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ABSTRACT

This work presents the results of applying several digital cartographic generalization techniques to improve the
performance of an Electrical Power Grids Computer-Aided-Design application. The performance increase is attained
by adjusting the level of detail of the grid topology being visualized in the CAD application. This adjustment takes place
at the database level using a multi-scale architecture and the available spatial extensions of Geographic Information
Systems databases. The data volume is minimized to fit the exact requirements of the scale being used in the visualization
so that no processing time is wasted on representing irrelevant elements. Results show that up to a 90 % of the data
can be skipped and thus, a 84 % of the time required to render the visualization can be saved on average, enabling the
CAD application to render it in real-time. Furthermore, theoptical legibility of the grid visualization is enhanced asa
consequence of applying cartographic generalization.

Categories and Subject Descriptors(according to ACM CCS): J.6 [Computer Applications]: COMPUTER-AIDED
ENGINEERING—Computer-aided design (CAD), H.2.8 [DATABASE MANAGEMENT]: Database applications—
Spatial databases and GIS

1. Introduction

The electrical distribution grids are complex networks in
charge of delivering the electric energy transported through
long distances by the much simpler transmission networks
to the consumers. They are large and very populated net-
works which cover entire states and their cities, having com-
plex topologies comprising up to hundreds of thousands of
branches. All those branches – formed by one or more power
lines – are defined using geodetic coordinates and thus, must
be processed before being visualized in a Computer-Aided-
Design (CAD) application. Modern graphics cards contain
very powerful Graphics Processing Units (GPUs) which
easily outperform the Central Processing Units for paral-
lelizable tasks. These GPUs are also programmable which
has lead to the increasing popularity of General-Purpose
Computing on GPUs in the last few years. Using the GPU
to perform the coordinate translation from the geographic
to the graphic domain has reduced the rendering time of
the grids visualization from seconds to tenths of seconds
[NRCCHP10]. However, in order to be able to offer a seam-
less real-time interaction with the visualization, further op-
timizations must be introduced so that the amount of data
arriving to the GPU is minimized and the visualization can
be rendered in less than a tenth of a second.

When interacting with the grid topology through the CAD
application, the electrical engineers zoom in and out to the
different areas of the network that are relevant to them. They
may wish to visualize the topology of a whole country, go

down to a state or even zoom into a city or to a couple of
blocks. The visualization of each one of these areas requires
a different map scale and not all the data from the grid topol-
ogy is relevant to every scale. Different levels of detail can
be applied since, for instance, there is no point in trying to
render the details of the streets when a country is being visu-
alized. Although the CAD application will usually visualize
more advanced information such as overlays, charts or satel-
lite imaging, this work is focused on improving the most ba-
sic visualization of the power grids topology. Such visualiza-
tion consists on the rendering of the power grid as unitary-
width lines. These kind of lines are the most easily processed
and rendered and therefore any improvement attained in this
scenario will be amplified in more complex ones – as it may
be for instance using the width of the lines to represent the
loads for power flow analysis.

In order to generate the different levels of detail, digital
cartographic generalization is used. In cartography, gener-
alization is the process of abstracting the representationof
geographic information to match the scale requirements of a
map. This work focuses on graphic cartography generaliza-
tion, whose objective is to reduce the spatial resolution. The
type of symbolization is not changed but the symbols them-
selves may be enhanced or exaggerated to keep its optical
legibility. As a result of applying several graphic general-
ization techniques, the volume of the data supplied to the
GPU has been reduced, yielding significantly faster visual-
ization times for the CAD application. Moreover, the gener-
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alization techniques unclutter the visualization and thus, its
optical legibility is improved.

This paper is organized as follows. Section2 presents a
characterization of the electrical distribution grids andtheir
data. In Section3, the cartographic generalization process
and techniques are presented, emphasizing those used in this
work. Section4 describes the implementation made using a
spatial database, before showing its results analysis in Sec-
tion 5. Finally, Section6 presents the conclusions.

2. Data Characterization

Power management comprises disparate areas that conform
a very complex system known as the electric utility sys-
tem, usually divided into three stages: generation, transmis-
sion and distribution. The electricity is transported by the
transmission system over long distances, from the genera-
tion plants to the distribution system. The latter is in charge
of retailing the energy and can be split into primary distribu-
tion systems – or medium-voltage networks – and secondary
distribution systems – low-voltage networks. They both have
complex topologies as opposed to the simpler transmission
networks.

This work is focused on primary distribution systems. The
networks used and an analysis of their topologies are pre-
sented in this section. The problem of visualizing the high
volumes of data involved in a limited physical space is also
considered.

2.1. Primary Distribution Network Datasets

Five real primary distribution networks from different re-
gions over the world, selected to cover different populations
and densities, have been analyzed:

• Two Central American countries: Nicaragua and Panama
with low population densities.

• One Eastern European country, Moldova, which has a
medium population density.

• Two different regions of Spain: Galicia, the northwest-
ernmost area of Spain, formed by 4 provinces with a
scattered, medium-density population; and Central Spain
which comprises 9 provinces in the center of Spain, in-
cluding Madrid – the province with the highest popula-
tion density in the country – and most of the less densely-
populated provinces.

Table 1: Population density by region.

Region Population Area (km2) Density

Galicia 2,783,100 29,574 94.11

Central
8,856,615 115,777 76.50

Spain

Moldova 3,633,369 33,846 107.35

Nicaragua 5,677,771 130,373 43.55

Panama 3,394,528 75,517 44.95

Table 1 summarizes some population characteristics of
the mentioned regions. The largest covered area has over

130,000 squared kilometers which should already be too
large and too highly detailed to interact with through visual-
ization in a CAD application.

