendering are two delicate problems. The
existing solutions to these problems (i.e., implicit surfaces-based approaches, height-fields, ray-tracing), are either to
computationally intensive for real-time scenarios, or present bulge water surfaces (i.e., blobby water surfaces). In this
paper, we propose a novel tracking algorithm for rendering water surfaces. Instead of tracking the flow of water using
either level sets or height-fields, each cell of an 3D grid density value is directly measured in order to determine if it
is either water, air, or water-air contact surface. The information in each cell is later used for the water surface splat
rendering, using OpenGL vertex buffer objects.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.5 [Computer Graphics]: Computational Geometry and Ob-
ject Modeling—Boundary representations I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation

1. Introduction

There are two major families of fluid simulation methods,
those that are based on principles of physics and those that
are not [Igl04, TY09]. The latter are known as procedu-
ral methods, and are not dealt in this paper. The former
are usually based on the Navier-Stokes (NS) equations. In
the family of physics-based methods we find three types
of methods, namely: Lagrangian methods, Eulerian meth-
ods, and Lattice Boltzman Methods (LBM). All these wa-
ter simulation methods require techniques for tracking, re-
construction, and rendering of water surfaces. It is true that
several techniques addressing these problems already ex-
ist [EF02, EMF02, Fle07, M0̈9], but these require computa-
tion that penalize the overall frame rate of simulations. In
some cases this problem is so severe that real-time simula-
tions are impossible.

In Lagrangian methods, we use either the Moving Parti-
cle Semi-Implicit (MPS) [PTB∗03,Yam09] or the Smoothed
Particle Hydrodynamics (SPH) [MCG03, HCW∗10, ML-
TOA10] methods to track and reconstruct the surface of wa-
ter. Both methods are used to simulate water effects such
as, for example, splashes, spray, or puddles. These methods
employ implicitly-defined representations to reconstruct the
water surface.

Procedural methods and some of the Eulerian methods
utilize height-fields to render water mantles (e.g., ocean sur-
face near shore, rivers, and pounds) [Mik04, BD06]. Eule-
rian methods and LBM, i.e., methods where space is dis-
cretized over a 1D, 2D, or 3D grid of cells, make usage of
level sets [Sus03, TR04, KIS07], marker level sets [FF01,
BM07], particle level sets [LSSF06], or even hybrids ap-
proaches [LGF04, CCE05, KLL∗07] for tracking and recon-
struction of water surfaces.

Implicit surface-based approaches (i.e., level sets-based,
SPH, and MPS), for water surface tracking and reconstruc-
tion, are either to much computationally time expensive or
present blobby water surfaces (i.e., non-smooth surfaces).
The height-fields alternative is limited to the representation
of water surface mantles. In order to reduce the computa-
tional time required in the physical-based simulation, thus
allowing faster, in some cases real-time, surface tracking
and reconstruction, in Eulerian simulations usually simpli-
fied versions of the NS equations are employed, namely:
Shallow Water Equations (SWE) [Mik04, dlAMC10], Euler
equations [Fed02,ELD08], or 2D NS [Sta02,Sta03a,Sta03b,
ETK∗07]. For real-time (i.e., games or virtual reality) water
simulations, the most used techniques are SPH or height-
fields combined with either procedural methods, SWE, 2D
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NS equations, or Euler equations. Also hybrid approaches,
i.e., approaches that resort to two or more methods for water
simulation, are often used [LGF04,CCE05,BM07,MSJT08,
N0̈8, Gje09].

The main contribution of this paper is a simple, and ef-
ficient (i.e., without penalty on the simulation frame rate),
modified semi-Lagrangian advection [Sta99] algorithm, to
allow 3D coupled water-air physically-based simulations
surface tracking. Therefore, if the simulation runs at inter-
active rates (i.e., real-time) the method presented may be
used. The presented method, non-existent as far as the au-
thors are aware, tracks altogether water, air, and water-air
surface cells, without using any implicit surface-based ap-
proach. Also, the presented method, which resembles the
one in [FF01], is designed in such way, that it may be ex-
tended to store useful information for an water surface ren-
dering algorithm, i.e., for each grid cell which of its 26
neighbour cells are either water, air, surface, or boundary
cells. Thus, in the presented method, comparatively to im-
plicit surface-based techniques, less-computations are re-
quired. However, the presented method requires more mem-
ory read/write accesses.

