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ABSTRACT

High-quality texture minification techniques, including trilinear and anisotropic filtering, require texture data to be ar-
ranged into a collection of prefiltered texture maps called mipmaps. In this paper we present a compression scheme
for mipmapped textures which achieves much higher quality than current native schemes by exploiting image coher-
ence across mipmap levels. The basic idea is to use a high-quality native compressed format for the upper levels of
the mipmap pyramid (to retain efficient minification filtering) together with a novel compact representation of the de-
tail provided by the highest-resolution mipmap. Key elements of our approach include delta-encoding of the luminance
signal, efficient encoding of coherent regions through texel runs following a Hilbert scan, a scheme for run encoding
supporting fast random-access, and a predictive approach for encoding indices of variable-length blocks. We show that
our scheme clearly outperforms native 6:1 compressed texture formats in terms of image quality while still providing
real-time rendering of trilinearly-filtered textures.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: 3D Graphics and Realism—
Texture

1. Introduction

Storing and accessing large texture datasets is still a chal-
lenging problem in computer graphics. The benefits of us-
ing compressed texture formats [BAC96] are manifold: (a)
memory space savings, thus minimizing texture paging, (b)
faster texture uploads, due to the reduced size, and (c) higher
rendering speed, due to cache benefits and reduced band-
width requirements. Note that (a,b) and (c) are often opposite
goals: some sophisticated schemes achieve higher compres-
sion rates at the expense of higher decoding times.

Compressed texture formats natively supported by cur-
rent hardware provide unsurpassed decoding performance
but at the expense of a poor quality/space ratio. DXT1
and ETC formats, for example, provide an acceptable 6:1
compression ratio but at a substantial loss in image qual-
ity. Furthermore, since these formats use a uniform bitrate
across the image, they loose information in high-detail re-
gions while over-allocating space in low-detail regions. This
lack of adaptivity often results in visible artifacts all over
the texture, which are particularly noticeable around sharp
image features. Furthermore, since each mipmap level is en-
coded independently, native methods do not exploit data re-
dundancy across mipmap levels. These facts have prevented
the widespread use of compressed textures in those applica-
tions aiming at providing the highest image quality. Native
formats for RGBA textures such as DXT5 can be trivially
extended to encode RGB textures with much higher qual-

ity [vWC07] but this results in a less attractive 4:1 compres-
sion ratio.

Multiresolution texture formats achieve better compres-
sion but fail to guarantee efficient random access to indi-
vidual texels without assistance from specialized hardware.
These approaches add a significant performance overhead
because decoding a single texel often involves multiple (pos-
sibly dependent) lookups to the compressed texture data.
This fact makes texture filtering a major issue.

In this paper we present a high-quality texture compres-
sion scheme for mipmapped RGB textures. We aim at ex-
ploiting image coherence across mipmap levels by encod-
ing inter-level residuals instead of absolute color values.
Ideally, we could use inter-level residuals across all lev-
els of the mipmap pyramid, but this would require exten-
sive data traversals and result in a prohibitive number of
texture fetches during rendering. Alternative multiresolu-
tion approaches, such as those formats based on the wavelet
transform [Per99, SR06, STC09] typically work with 4×4
texel blocks (thus encoding explicitly only two additional
LOD levels) and suffer from decoding performance issues.
Instead we focus on the encoding of the highest-resolution
level, which represents about 75% of the samples in the
whole pyramid. The image pyramid is encoded as follows.
The upper levels of image pyramid (levels L1 to Ln) are com-
pressed with a native texture format. A native mipmapped
texture is the most efficient way for computing trilinearly
filtered samples. Since levels L1 to Ln represent only one
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Figure 1: Overview of our compression scheme. The input of the encoder is a mipmap pyramid with levels L0 . . .Ln. The upper
levels L1 . . .Ln of the pyramid are compressed using a high-quality native texture format (a). Level L1 is decompressed and
upsampled 2× (b), thus producing a low-pass filtered version of the highest-resolution mipmap L0. The luminance signal is
extracted by performing an RGB to YCoCg conversion on both the original (c) and the reconstructed image (d). Residuals are
computed by subtracting (e) the reconstructed luminance signal from the original one. Sparsity in the residuals is exploited by
traversing the pixels in Hilbert order and grouping pixels with similar residuals into runs (f). The compressed representation
consists of the compressed mipmap pyramid plus a random-access encoding of the residual runs.

fourth of the samples of the whole pyramid, we can adopt
a high-quality but low-compression rate format without sig-
nificantly increasing the overall compression rate.

