
GraphJudge: a system for assisted assessment of Computer
Graphics assignments

Lindomar Rocha, Rui Rodrigues

Dept. of Informatics Engineering, Faculty of Engineering, University of Porto, Portugal

ABSTRACT

We describe a system for submission, automated validation and assisted evaluation of Computer Graphics’ as-
signments. This type of assessments has a series of specific challenges associated to it, namely the analysis of graphical
output and the variations between implementation in different development platforms and operating systems. When
considering a large number of submitted programs (in the order of hundreds), preparing and evaluating the submissions
quickly becomes a very time-consuming task. The goals of the system are therefore to allow submission and early
validation for the students, and to ease the teachers’ burden of compiling and executing, while automatically providing
visual information of the submissions in an integrated and effective way.

1. Introduction

In this paper we describe the design and implementation of
a system for submission, automated validation and assisted
evaluation of Computer Graphics’ assignments, namely (but
not limited to) programs written in C++ using OpenGL
[ST09], GLUT [Khr11] and GLUI [Rad10] libraries.

The creation of such system was motivated by the need to
address a series of specific challenges associated to this type
of assignments, namely the analysis of graphical output, the
interactive input and the variations between implementations
in different development platforms and operating systems.

When considering a large number of submitted programs
(in the order of hundreds), dealing with compilation and ex-
ecution of these submissions, and performing the evaluation
itself quickly becomes a very time-consuming task. One of
the main factors that contribute to this is the submission of
incomplete or incompatible projects, that when compiled in
a system different from the one in which they were devel-
oped lead to failed compilation due to e.g. different library
paths or missing dependencies.

Although Computer-Based Assessment (CBA) systems
have been gaining momentum in recent years, the issue
of graphics-based assignment evaluation and the aforemen-
tioned challenges have not had specific coverage.

Therefore, we propose a system with the following goals:

• to provide to the students a submission, compilation and
early validation system, guaranteeing a working and exe-
cutable submission.

• to provide an assessment environment for the teachers,
that not only eases the burden of compiling and execut-
ing (as this is guaranteed by the early validation), but also
provides automatically visual information of the execu-
tion of the submissions in an effective format.

• to be as modular as possible, and to be able to cope
with different development environments and more im-
portantly, to deal with submissions based on different op-
erating systems.

The remainder of this paper details the work developed
to pursuit such goals. Section 2 presents an overview of re-
lated work, namely in terms of CBA solutions, and identifies
their limitations in the presented context. Section 3 describes
the desired workflow for the proposed system. The resulting
architecture and its main components are described in sec-
tion 4. Section 5 contains the results obtained with the pro-
totype developed, and in Section 6 conclusions are drawn,
followed by ideas for further improvement of the system.

2. Related work

In order to assess and evaluate the system functionalities we
researched systems for the submission and evaluation of pro-
gramming projects. There are two main categories of sys-
tems: those developed in the context of Computer-Based As-
sessments and Computer-Based Learning, and those devel-
oped in the context of programming competitions.

A study was carried out in order to find the systems that
have been developed in those fields. The systems found are
classified in order to keep the ones that give distinct aspects
related to the submission management, support for graphical
interfaces, the type of design, and features related to security
and scalability to support other programming languages, and
to the type of feedback given to the users.

Systems like BOSS [JGB05], GAME [BGNM04] and
MILE [IPVB08], are aimed to support courses in the aca-
demic environment. They provide features such as submis-
sion process, feedback system to students and support for
the student’s learning process, among others. They are de-

V Ibero-American Symposium in Computers Graphics – SIACG 2011
F. Silva, D. Gutierrez, J. Rodríguez, M. Figueiredo (Editors) 37

V Ibero-American Symposium in Computers Graphics – SIACG 2011



signed to provide great performance in terms of access and
response and to support system scalability for new compo-
nents and new programming languages.

The BOSS system was developed to help on the submis-
sion and test of students solutions. It has a plagiarism detec-
tion module, but all its features are related to the assessment
process, and it does not have any functionalities that helps
and support the teacher in the students’ learning process. It
can be scalable to support other languages apart from JAVA
and C.