The main contribution of this paper is a simple, and ef-
ficient (i.e., without penalty on the simulation frame rate),
modified semi-Lagrangian advection [Sta99] algorithm, to
allow 3D coupled water-air physically-based simulations
surface tracking. Therefore, if the simulation runs at inter-
active rates (i.e., real-time) the method here presented may
be used to render water surfaces. Our novel method is able to
track altogether water, air, and water-air surface cells, with-
out using any implicit surface-based approach. Also, the pre-
sented method, which resembles the one in [FF01], is de-
signed in such way that it may be extended to keep track
useful information for an water surface rendering algorithm,
i.e., each grid cell carries information of its 26 neighbour
cells so that it is possible to know whether they are either
surface cells or not. Thus, in our method, comparatively
to implicit surface-based techniques, less-computations are
required. However, our method requires more memory
read/write accesses.

This paper is organized as follows. In Section 2 the
physically-based fluid simulator based on stable fluids is
briefly explained. Section 3 addresses the implementation
of the surface tracking algorithm. Section 4 deals with the
analysis of the performance of the water simulation. Finally
Section 5 draws relevant conclusions and points out new di-
rections for future work.

2. Fluid Simulator

As previously mentioned, our surface tracking algorithm is
a modified stable fluids method in the sense that it extends
the stable fluids method to include water surface tracking.
Our algorithm was applied to the 3D version port, addressed
in [Ash05], of the original 2D stable fluids [Sta03b]. Our
method is a Eulerian method in such a manner that it divides
a boxed domain into a 3D grid, which is then mapped to
an 1D array, as illustrated in Fig. 1). We have modified the
advection step of the stable fluids in order to allow track-
ing and rendering water surfaces (see Section 3). But, before
proceeding any further, let us briefly describe the stable flu-
ids, in particular the specific step of advection.

Figure 1: 3D grid (left) represented by a 1Darray (right).

The motion of fluids (e.g., water or air) can be described
by a set of partial differential equations, known as the
Navier-Stokes equations (Eqs. 1, 2, and 3).

∂−→u
∂t

=−(−→u ·∇)−→u + v∇2−→u +
−→f (1)

∂ρ
∂t

=−(−→u ·∇)ρ+ k∇2ρ+S (2)

∇−→u = 0 (3)

where−→u represents the velocity field, v is a scalar describing
the kinematic viscosity of the fluid,−→f are the external forces
added to the velocity field (e.g., gravity), ρ is the density of
the field, k is a scalar that describes the rate at which density
diffuses, S is the external source added to the density field,
∇=

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
is the gradient operator, and∇2 =∇·∇=

(
∂2

∂x2 ,
∂2

∂y2 ,
∂2

∂z2

)
is the Laplacian operator.

Eqs. 1 and 2 describe the evolution of velocity and density
over time. Eq. 3 states that the velocity field, where the fluid
flows, must be mass/energy conserving. To solve these three
equations, first we have to solve each of the terms in the ve-
locity field equation (Eq. 1) and mass/energy conservation
equation (Eq. 3). To solve each of the terms three steps are
required, namely: add external accelerations

(−→f
)

, diffusion
(

∂−→u
∂t = v∇2−→u

)
, and move (−(−→u ·∇)−→u and ∇−→u = 0).

Afterwards, each of the terms of the density (i.e., fluid quan-
tities) equation (Eq. 2) are solved. These terms are solved
in three steps, namely: add external sources (S), diffusion(

∂ρ
∂t = k∇2ρ

)
, and advection (−(−→u ·∇)ρ). Notice that, if

the kinematic viscosity v in Eq. 1 is discarded the fluid is
classified as inviscid, and the obtained equations are referred
as the Euler equations.

To implement our surface tracking algorithm, we only
needed to modify the advection step of stable fluids (term
(−(−→u ·∇)ρ) in Eq. 2). The remaining steps of stable flu-
ids, aside from being ported from 2D to 3D, required no
other changes. Therefore, we refer the reader to [Sta03b,
Ash05,CCE05] for further explanations on the discretization
of Eqs. 1, 2, and 3.

Let us now focus on the modified advection step. When
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a fluid flows, solid objects, densities, the fluid itself (i.e.,
self-advection), and other quantities (i.e., other fluids) are
advected, convected or transported, as a result of the fluid’s
velocity when it’s moving. To better understand advection
let us consider that each cell of an 3D grid represents a
fluid particle, and that each particle travels along a veloc-
ity field. The stable fluids advection is performed using an
implicit formulation, to overcome the instability for large
time steps of explicit methods. Stam’s approach, referred as
semi-Lagrangian advection, as illustrated in Fig. 2, consists
in tracing each particle movement along an uniform velocity
field (blue arrows) back in time (green arrow), to its former
position (black circle), and then swap its value with the one
of the starting grid cell.