In contrast, the highest-resolution level L0 is encoded in-
crementally from its downsampled version L1 (Fig. 1). It is
well-known that a low-pass filtered version of an image is
often a good approximation of it. Furthermore, subtracting
a low-pass filtered copy of the image from the image itself
produces an image with much lower variance and entropy.
This fact has been used extensively in the compression lit-
erature [BA83]. In our approach, the low-pass filtered ver-
sion is just a bilinear reconstruction from a downsampled
and compressed version of the image.

Contributions The main contribution of this paper is a
new scheme for high-quality texture compression. The ma-
jor benefits of our approach are (a) high-quality compres-
sion at 6:1 with no noticeable loss in image quality; our ap-
proach is particularly good at preserving well defined edges
in highly-detailed areas, a feature often lacking in competing
compressed texture formats; (b) fast GPU-based decoding of
individual texels, with trilinear filtering support.

Key elements of our approach include:

• Delta-encoding of the luminance signal Y required to re-
construct an image from a downsampled version of it.
This way we exploit coherence across the image pyramid.
• Locally-adaptive encoding of coherent image parts

through texel runs following a Hilbert scan. This allows
us to exploit residual coherence and sparsity across (larger
parts of) the image.
• A block-based encoding of texel runs allowing fast

random-access to individual texels. We use a bitmask en-
coding a variable number of cuts along the Hilbert curve.

Decoding a residual requires only three lookups to com-
pressed texture data.

2. Previous work

General image compression The reasons why conven-
tional image compression schemes such as PNG, JPEG
and JPEG2000 are not suitable as compressed texture for-
mats have been extensively reported in the literature, see
e.g. [BAC96, LH07]. Most compression strategies, includ-
ing entropy coding, deflate, and run-length encoding, lack
efficient fine-grain random access. Entropy encoders, for ex-
ample, use a few bits to encode the most commonly occur-
ring symbols. Entropy coding does not allow random access
as the compressed data preceding any given symbol must be
fetched and decompressed to decode the symbol.

Vector quantization and block-based methods Vector
quantization (VQ) has been largely adopted for texture com-
pression [NH92, BAC96]. When using VQ, the texture is
divided into a set of blocks. VQ attempts to characterize
this set of blocks by a small set of representative blocks
called a codebook. The image is encoded as a set of in-
dices into this codebook, with one index per block of tex-
els [BAC96]. VQ can also be applied hierarchically [VG88].
Block-based data compression has been a very active area of
research [MB98, Fen03, SAM05]. S3TC DXT1 [KKZ99]
stores a 4×4 texel block using 64 bits, consisting of two 16-
bit RGB 5:6:5 color values and a 4×4 two-bit lookup table.
The two bits of the lookup table are used to select one color
out of four possible combinations computed by linear inter-
polation of the two 16-bit color values. ETC [SAM05,SP07]
also stores a 4× 4 texel block using 64 bits, but luminance
is allowed to vary per texel. All these fixed-rate schemes
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are non-adaptive and thus they over-allocate space in low-
detail regions while losing quality in detailed parts. YCoCg-
DXT5 [vWC07] extends DXT5 (originally conceived to en-
code RGBA textures) to provide high-quality compression
of RGB data, at the expense of a modest 4:1 compression
rate. We adopt this format for the lowest-resolution part of
the image pyramid, and provide a novel compression scheme
for the highest-resolution mipmap.