The GAME system is a marking system for programs
written in JAVA and C++. It holds student submissions and
has an automated mark system. The feedback system gives
the student the result of the compilation, and programming
style and structure. The system does not have any features re-
lated to the students learning process in order to help teach-
ers to follow and support them.

When talking about e-learning platforms the MILE sys-
tem is the most complete one. It has a component, Mag that
supports teachers to share learning materials with their stu-
dents and to help them following their learning process by
solving theoretical exercises. The system integrates an auto-
mated system, the Testovic, that tests the students submis-
sions and gives detailed feedback and the results of the as-
sessments. At last there is the Svetovic component that is an
IDE that allows students to develop their solutions in a com-
fortable and familiar environment. The system has support to
a large range of programming languages and can be scalable
to support other languages and other components.

Other systems like DOMjudge [EKdW09] and PC2
[ABL09], that support programming competitions, were
studied in order to know the evaluation criteria that have
been created to support automated tests. They have to han-
dle security and performance issues, in order to hold a large
number of submissions at the same time.

These two systems have a range of features that include
setting up the competition environment, holding teams sub-
missions and give detailed feedback of their results. They
also allow teams to ask for clarifications from judges. But
looking to their design DOMjudge reveals a better concep-
tion, using a distributed design that separates the judgehost
from the server that receives submissions. The judgehost is
responsible to check team’s submissions, and there can be
more than one in order to optimize the system’s performance
when handling large numbers of submissions to be tested.

None of the studied systems has support for graphical
output programming, and those that had their source code
available have a design in which it would be very complex
to incorporate the proposed goals. Due to this, we opted to
develop a system that would fulfill those goals, while tak-
ing into account a series of concepts present in the various
projects analysed here.

3. GraphJudge workflow

With the goals presented in the introduction in mind, the fol-
lowing basis workflow was defined:

• For a given assignment, the teacher creates the assignment
in the system and prepares a description, one or more sub-
mission templates - e.g. one for each development envi-
ronment, and one or more sets of input files for testing.

These may include a public set (that students can access)
and a private set (that only the teacher can access).

• A student is then able to access the assignment informa-
tion, download a template and start developing his/her
project based on that template.

• During development time, the student can submit the
project for validation. In that case, after submission the
system will:

– internally compile the project and execute it (if compi-
lation is successful),

– optionally perform the public tests.
– Store the textual output of compilation and the graph-

ical output of execution (in the form of one or more
snapshots, or a video) and make them available to the
student.

• At any time (typically after the assignment deadline), the
teacher can check the status of the submissions, in terms
of compilation results and graphical output, and have ac-
cess to the code and executable files.

The prototype system presented in this paper is based on
this workflow, as described in the next sections

4. GraphJudge architecture

The presented workflow led to the core architecture of the
system, consisting of three major components:

• GraphJudge Manager: the service that deals with up-
loaded submissions, distributes the workload by the work-
ers (see below) and collects results

• GraphJudge Workers: the sub-systems in which compi-
lation and execution occur; to ensure isolation and sup-
port for different operating systems, each worker is a vir-
tual machine with a pre-defined operating system, and re-
motely controlled by the Manager.

• GraphJudge Interface: The interface through which
teachers setup the assignments and consult results, and
students access assignments, submit projects and consult
results. This interface invokes the Manager to handle the
submitted projects

The following sections describe these components and
their functioning in more detail.

4.1. GraphJudge Manager

The GraphJudge Manager consists of a series of scripts,
running on a server. These scripts were developed in
Python [py10], due to its flexibility and cross-platform sup-
port. Given a project or a set of projects, the scripts are re-
sponsible for:

• Choosing the correct worker(s) according to the type of
projects (e.g. Windows or Linux)

• Copying the project files to the workers
• Invoke compilation and execution on the workers
• Collect and store the results from the workers

Being the workers virtual machines, communications
between the manager and the workers are network-
based, namely via SSH [SSH11] for remote control, and
SCP [SSH11] for copying files in both directions.