Figure 2: Semi-Lagrangian Advection.

3. Surface Tracking and Rendering

In computer graphics, we are primarily interested on render-
ing the surface of water. Underwater effects are dealt using
underwater caustics rendering techniques, which are not ad-
dressed in this paper.

To render the water surface in 3D Eulerian-based simula-
tions, two steps are required. First the surface of water must
be tracked. Water surfaces can either be in contact with other
fluids, or solids. Other previously mentioned methods, trace
cells in Eulerian approaches and particles in Lagrangian ap-
proaches, that are air or water. Secondly the rendering/re-
construction of the water surface is addressed. Our algorithm
only addresses the first step.

Our approach is to change the density semi-Lagrangian
advection step in order to determine, if a cell is either a air
cell, a water cell, water surface cell, or bounding cell (i.e.,
moving or static obstacles). In order to further address wa-
ter surface rendering, the previous information for each cell
is stored in the first 6 bits, of an 8 digits hexadecimal num-
ber (i.e., 32 bits number), as illustrated in Fig. 3. The re-
maining 26 bits of this hexadecimal number, currently not
being updated by our algorithm, are designed to store which
of the cell’s 26 neighbours are either water surface cells or
not. With the information of the first 6 bits splat rendering of
the water surface is currently performed. However, if stored,

information about each cell’s 26 neighbours could be fur-
ther used in a water surface rendering/reconstruction algo-
rithm. Therefore, we already used hexadecimal flags instead
of strings or characters (e.g., WATER, WATER-AIR, etc.)
to assign each cell as either water, surface, air or bound cell.
The hexadecimal representation chosen was the less memory
consuming solution found, to store information about each
cell and its respective 26 neighbours.

Figure 3: Cell configuration.

The simulation grid data is stored in a data struc-
ture (GRID), where information on the total number
of grid cells (GRID_cells), the total number of wa-
ter surface cells (S_cells), the total number of wa-
ter (surface or not) grid cells (W_cells), the grid
cells size per axis (sizeX,sizeY,sizeZ), the previ-
ous and current velocity and density values for each grid
cell (vx,vy,vz,vx0,vy0,vz0,d,d0), and which grid
cells are marked as either water, air, water surface, or inter-
nal and external boundaries (w_a_s_bds):

typedef struct {
int GRID_cells ;
int S_cells ;
int W_cells ;
float sizeX ,sizeY ,sizeZ ;
float *vx , *vy , *vz , *vx0 , *vy0 , *vz0 , *d , *d0 ;
unsigned long *w_a_s_bds ; } GRID ;

The array (w_a_s_bds) could be made of 1 byte ele-
ments for each grid cell. However, other information (i.e.,
which of a cell’s 26 neighbours are also water surface cells),
for each grid cell, will be stored, in future work. This infor-
mation will be used for two purposes, namely, a surface re-
construction and rendering algorithm to replace current splat
rendering, and to reduce the number cell’s to process in the
move step for velocity and the diffusion step for velocity and
density.

As observed in Fig. 3, for each grid cell, four bytes of
data are used to store information. The bits, of each of these
bytes. that are set to ’1’ are the properties of the corre-
sponding cell (e.g., if the cell is either moving or static obsta-
cle). The cells that are marked as static boundaries (i.e., with
the hexadecimal value ’0x40000000’ in w_a_s_bds)
are read from a file. The water, air, water surface, and mov-
ing boundary data are stored in w_a_s_bds. This informa-
tion is updated at each full update of the physical component
update of the simulation. Thus, no calculation is required to
determine an implicit function that defines the water surface
as in the level set approach.