Hierarchical compression Hierarchical structures such as
wavelets and quadtrees offer spatial adaptivity and support
multi-resolution compression, but these approaches often re-
quire extensive data traversals and therefore lack efficient
random access to individual texels. Only a few hierarchical
schemes have been proposed for texture compression. Kraus
and Ertl [KE02] propose a two-level hierarchy to represent
a simple form of adaptive texture maps. Their representation
consists of a coarse, uniform grid where each cell contains
the origin and size of a varying-length texture data block.
Pereberin [Per99] presents a fixed-rate compression scheme
using wavelet decomposition on 4x4 blocks. Luminance val-
ues (extracted from YCbCr space) are transformed by ap-
plying two levels of a 2D Haar wavelet decomposition, and
the eight most significant coefficients (plus the mean value)
are quantized and stored. Chrominance values are encoded
in a similar way but at a lower resolution. This allows en-
coding three mipmap levels with 12 bytes, thus providing
4:1 compression. Pereberin’s approach has been recently ex-
tended to RGBA textures by Sun et al. [STC09], which ex-
ploit the correlation between luminance and alpha values.
Stachera and Rokita [SR06] also adopt a block-based hi-
erarchical scheme. Each 4x4 block is subject to local frac-
tal compression [SS06] and the resulting fractal codes are
further compressed using either a Laplacian pyramid or a
wavelet decomposition. All the hierarchical methods dis-
cussed above are fixed-rate and thus cannot guarantee de-
tail preservation in regions with high luminance variance.
Another issue is that these methods cannot address the de-
compression step without a hardware implementation: the
inverse wavelet transform should be computed only once per
block, but unless this is implemented in hardware, a frag-
ment shader would have to compute it once per texel. In this
situation, assuming 4x4 blocks, bilinear sampling near the
block’s corner would require four inverse wavelet transforms
involving 16×4 = 64 coefficients.

A completely different approach is taken by Fen-
ney [Fen03]. As in our approach, he exploits the fact that
low-pass filtered signals are often a good approximation to
the original signal. Two low-resolution images and a full-
resolution but low-precision modulation signal are used to
encode the image. Modulation data is arranged in 4x4 texels.
Again, efficient decompression of 2x2 neighboring texels re-
quires specific hardware.

Adaptive representations suitable for shader-based de-
coding include page tables [LKS∗06] and random-access
quadtrees [LH07]. Our approach differs from quadtree-
based schemes in that coherent regions are defined from lu-
minance difference between the original image and a down-
sampled version of it, and that these regions are allowed to
have any size (they do not have the power-of-two restriction)
and allows a larger class of shapes (not just squares), thus al-
lowing a better fit to the boundary of coherent regions.

Data order and compression Data orders such as Hilbert
scans have been extensively explored in the compression lit-
erature, especially in the database community. A few pa-
pers discuss color image compression using Hilbert scans
(see e.g. [Col87, KNB98]), but they lack random-access and
therefore cannot be used for texture compression. Inada and
McCool [IM06] propose a variable-rate, lossless compres-
sion scheme exploiting image sparsity. The texture is divided
into tiles of 4× 4 pixels which are encoded using a B-tree
indexing structure. Internal nodes of the B-tree store key-
pointer pairs whereas leaf nodes encode a variable number
of tiles compressed using a color differencing scheme. Our
work also uses space-filling curves but differs from [IM06]
in that our space-filling curve traverses the pixels inside each
tile, instead of the tiles of the whole image. As a conse-
quence, our run encoding can exploit texel correlation along
the curve at the finest-grain level. Andujar [And10] encodes
images with low color depth by grouping texels with simi-
lar colors. Our approach also groups texels but coherence is
established in terms of inter-level residuals instead of abso-
lute color values (thus supporting compression of true color
images), and run lengths are encoded implicitly through a
bitmask instead of explicitly.

3. Locally-adaptive compression

3.1. Overview

The encoding of a mipmapped texture with levels L0 . . .Ln
involves the following steps, illustrated in Fig. 1:

1. Compress levels L1 to Ln of the mipmap pyramid.
The mipmap pyramid L1, . . .Ln is compressed using a na-
tive compressed format (to retain efficient minification).
Since these levels represent only one fourth of the samples,
we can adopt a high-quality but low-compression rate for-
mat without significantly increasing the overall compression
rate. In our experiments we used the YCoCg-DXT5 for-
mat [vWC07] because it provides excellent image quality
(generally better than 4:2:0 JPEG at the highest quality set-
ting) at a fixed 4:1 compression rate.

2. Uncompress and upsample level L1. This results in a
low-pass filtered reconstruction L̃0 of the highest-resolution
level L0. Each upsampled value in L̃0 is computed by taking
one bilinear sample from L1 right at the center of the corre-
sponding L0 texel.