38 L. Rocha and R. Rodrigues / GraphJudge: A System for Assisted Assessment of Computer Graphics Assignments

V Ibero-American Symposium in Computers Graphics – SIACG 2011



4.2. GraphJudge Workers

One of the goals of the system is to support different types of
operating systems. It should also be possible to capture the
graphical output of the program execution. Compiling and
executing projects on the same environment as the Graph-
Judge Manager would either limit the number of operating
systems to one (the same in which the Manager was run-
ning), or require the setup of cross-compiling and emulation
on that system. It would also raise some security issues, as
the Manager would be more exposed to direct tampering by
the executed programs.

Taking all this into consideration, one of the main de-
sign decisions was to have the compilation and execution
of projects performed in separate machines (at least one for
each operating system supported), devoted to those tasks and
with very few permissions in terms of network and file sys-
tem access.

However, having multiple physical machines for this pur-
pose would be an expensive solution, and unpractical in
terms of setup and handling. Instead, it was decided to use
virtual machines as an alternative. These are much more
manageable and resource-effective, while still guaranteeing
the requirements of isolation and output capturing specified
above. Furthermore, they have as additional advantages the
ability to easily revert changes made by e.g. a malfunction-
ing or malicious program, and the possibility to be easily
copied for personal testing of a particular environment by
teachers and students (provided that software licensing is
properly dealt with). Nevertheless, as the communication is
network-based, the system can cope with both virtual and
physical machines as workers, if necessary (e.g. for Mac OS
X systems that are not trivial to virtualize).

Each worker is therefore a virtual machine that must have
installed one of the operating systems that are to be sup-
ported by GraphJudge (currently Windows or Linux), and
have installed:

• an SSH server that supports SCP, to which the Manager
will connect and use to invoke scripts and copy files

• a Python interpreter
• the GraphJudge Worker Python scripts
• the compilation tools and libraries required for the type

of assignments to be supported (e.g. C++ compiler and
GLUT and GLUI libraries)

• a screen capture tool

For the creation and management of virtual machines, the
VirtualBox [Ora10] software was used. Its cross-platform
support in terms of hosts and clients, the possibilities in con-
figuring network and graphics, the ability to access via VNC
and the command-line interface for scripting made it a very
flexible tool for the purposes of this work.

The following sections detail the two main tasks carried
out by the Workers: automated compilation and execution,
and output capturing.

4.2.1. Automating the compilation and execution

As mentioned before, the type of projects to be processed
may be based on different operating systems and develop-
ment environments. The GraphJudge system was built in a

modular way, so that different building tools (and even lan-
guages) could be accommodated at any time. In the proto-
type developed, the configurations that were tested were the
following:

• GNU Make-based build system (for Linux OS based
projects) - build information in the form of a makefile

• Microsoft Visual Studio build system [Mic10] (for MS
Windows based projects) - build information in the form
of a project file (.vcproj or .vcprojx)

Each configuration is supported by information on how to
invoke the building tools and how to capture the results of
compilation (e.g. console output, log files).

The management of the process is performed by Graph-
Judge Manager, as described in section 4.1, which copies the
projects for a predefined location in the worker via SCP and
invokes the building and execution script (B&E script) for
the correct configuration on the Worker, via SSH.

The B&E script can compile and execute a single project
or a batch of projects, managed in queues. It can be run in
three different modes:

• Compile: a queue stores all project paths to be compiled.
The compile thread gets the items from the queue and
launches a shell process that executes the actual building
tool with the project folder or file’s path as an argument.
The compilation output is collected either from console or
from a generated log file and stored for later retrieval by
GraphJudge Manager

• Execute: like in compile mode the paths of projects to be
executed are stored in a queue and the execute thread gets
items, searches for the project executable and launches a
shell process that executes the project, optionally with a
test as a command line argument. While this process is
running, the script is able to capture its graphical output.
Some options are available in the B&E script to control
output capturing (see below).

• Both: this mode corresponds to compile followed by ex-
ecute, i.e., on successful compilation, the project is added
to the execute queue.