To access a specific cells data of the grid an macro is used
(IX). The simulation grid number of elements in the x,y,z
directions are also a set of macros (NX,NY,NZ). The re-
maining macros are only to reduce code redundancy in the
advect and draw_density functions.
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#define NX 32
#define NY 32
#define NZ 32
#define IX ( x , y , z ) ( x +(NX+2) * ( y+z *(NY+2) ) )
#define IF1 ( i , j , k , hex ) ( ( ( g−>w_a_s_bds [ IX ( i←↩

, j , k ) ] ) &(hex ) ) ! = ( hex ) )
#define IF2 ( i , j , k , hex ) ( ( ( g−>w_a_s_bds [ IX ( i←↩

, j , k ) ] ) &(hex ) ) ==( hex ) )
#define FOR_EACH_CELL1 \
for (k=1;k<=NZ ;k++) { \
for (j=1;j<=NY ;j++) { \
for (i=1;i<=NX ;i++) {
#define FOR_EACH_CELL2 \
for (k=1;k<=NZ ;k++) { \
z= ( (k−0.5f ) *g−>sizeZ ) /NZ ; \
for (j=1;j<=NY ;j++) { \
y= ( (j−0.5f ) *g−>sizeY ) /NY ; \
for (i=1;i<=NX ;i++) { \
x= ( (i−0.5f ) *g−>sizeX ) /NX ;
#define END_FOR_EACH_CELL }}}

After the update of the velocity field, at the density ad-
vection step our tracking algorithm is applied. The proposed
tracking algorithm is divided in two parts. In the first part, for
each advected cell, if the cell is not either a moving (i.e., with
the hexadecimal value ’0x80000000’ in w_a_s_bds)
or static (i.e., with the hexadecimal value ’0x40000000’
in w_a_s_bds) boundary, and if the cells density value is
higher than 0.2, the cell is marked as water (i.e., with the
hexadecimal value ’0x08000000’ in w_a_s_bds) oth-
erwise the cell is marked as air (i.e., with the hexadecimal
value ’0x10000000’ in w_a_s_bds).

After performing advection for all grid cells, before en-
forcing the boundary conditions, the second part of the al-
gorithm is initiated. Before starting the second part, the
total number of water (surface or not) and water surface
cells counters (W_cells and S_cells) are set to zero.
The second part consists in identifying which water cells
are the water surface cells. To achieve this, for each cell
that is marked as water (i.e., with the hexadecimal value
’0x08000000’ in w_a_s_bds) the total of water cells
(surface or not) counter (i.e., W_cells) increments. After-
wards, if at least one of that cell’s 26th neighbours is air the
cell is marked as water surface cell (i.e., with the hexadeci-
mal value ’0x20000000’ in w_a_s_bds), and we incre-
ment one to the the total of surface water cells counter (i.e.,
W_cells). The modified advection source code follows:

void advect (GRID *g ,int b ,float *d ,float *←↩
d0 ,float *vx ,float *vy ,float *vz ,float←↩
dt ) {

int i ,j ,k ,i0 ,j0 ,k0 ,i1 ,j1 ,k1 ;
float xf ,yf ,zf ,s0 ,t0 ,u0 ,s1 ,t1 ,u1 ,dtx ,dty ,←↩

dtz ;

dtx=dt*(NX ) ; dty=dt*(NY ) ; dtz=dt*(NZ ) ;

FOR_EACH_CELL1
xf=(float )i−(dtx*vx [IX (i ,j ,k ) ] ) ;
yf=(float )j−(dty*vy [IX (i ,j ,k ) ] ) ;
zf=(float )k−(dtz*vz [IX (i ,j ,k ) ] ) ;

if (xf<0.5f ) xf=0.5f ;
if (xf>(NX+0.5f ) ) xf=NX+0.5f ;
i0=(int )xf ; i1=i0+1;

if (yf<0.5f ) yf=0.5f ;
if (yf>(NY+0.5f ) ) yf=NY+0.5f ;
j0=(int )yf ; j1=j0+1;

if (zf<0.5f ) zf=0.5f ;
if (zf>(NZ+0.5f ) ) zf=NZ+0.5f ;
k0=(int )zf ; k1=k0+1;

s1=xf−i0 ; s0=1−s1 ;
t1=yf−j0 ; t0=1−t1 ;
u1=zf−k0 ; u0=1−u1 ;

d [IX (i ,j ,k ) ]=s0*(t0*(u0*d0 [IX (i0 ,j0 ,k0 ) ]
+u1*d0 [IX (i0 ,j0 ,k1 ) ] )
+(t1*(u0*d0 [IX (i0 ,j1 ,k0 ) ]
+u1*d0 [IX (i0 ,j1 ,k1 ) ] ) ) )
+s1*(t0*(u0*d0 [IX (i1 ,j0 ,k0 ) ]
+u1*d0 [IX (i1 ,j0 ,k1 ) ] )
+(t1*(u0*d0 [IX (i1 ,j1 ,k0 ) ]
+u1*d0 [IX (i1 ,j1 ,k1 ) ] ) ) ) ;

if (b==0) {
if ( (IF1 (i ,j ,k , 0x80000000 ) )&&(IF1 (i ,j ,k , 0←↩

x40000000 ) ) ) {
if (d [IX (i ,j ,k ) ] > 0 . 2 )
(g−>w_a_s_bds [_IX (i ,j ,k ) ] ) =0x08000000 ;
else
(g−>w_a_s_bds [_IX (i ,j ,k ) ] ) =0x10000000 ;
}}
END_FOR_EACH_CELL

g−>S_cells=0;
g−>W_cells=0;