3. Extract luminance from L0 and L̃0. Since humans are
more sensitive to changes in luminance than in chromi-
nance, chrominance values can be substantially downsam-
pled without adding noticeable artifacts. Chroma subsam-
pling is adopted in JPEG and in many compressed texture
formats [Per99, SR06]. Our approach also uses chroma sub-
sampling, thus encoding at full resolution only the resid-
uals of the luminance signal. We extract luminance using
the YCoCg color space [MS03a] because it provides bet-
ter decorrelation than competing color spaces [MS03b] and
it is the simplest transform in terms of decoder operations.
At encoding time, Y is extracted as Y = 1

4 (R + 2G + B).
The reverse conversion, required at decoding time, only re-
quires four additions [MS03a]: G = Y +Cg; m = Y −Cg;
R = m+Co; B = m−Co.

4. Compute residuals. Luminance residuals y are com-
puted at full resolution by simply subtracting the low-pass
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filtered luminance values Ỹ from the luminance values Y of
the original image, i.e. y=Y−Ỹ . This differencing approach
is more redundant than e.g. two levels of a Haar wavelet
transform. For a 4x4 block, we end up with 16 residuals in-
stead of just 15 detail coefficients. However, we can decode
luminance using just one addition, instead of computing the
more expensive inverse wavelet transform.

5. Group texels with similar residuals. This step aims
at exploiting sparsity in the residuals: parts of the image
with no high-frequency features lead to regions with simi-
lar (nearly null) residuals. Grouping is performed block-wise
(we used 8×8 blocks), i.e. only texels in the same block can
be grouped together. This step ends up with a sequence of
runs {(y0,r0), . . .(ym,rm)}, where ri is the length of the i-
th run, and yi its representative residual. The algorithms we
propose for this step are discussed in Sect. 3.2.

6. Encode texel runs. The sequence {(y0,r0), . . .(ym,rm)}
might be acceptable for sequential decompression, but not
for random-access, as decoding an individual texel would
require a linear search. Our contribution in this respect is a
new run encoding resulting in a much more efficient decod-
ing (discussed in Sect. 3.3).

7. Build index data. Since compressed blocks are
variable-length, we need to store indices to the beginning
of each block. Indices are stored as offsets relative to a pre-
dicted index (Sect. 3.4).

3.2. Grouping texels with similar residuals

Once residuals have been computed, texels inside a block are
traversed in Hilbert order, and those with identical (loss-less)
or similar (lossy) residuals are grouped into runs. This step
ends up with a run sequence {(y0,r0), . . .(ym,rm)}, where ri
is the length of the i-th run. Here we describe a simple algo-
rithm whose outer optimization strategy is similar to that of
greedy mesh simplification algorithms. The grouping algo-
rithm can be summarized as follows:

1. Traverse texels in Hilbert order and create a unit-length
run (y,1) for each texel.

2. For each pair of neighboring runs (yi,ri), (yi+1,ri+1),
compute the cost Ei of collapsing that pair (see below).

3. Insert all the pairs in a heap keyed on cost with the
minimum-cost pair at the top.

4. Iteratively extract the pair (yi,ri), (yi+1,ri+1) of least cost
from the heap, group this pair, and update the cost of the
adjacent pairs.

During grouping, each run is represented as a triple
(Si,S2

i ,ri) where Si (resp. S2
i ) is the sum of the (resp.

squared) residuals of the ri texels in the run. Merging two
runs simply involves a component-wise addition of these
triples. The cost Ei produced by joining two runs (Si,S2

i ,ri)
and (Si+1,S

2
i+1,ri+1) can be computed in the L2 error sense

as Ei = S2
i +S2

i+1−(Si+Si+1)
2/(ri+ri+1). The average run

residual is simply yi = Si/ri.

3.3. Encoding texel runs

Run encoding is critical for both compression rate and de-
coding performance. Representing each block with the se-
quence {(y0,r0), . . .(ym,rm)} might be acceptable for se-
quential decompression but not for random-access, as decod-

00 00 00 11 00 11 11 00 00 00 00 11 11 00 00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 … 31

00 00 00 11 00 11 11 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 … 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 … 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 … 31

Figure 2: Run encoding. From top to bottom: (a) sequence
of residuals in Hilbert scan order, (b) resulting runs, (c)
bitmask encoding the start of each run, (d) mask used for
searching the run containing the pixel at position 9. The
three bits set to 1 indicate that the residual for pixel 9 has
offset three in the sequence of run residuals.