The separation between the compilation and execution is
useful when multiple executions are required on the same
compiled project, e.g. when different tests are to be applied
by a student, or when the teacher wants to run specific tests
on a project (which has been compiled on submission).

The B&E script provides some options to specify the
projects to be processed and the behavior of output captur-
ing:

• single project path: path to a single project.
• projects file system path: path to a directory containing a

set of projects to be processed. Used to compile multiple
projects.

• execution capture mode: when execution occurs, this de-
fines the capture mode. Currently only the image modes
are implemented, and video mode is being developed (see
next section for details).

• execution time out: sets the time limit in seconds for the
execution of a project, after which forcefully terminates
it, if it has not ended before. The default is 5 seconds.

The details on the process of capturing the graphical out-
put are detailed in the next section.

L. Rocha and R. Rodrigues / GraphJudge: A System for Assisted Assessment of Computer Graphics Assignments 39

V Ibero-American Symposium in Computers Graphics – SIACG 2011



After compilation and execution of a project, the corre-
sponding results are stored in a log file and an image or
video. The GraphJudge Manager, which is controlling the
process, copies at this point those results from the worker to
the Manager server, for later publication.

4.2.2. Automating the capture of graphical output

The ability to capture and store graphical output from the
execution is one of the differentiating goals of the proposed
system, even more so considering that such graphics can in-
clude OpenGL-based 3D graphics, which may require spe-
cialized capture software.

Two issues arise when considering this type of capture:
how to set it up, and what type of data will be stored.

The set-up is important, as it requires the correct identi-
fication of the window (or windows) corresponding to the
application, and the ability to monitor the capture process
in an automated way. These procedures vary depending on
the operating system. On Linux (X Windows) one has to ob-
tain the window identifier based on process information, and
that identifier can then be used by the capture program (Im-
ageMagick’s import [Ima99]) to do the actual capture. On
Windows the capture can be done using a third-party soft-
ware that captures the contents of a window based on the
window name and supports a command-line interface for
scripting (in the current implementation MiniCap [Sof10]
is being used).

The type of data captured is important, as it may influ-
ence the type of capture system. In our context, the follow-
ing alternatives were considered: single timed snapshot, set
of snapshots at regular intervals, or an actual video.

In single timed snapshot mode, a snapshot is captured af-
ter a small period of time has elapsed since the beginning
of the execution. The idea is that some time is provided for
initial loading of the program and content, and that the snap-
shot is taken already with the complete initial output avail-
able. This is suitable, e.g., in assignments where the goal is
to create a static 3D scene or model, and an initial view-
point provides an overview of the content. In these cases,
this snapshot may be enough for the teacher to assess the
fulfilling of requirements.

With a set of snapshots at regular intervals, one can cap-
ture multiple instants of the program execution. This can be
seen as a "low-frame-rate movie", and is useful in settings
where there is some sort of animation in the program - either
object animation or camera animation - and it is important
to have views of the different states of the scene, but it is not
really relevant to have access to all the instants of execution.
This can be easily implemented based on the timed snapshot
mode.

Finally, the video is the more complete type of capture
considered here, as it allows to document the execution in
a more detailed way. However, capturing video raises some
issues in terms of the resources needed for its creation. Si-
multaneous graphics output and video capture can lead to de-
graded performance, influencing both the executing program
and the quality of the video. Furthermore, the video capture
can generate a large file, which may be an issue when con-
sidering a large number of submissions. Therefore, it should
only be used when there is an actual need for a fine-grained

coverage of the execution. In the current version of Graph-
Judge, video capture is not implemented yet.

4.3. GraphJudge Interface

As stated in section 4.1, the GraphJudge Manager consists
of a set of scripts that manage workers and their tasks. For
the actual setup of the assignments and project submission,
a user interface was needed.

One of the purposes of this project is to integrate it with
existing e-learning platforms, such as Moodle [Moo09], in
which case, the submission and reporting would be handled
by those platforms. However, the ability to use the system in
a standalone way is also interesting and provides flexibility
in terms of development.