FOR_EACH_CELL1
if (b==0) {
if (IF2 (g ,i ,j ,k , 0x08000000 ) ) {
g−>W_cells++;

if ( (IF2 (g ,i−1,j ,k , 0x10000000 ) ) | |
(IF2 (g ,i+1 ,j ,k , 0x10000000 ) ) | |
(IF2 (g ,i ,j−1,k , 0x10000000 ) ) | |
(IF2 (g ,i ,j+1 ,k , 0x10000000 ) ) | |
(IF2 (g ,i ,j ,k−1,0x10000000 ) ) | |
(IF2 (g ,i ,j ,k+1 ,0x10000000 ) ) | |
(IF2 (g ,i−1,j−1,k , 0x10000000 ) ) | |
(IF2 (g ,i−1,j+1 ,k , 0x10000000 ) ) | |
(IF2 (g ,i−1,j ,k−1,0x10000000 ) ) | |
(IF2 (g ,i−1,j ,k+1 ,0x10000000 ) ) | |
(IF2 (g ,i+1 ,j−1,k , 0x10000000 ) ) | |
(IF2 (g ,i+1 ,j+1 ,k , 0x10000000 ) ) | |
(IF2 (g ,i+1 ,j ,k−1,0x10000000 ) ) | |
(IF2 (g ,i+1 ,j ,k+1 ,0x10000000 ) ) | |
(IF2 (g ,i−1,j−1,k−1,0x10000000 ) ) | |
(IF2 (g ,i−1,j+1 ,k−1,0x10000000 ) ) | |
(IF2 (g ,i−1,j−1,k+1 ,0x10000000 ) ) | |
(IF2 (g ,i−1,j+1 ,k+1 ,0x10000000 ) ) | |
(IF2 (g ,i+1 ,j−1,k−1,0x10000000 ) ) | |
(IF2 (g ,i+1 ,j+1 ,k−1,0x10000000 ) ) | |
(IF2 (g ,i+1 ,j−1,k−1,0x10000000 ) ) | |
(IF2 (g ,i+1 ,j+1 ,k+1 ,0x10000000 ) ) | |
(IF2 (g ,i ,j−1,k−1,0x10000000 ) ) | |
(IF2 (g ,i ,j+1 ,k−1,0x10000000 ) ) | |
(IF2 (g ,i ,j−1,k+1 ,0x10000000 ) ) | |
(IF2 (g ,i ,j+1 ,k+1 ,0x10000000 ) ) ) {
g−>w_a_s_bds [IX (i ,j ,k ) ]=0x20000000 ;
g−>S_cells++;
}}}
END_FOR_EACH_CELL
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set_bnd (g ,b ,d ) ;
}

To render the water surface, exclusively cells marked as
water surface are drawn as discs. The source code used to
splat render the water surface, whose cells information in
the 1D array w_a_s_bds), follows:

void draw (GRID *g ,float alpha_blend ) {
float x ,y ,z ;
int i ,j ,k ,l=0;

GLsizei DrawPrimitiveRequiredVertex=1;
GLsizei VertexCount=g−>S_cells*←↩

DrawPrimitiveRequiredVertex ;
GLsizeiptr VertexSize=VertexCount*3*sizeof (←↩

GLfloat ) ;
GLfloat *VertexData=(GLfloat*) malloc (←↩

VertexSize ) ;

FOR_EACH_CELL2
if (IF2 (i ,j−1,k+1 ,0x20000000 ) ) ) {
VertexData [l+0]=x ;
VertexData [l+1]=y ;
VertexData [l+2]=z ;
l+=3;
}
END_FOR_EACH_CELL

glPushMatrix ( ) ;
glColor4f ( 0 . 6 , 0 . 7 , 0 . 8 ,alpha_blend ) ;
glPointSize ( 2 2 ) ;
glBindBuffer (GL_ARRAY_BUFFER , 1 ) ;
glBufferData (GL_ARRAY_BUFFER ,VertexSize ,←↩