ing an individual texel would require a linear search. Replac-
ing length values by cumulative lengths si = ∑i

j=0 ri, as pro-
posed in [And10], allows decoding through a binary search
on {(y0,s0), . . .(ym,sm)}. Unfortunately, binary search on an
8x8 block still requires up to log2(8 ·8) = 6 search steps. Our
run encoding consists of a B-bit bitmask M and a sequence
of detail values {y0, . . .ym}. The bitmask M is defined as
follows: the i-th bit of M is 1 iff ∃ j|s j = i, and 0 otherwise.
In other words, the ones of M correspond to the cuts of the
Hilbert curve, i.e. to points along the curve where a new run
starts (Fig. 2). The major benefit of this approach is that ex-
tracting the residual of a pixel can be accomplished with very
little work. Finding the run containing the k-th pixel is equiv-
alent to counting the number of bits set to 1 in the submask
M[0,k]. The resulting value is the offset needed to recover
the pixel residual in the sequence {y0, . . .ym}. Since current
GPUs are SIMD, we first set to 0 all bits to the right of the
k-th bit using M = M & (1 << (k+1))−1, and then count
the number of ones in the resulting mask. Counting ones in a
mask can be efficiently accomplished with this simple code,

n= T[M&0xFF]; M»=8; n+=T[M&0xFF]; M»=8;
n+=T[M&0xFF]; M»=8; n+=T[M&0xFF];

where T[] is a lookup table storing 256 integers, with T[i]
storing the number of ones in the binary representation of i.

3.4. Building index data

Our compressed blocks have variable length, so we need to
store indices to the beginning of each block (Fig. 3). We en-
code block indices through a prediction-correction method.
Let s j be the size of the j-th compressed block, and let I j
be its start position in the sequence of compressed blocks,
i.e. I j = ∑ j−1

i=0 si. We use a very simple linear predictor
Ĩ j = bsavg · j+0.5c, where savg is the average size of a com-
pressed block. We just store the corrections i j = I j− Ĩ j.

3.5. Compressed representation

Our compressed mipmapped texture thus consists of (a) an
image pyramid with L1, . . .Ln levels compressed in a na-
tive format, and (b) the compressed residuals to recover L0
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Figure 3: Representation of the highest-resolution level

(a)

(b)

(c) λ

0

1

2

3

4

5

6

(c)

(b)

(a)

Figure 4: Three different filtering situations depending on
the level-of-detail parameter λ

(Fig. 1). We now give some details on the particular repre-
sentation of these two pieces used for the experiments. The
image pyramid can be stored as a conventional mipmapped
texture, in any native (compressed or uncompressed) format.
In our experiments we used YCoCg-DXT5 format, which
provides high-quality compression at a fixed 4:1 compres-
sion rate. The residuals for recovering L0 are stored in a sep-
arate texture unit which encodes both index data and block
data (Fig. 3).

Index data Index data contains one index record per im-
age block. Each index record is encoded with 1+15 bits. The
first bit (single-run flag) indicates whether the correspond-
ing block has one or more runs. Blocks with a single run
correspond to image regions needing identical (often null)
residual correction. The single residual value of such blocks
can be stored in the remaining 15 bits, although we did not
implement this option as for these blocks the residual is very
low or zero. Blocks with more than one run have a corre-
sponding block record. In this case, the start of the com-
pressed block (measured from the end of the index data)
is encoded in the remaining 15 bits using the prediction-
correction strategy explained in Sect. 3.4.

Block data Each block with more than one run has a corre-
sponding block record consisting of a B bit bitmask (B being
the block size) and a collection of residuals (Fig. 3). In our
implementation we used 8x8 (B=64) blocks, and (signed)
residuals were quantized using 8 bits.

3.6. Decompression algorithm

Our compressed representation supports efficient decoding
of trilinear-filtered samples through a fragment shader. Ac-
cording to the OpenGL specification, the mipmap levels
needed for sampling a texture at a given fragment (x,y) are
decided by computing a level-of-detail parameter λ(x,y),
which basically depends on ∂s

∂x , ∂s
∂y , ∂t

∂x , ∂t
∂y . We can distin-

guish three situations, depending on the value of λ (refer to
Fig. 4). Situation (a) corresponds to λ < 0, thus a magnifi-
cation filter is applied. On an uncompressed texture, only L0

would need to be accessed. In our case, we compute the out-
put color by accessing L1 (mipmapped texture) and fixing
the luminance using the detail image, as discussed below.
Situation (b) corresponds to 0≤ λ < 1, thus minification re-
quires accessing LOD levels 0 and 1. In our case, this sim-
ply accounts for an additional linear interpolation between
the level 0 and level 1 colors. Situation (c) corresponds to
λ ≤ 1, thus minification does not involve the detail image.
In this case we transition to native (potentially anisotropic)
filtering.