Therefore, a prototype web interface was developed to
handle the more common user-related tasks and invoke
the GraphJudge Manager. This prototype was developed in
Django [Dja05], as it is based on Python, thus integrating
easily with GraphJudgeManager, and it is a powerful tool
for rapid development of web sites.

The interface contemplates the following tasks:

• Students/groups:

– Get information about the projects to be developed,
such as problem description and base structure for files
to use in development.

– Make submissions and view results.

• Teachers:

– Add and manage classes
– Add and manage groups
– Add and manage group elements
– Add and manage projects
– List submissions or search by class, group and projects
– View submissions results

The more important components of the interface will be
the pages that provide to students and teachers the detailed
results of a given submission, and the aggregate page that
shows the teacher information about all the submissions for
a given assignment. These are the pages that will actually
contribute to, on one hand, reduce the number of incorrect
or incomplete submissions, and on the other hand provide
the teacher with information to help him in the assessment.
Images of the prototype can be found on section 5

5. Prototype testing results

In the previous section the different components of Graph-
Judge were described, namely the Manager, the Workers,
and the Interface. This section presents the prototype that
was developed which implements the main functionalities
of the components referred.

The prototype currently runs on a computer with Ubuntu,
with a set of packages required for running the Manager and
the Interface, namely:

• Python (Manager/Interface)
• Apache web server (Interface)
• Django (Interface)
• OpenSSH client (Manager - Connection to Workers)
• VirtualBox (Manager - to host the Workers)

40 L. Rocha and R. Rodrigues / GraphJudge: A System for Assisted Assessment of Computer Graphics Assignments

V Ibero-American Symposium in Computers Graphics – SIACG 2011



• The actual GraphJudge Manager and Interface scripts
(written in Python)

Below are some images depicting the functioning of the
interface. Figure 1 shows the details of a given project, that
currently include the deadline, a link to a file with the prob-
lem description, and a link to the template source files. Fig-
ure 2 shows the submission form, where the student can indi-
cate the kind of environment that his submission corresponds
(e.g. Linux or Windows). Figure 3 contains the submission
results page, where after submission the student can access
the compilation log and a preview of his program when it
was executed on the server. This allows the student to check
if what the teacher will see is what the student expected, and
demonstrates the achievement of one of the main goals of
the project.

Figure 1: Students’ view of project details

Figure 2: Students’ submission form

Figure 3: Student’s view of the results

Teachers have a set of management options (see figure 4)
of which the submission search form (figure 5) and the list
of submissions (figure 6) are the more relevant. As it can be
seen, the teacher can have an overview of the various sub-
missions, including a preview of each submission, if avail-
able.

Figure 4: Teacher’s options

Figure 5: Teacher’s form for searching submissions

Figure 6: Teacher’s list of submissions

Two Workers were implemented as virtual machines in
VirtualBox. Ubuntu was installed on one of them, and Win-
dows 7 on another. Some software had to be installed on the
workers to support the system. Below is a list of the soft-
ware (in the cases where there are differences between the
workers, these are indicated):

• OpenSSH server (to receive connections from Manager)
• Python (to run the Worker scripts)
• Compilation tools: Build-essentials on Ubuntu, Microsoft

Visual Studio 2008/2010 on Windows
• OpenGL, GLUT and GLUI libraries
• Image capturing software: ImageMagick on Ubuntu, Min-

iCap on Windows
• The actual GraphJudge Worker scripts (written in

Python), that are invoked by the Manager via SSH

It is in the workers that the main activities - compilation,
execution and image capture - occur. All are handled by the
B&E script, that is invoked by the Manager through SSH.
On a compile and execute cycle, the compilation logs are
silently stored in background, but the actual execution graph-
ical output occurs in the foreground windows, so that it can
be captured. Figure 7 and figure 8 show a running program

L. Rocha and R. Rodrigues / GraphJudge: A System for Assisted Assessment of Computer Graphics Assignments 41

V Ibero-American Symposium in Computers Graphics – SIACG 2011



as it is executed and captured in a Linux and Windows work-
ers, respectively.