VertexData ,GL_STREAM_DRAW ) ;
glVertexPointer ( 3 ,GL_FLOAT , 0 , 0 ) ;
glEnableClientState (GL_VERTEX_ARRAY ) ;
glDrawArrays (GL_POINTS , 0 ,VertexCount ) ;
glDisableClientState (GL_VERTEX_ARRAY ) ;
glPopMatrix ( ) ;

free (VertexData ) ;
}

4. Experimental Results Analysis

The presented algorithm was tested on a Intel(R) Core(TM)
i7 CPU 920@2.67GHz, with 8.0Gbytes of DDR3 RAM, an
NVIDIA GTX 295 graphics card, running an Windows 7
64 bits Operative System. The surface tracking algorithm
was implemented as non-parallel single-core CPU version.
To test the proposed algorithm, a small graphics simulation
scenario was implemented. This scenario consists in water
being poured into a container (white box) from a pipe (green
cylinder), as shown in Figs. 4 and 5. At every time step each
grid cell marked as water surface was rendered as an disc
(white disks). Figs. 4 and 5 illustrate the simulation running
before using our surface tracking and rendering algorithms
(i.e., rendering all grid cells where density value was higher
than 0.2) and after (i.e., rendering only the water surface
cells).

Both simulation scenarios ’Before’ and ’After’ using our
surface tracking algorithm, illustrated in Figs. 4 and 5, ran
on a 323 grid of cells, i.e., ’Grid Size’. For each of the sim-
ulation scenarios, the frames per second (FPS), and the total

Figure 4: Water (surface or not) Rendering.

Figure 5: Surface Water Rendering.

of grid cells that are water cells ’TWC’ and water surface
cells ’TWSC’, data was gathered, as shown in Table 1.

Grid Size # FPS # TWC # TWSC
Before

323 16 2449 487
After 16 2637 467

Table 1: Comparison between all water cells rendering and
surface rendering scenarios.

Looking at Figs. 4 and 5, and Table 1, two major con-
clusions can be drawn. First, the algorithm did not penal-
ized the total frame rate of the simulation. Second, the total
number of water elements (surface or not) and water surface
elements to render is a negligible portion of the total num-
ber of elements of the simulation grid (respectively less than
10% and less than 2% of the total number of elements of
an 323 grid). Altogether, both conclusions favour the possi-
bility that, if our algorithm was extended to store for each
cell’s 26 neighbours if they are surface cells or not, a better
surface water rendering can be made using reconstruction
techniques in real-time.

5. Conclusions and Future Work

In this paper a novel water surface tracking technique was
presented. This technique does not the penalize the perfor-
mance of the fluid simulation. The proposed technique, im-
plemented on an 3D Eulerian NS-based implicit fluid solver,
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can also be extended to explicit solvers. It diverges from
previous approaches, applied to Eulerian simulations (i.e.,
implicit-based methods). The presented technique simulta-
neously tracks directly the water, air, and water surface ele-
ments, instead of computing the evolution of a implicit func-
tion, that describes the water surface shape. Therefore, since
the presented technique is fully integrated in an 3D Eulerian
solver, no extra computation to evolve the implicit function
along the velocity field are required.

Currently, the presented technique does not include the
tracking for each grid cell of which of its 26 neighbours are
either water surface cells or not. Nevertheless, all the pre-
sented code was devised taking this future extension in con-
sideration. Therefore, hexadecimal values are used instead
of simple string expressions for as less as possible memory
usage. This information would allow also a fast water sur-
face rendering with some modifications in the water render-
ing algorithm.

There are several further work directions. First, with the
tracked air, water, and water surface cells, and a few modi-
fications to the linear solver, used both in the diffusion and
projection steps, to implement air-water coupling (i.e., mul-
tiphase fluids interaction) to the simulation. Second, to im-
plement the presented algorithm in the CUDA-based version
presented in [AG10]. Third, to improve the tracking algo-
rithm and to replace the current surface splat rendering with
an water surface reconstruction and rendering algorithm. All
these modifications, are intended to be implemented and
tested for real-time purposes, in either non-parallel CPU-
or CUDA-based versions. Fourth, to add reflection to the
reconstructed water surface. Finally, to optimize and port
the non-parallel CPU-based simulator to MPI, OpenMP, and
OpenCL versions.
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