We now detail how to get filtered samples in the situa-
tions (a) and (b) described above, which involve accessing
the compressed data. We sample the mipmap texture directly
at (s, t) using native bilinear filtering, and perform bilinear
interpolation of the luminance residuals just after decoding
them:

1. Get color c̃ by taking a bilinear sample from L1 at (s, t).
2. Extract luminance Ỹ from c̃ (Sect. 1).
3. Fetch residuals y0, . . .y3 and compute their bilinear inter-

polation y at (s, t).
4. Recover level 0 luminance values Y by adding the resid-

ual, i.e. Y = Ỹ + y.
5. Recover level 0 color c by setting the luminance of c̃ to Y .
6. Output c (if λ≤ 0) or λc̃+(1−λ)c otherwise.

All the steps above are straightforward, except for the
residual fetch in step 3, which is detailed below.

Residual fetch Let (i, j) be the integral coordinates of the
residual to be fetched. We use the following steps (assuming
8×8 blocks):

1. Fetch the index data of the block containing pixel (i, j).
2. If the single-run flag is set, output residual 0 and finish.
3. Otherwise, retrieve the mask M of the block.
4. Get the local Hilbert key k of (i, j) using a lookup table

indexed by (i%8, j%8).
5. Identify the run r containing pixel k by counting the num-

ber of one’s in the mask (Sect. 3.3).
6. Return the residual value yr at offset r from the mask.

Note that only three texture lookups are needed to decode
each residual (Steps 1, 3 and 6 above). Indeed, these texture
accesses are very coherent among neighbor texels. The prob-
ability of a random sample (s, t) requiring a group of 2× 2
texels in the same n× n block can be shown to be the area
ratio between a half-pixel offset of the block and the block
itself, i.e. (n−1)2/n2. For 8×8 blocks, this means that index
data and the block bitmask M can be cached for about 76%
of samples.

4. Results

We have tested our compression scheme with the
well known Kodak image suite plus two test images
from [RAI06]. All mipmap levels were created through bi-
linear interpolation, the value of a downsampled pixel being
just the average of the corresponding 2x2 group of texels.

Performance Regarding compression, we are able to com-
press large textures in a few milliseconds. Table 1 shows
compression times for varying texture sizes on an Intel
Core2 Q9550 at 2.83GHz. Table 2 shows rendering times of
our prototype shader running on NVidia GTX 285 hardware
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Kodak 07 Uncompressed DXT1 6:1 ETC 6:1 Ours 6:1 Residuals

Kodak 19 Uncompressed DXT1 6:1 ETC 6:1 Ours 6:1 Residuals

Kodak 20 Uncompressed DXT1 6:1 ETC 6:1 Ours 6:1 Residuals

Piggy Uncompressed DXT1 6:1 ETC 6:1 Ours 6:1 Residuals

Yucca Uncompressed DXT1 6:1 ETC 6:1 Ours 6:1 Residuals

Figure 5: Results with the 512×512 test images. See text for explanations.

Texture size # texels Compression time (ms)
6:1 10:1

512×512 262,144 83 75
1024×1024 1,048,576 251 245
2048×2048 4,194,304 985 971

Table 1: Compression performance

with a 1024×1024 viewport. Note that the number of tex-
ture lookup calls is the same for bilinear (λ≤ 0) and trilinear
(0<λ≤ 1) interpolation, as in both cases we have to retrieve
the L̃0 color (one call) and the four residuals (3× 4 calls),
as explained in Sect. 3.6. Although our decompression rates
are sometimes 10× slower than natively supported formats
such as DXT1 and ETC, they still allow real-time rendering
without assistance from specialized hardware.

Image quality and compression ratio We compared our
scheme with DXT1 and ETC texture formats using ATI
Compressonator 1.50 with the default (highest quality, slow-
est compression) settings. These formats provide an over-
all 6:1 compression ratio (CR) with respect to the uncom-
pressed mipmap pyramid. When using our approach, we

Filtering Texture lookup calls fps

λ≤ 0 (bilinear) 13 340 fps
0 < λ≤ 1 (trilinear) 13 340 fps

λ > 1 (native trilinear) 1 1210 fps

Table 2: Decompression performance.