Figure 7: Graphics capturing (Linux)

Figure 8: Graphics capturing (Windows)

6. Conclusions and future work

This paper presented a system for the automatic submission
and validation of academic assignments with graphical out-
put, to assist students and teachers in their assessment by
capturing and storing images of the execution output. The
work was developed to support Computer Graphics’ courses
where this type of assignments is common. This system al-
lows students to do an early validation of their submission
in terms of compilation and output, and to be sure that the
teacher will see the same results. For the teachers, it eases the
burden of compiling and executing and provides visual in-
formation of the execution of the submissions in an effective
format. The system was developed with multiple platforms
and development environments in mind, and it is therefore
modular and extensible.

The current prototype includes an interface for teach-
ers and students/groups that allows assignment creation and
submission analysis by the teacher, and assignment access,
project submission and results analysis to the students. It cur-
rently supports Linux and Windows environments.

The system is currently undergoing tests and improve-
ments, and it is expected to be tested in some of our insti-
tutions’ courses in a near future. Some of the improvements
being considered are the introduction of video capture, a
test module for image analysis to assist in the evaluation,
and the possibility to define file validation rules. Regard-
ing interaction, some ideas are being discussed for a system
to batch record some actions, but already with the current
implementation it would be possible to e.g. manipulate the
scene by providing pre-configured camera movements in the
templates and triggering them via simulated keystrokes. It
has also being considered the integration of the system with

existing e-learning platforms, namely with Moodle, as it is
being used in our institution.

References
[ABL09] ASHOO S. E., BOUDREAU T., LANE D. A.: Program-

ming contest control system, June 2009. 2

[BGNM04] BLUMENSTEIN M., GREEN S., NGUYEN A.,
MUTHUKKUMARASAMY V.: Game: A generic automated mark-
ing environment for programming assessment. Information Tech-
nology: Coding and Computing, International Conference on 1
(2004), 212. 1

[Dja05] DJANGO SOFTWARE FOUNDATION: The django frame-
work. http://www.djangoproject.com/, 2005. 4

[EKdW09] ELDERING J., KINKHORST T., DE WERKEN P. V.:
Domjudge - programming contest jury system, 2009. 2

[Ima99] IMAGEMAGICK STUDIO LLC: Imagemagick.
http://www.imagemagick.org/, 1999. 4

[IPVB08] IVANOVIC M., PRIBELA I., VESIN B., BUDIMAC Z.:
Multifunctional environment for e-learning purposes. Informa-
tion Technology: Coding and Computing, International Confer-
ence on 38 (2008). 1

[JGB05] JOY M., GRIFFITHS N., BOYATT R.: The boss online
submission and assessment system. J. Educ. Resour. Comput. 5
(September 2005). 1

[Khr11] KHRONOS GROUP: Glut - the opengl utility toolkit.
http://www.opengl.org/resources/libraries/glut/, 2011. 1

[Mic10] MICROSOFT CORPORATION: Microsoft Express.
http://www.microsoft.com/express/, 2010. 3

[Moo09] MOODLE TRUST: Moodle. http://moodle.org/, June
2009. 4

[Ora10] ORACLE: Virtualbox. http://www.test.org/doe/, 2010. 3

[py10] Python programming language - official website.
http://python.org, 2010. 2

[Rad10] RADEMACHER P.: Glui user interface library.
http://glui.sourceforge.net/, 2010. 1

[Sof10] SOFT M.: Minicap is a minimal screenshot capture app,
2010. 4

[SSH11] OpenSSH. http://www.openssh.com/, Feb. 2011. 2

[ST09] SHREINER D., THE KHRONOS OPENGL ARB WORK-
ING GROUP: OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Versions 3.0 and 3.1, 7th ed. Addison-
Wesley Professional, 2009. 1

42 L. Rocha and R. Rodrigues / GraphJudge: A System for Assisted Assessment of Computer Graphics Assignments

V Ibero-American Symposium in Computers Graphics – SIACG 2011