DXT1 (6:1) ETC (6:1) Ours @ 6:1

Image PSNR Max PSNR Max PSNR Max

Kodak 07 39.40 0.11 40.14 0.17 46.71 0.09

Kodak 19 37.91 0.13 39.08 0.16 44.09 0.08

Kodak 20 40.40 0.16 40.84 0.16 48.26 0.14

Piggy 43.75 0.07 44.04 0.13 47.21 0.07

Yucca 38.58 0.16 40.50 0.16 43.45 0.15

Averages 40.00 0.13 40.92 0.16 45.90 0.11

Table 3: Image quality results (PSNR, maximum error) with
the test dataset at an overall 6:1 compression ratio.
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used a 7.2:1 CR for mipmap L0 and a fixed 4:1 CR for the
rest of the image pyramid, which resulted in an overall 6:1
CR (all CR values reported refer to the whole mipmap pyra-
mid). The results are shown in Table 3. Both DXT1 and ETC
provided rather poor quality at their fixed 6:1 CR, with an
average PSNR of 40.00 dB and 40.92 dB, respectively. Our
approach at 6:1 provided much higher PSNR for all the im-
ages: 45.90 dB on average, i.e. an average coding gain of
5 dB over DXT1. Regarding maximum RGB errors, our ap-
proach also produced lower errors, 0.11 on average against
0.13 (DXT1) and 0.16 (ETC). Images with large coherent re-
gions (Kodak 07 and Kodak 20) compress much better. Note
that coherent here means not deviating much from the down-
sampled version of the image. On the other extreme, images
with well-defined edges everywhere (Yucca) require more
residuals to achieve this quality.

Fig. 5 shows close-up views of the resulting images. Our
method is particularly good at preserving well defined edges
even in highly contrasted areas (compare our 6:1 recon-
struction with that of DXT1/ETC for the yucca leaves). Our
scheme also succeeds in reproducing color gradients with
no blocking artifacts (see window blind in Kodak 07 and the
detail of the piggy image). Blocking artifacts in DXT1/ETC
are quite noticeable in some rather smooth areas (life saving
in Kodak 19) or object’s outlines (airplane silhouettes in Ko-
dak 20). All the results above were quite expected, as DXT1
and ETC formats favor decoding speed instead of exploiting
coherence across mipmap levels.

We also benchmarked our compression scheme with a
quadtree-based compression of the residuals. In both cases
we considered loss-less compression of residuals previously
quantized to 6 bits, on the Kodak 19 image. The quadtree
subdivision resulted in 239 313 nodes (159 356 of them were
leaves), whereas our approach produced only 88 805 runs.
Even disregarding the space required by the quadtree subdi-
vision, our approach required storing less than one half of
residuals.

5. Conclusions

In this paper we have presented a new scheme for high-
quality texture compression. Our approach deviates from
most previous approaches in that, instead of attempting to
quantize or discard detail coefficients, we aim at exploiting
sparsity by grouping together inter-level residuals with iden-
tical or similar values. When configured to yield an over-
all 6:1 compression rate, our approach provides much bet-
ter quality than 6:1 DXT1/ETC formats, being also more
compact than YCoCg-DXT5 alone. Our approach is not a
competitor nor a replacement for fixed-rate compressed tex-
ture formats such as DXT1 or ETC. These formats give up
coding efficiency to favor decoding speed, and thus exhibit
much faster decompression. We aim at filling the gap be-
tween high-performance but low quality formats, and hier-
archical schemes with better compression but much slower
performance. Unlike other hierarchical approaches, we sup-
port GPU-based decoding of trilinearly filtered samples with
no assistance from specific hardware. Since we trade off
decoding performance for compression efficiency, our ap-
proach is mostly useful for applications pursuing the highest
image quality whose frame budget can accommodate the ex-
tra decoding overhead.

An interesting avenue for further research is to evaluate
the perceptual response of the HVS to the particular fea-
tures of our compression scheme. Our hypothesis is that, at
a fixed PSNR, the perceived sharpness of most images is
higher with our approach than with competing approaches.
We base this hypothesis on the fact that our approach favors
those aspects which influence our perception of resolution
and acutance (well-defined edges) and tends to remove low-
contrast image noise (or grain) which is often detrimental to
an image. This might facilitate computing proper CR values
for a given image with no user assistance.
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