Table 2: Distribution networks datasets.

Region Knots Branches Nodes Lines

Galicia 23,812 91,959 301,118 209,159

Central
35,522 147,651 493,121 345,470

Spain

Moldova 59,726 43,769 160,717 116,948

Nicaragua 34,912 95,770 245,135 149,365

Panama 85,990 85,319 262,319 177,000

For each region, a dataset including the geographic and
topological data of the network has been created. Networks
are composed by knots – which are commonly substations
– and branches linking them – typically power lines. Table
2 shows the different datasets, detailing the number of knots
and branches for each network. Furthermore, the number of
lines and nodes that compose the branches are shown for
each dataset. Since knots are connected using branches, the
geographic coordinates of the knots are the same as the co-
ordinates of some of the nodes forming the branches. They
provide no extra information from a topological point of
view and thus, only branches are used in this work.

2.2. Topological Analysis

In this section, a topological analysis of the branches from
Galicia and Central Spain datasets is presented. The analysis
of the other datasets have yielded analogous results and have
not been included for convenience.

Figure1(a) shows the absolute frequency distribution of
branches for the different amounts of nodes that compose
them for the Galicia dataset. As it can be seen, most of the
branches are composed by a small number of nodes. Fig-
ure 1(b), showing the detail of the frequency distribution
for branches having more than 25 nodes, exhibits that the
amount of branches with a high number of nodes decreases
rapidly. Figure2 shows how the Central Spain dataset ex-
hibits analogous distributions. The average number of nodes
per branch is 3.27 for Galicia and 3.34 for Central Spain.

Table 3: Percentage of branches formed by 2, 3 and 4 nodes.

Dataset 2 nodes 3 nodes 4 nodes

Galicia 68.00 % 11.92 % 5.84 %

Central Spain 71.48 % 9.92 % 5.38 %

Percentages of the total number of branches having 2, 3
or 4 nodes are given in Table3. For both datasets more than
two thirds of the branches are composed by just 2 nodes –
i.e. they are single lines. Furthermore, Figures1(b) and2(b)
show that the number of branches with 25 and 35 nodes re-
spectively is very low. Figures1(c)and2(c)corroborate this
fact since it exhibits how fast the cumulative distributionof
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(a) Absolute frequency distribution considering all branches.
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(b) Absolute frequency distribution considering branches
formed by 25 or more nodes.
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(c) Cumulative distribution.

Figure 1: Distributions of branches per number of nodes
they contain for the Galicia dataset.

branches composed by 3 or more nodes seems to reach its
asymptote.

This analysis reveals that the generalization must be fo-
cused on the branches composed by only 2 or 3 nodes since
there may be little reward in performing complex optimiza-
tions over the longest branches.

2.3. Data Visualization Considerations

Whenever the grid is to be visualized on a screen or plotted
on paper, the physical space available is very limited and
thus, imposes constraints on the representation of the data
that can be performed.
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(a) Absolute frequency distribution considering all branches.
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(b) Absolute frequency distribution considering branches
formed by 35 or more nodes.
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(c) Cumulative distribution.

Figure 2: Distributions of branches per number of nodes
they contain for the Central Spain dataset.

Figure3 shows a very simple visualization of the whole
Galicia dataset using unitary-width lines. This dataset con-
tains branches ranging from a few meters up to 13 kilome-
ters which are spread all over the northwestern-most region
of Spain. The average length of a branch is 192 meters while
the width of the Galicia area is 210 kilometers. When visual-
izing the whole region, there is no point in processing all the
data since a big percentage of the branches will not even be
visible – known as the imperceptibility problem – and those
which are visible may not be easily discerned if there are
many branches in their neighborhood – known as the coa-
lescence problem. This is specially true for the cities, where
there are hundreds of branches serving the streets which can
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Table 4: Points colliding in the same pixel of the visualization area.

Dataset Collisions Points % Collisions Max. collisions

Galicia 258,285 301,118 86.15 % 331

Central Spain 468,750 493,121 95.06 % 2,991

Moldova 142,319 160,717 88.55 % 1,101

Nicaragua 217,637 245,135 88.78 % 295

Panama 232,122 262,319 88.49 % 309

not be distinguished when using a small scale. Indeed, as the
figure shows, the visualization in the city areas is too clut-
tered because of branches coalescing.

Figure 3: Visualization of the Galicia dataset using unitary-
width lines.

In order to get an idea of how much redundancy is in-
troduced by processing all the available data to visualize the
whole region of a dataset, a matrix simulating a visualization
area was created. The size of this matrix was the same as the
screen area shown in Figure3 – 1,440 pixels of width and
820 pixels of height – and thus having a total of 1,180,800
positions. Each position holds the number of times that a
point, corresponding to the geographic coordinates of a node
from the branches, has been painted on the screen in the cor-
responding pixel.

Table4 shows for each dataset how many times a pixel
had more than a point assigned (collisions), the total num-
ber of points that compose the branches, the percentage of
points that end up colliding with others in the same pixel
and the maximum number of collisions for a single pixel.
Between a 86.15 % and a 95.06 % of the points fall in the
same physical position of the visualization area. Even more,
in the case of the Central Spain dataset, there is one pixel
of the screen which ended up being painted 2,991 times –
which means that 2,990 node computations and coordinate
translations could have been omitted just for that pixel. By
skipping the processing of all those nodes in the first place,
a big percentage of the computations required to visualize
the data can be avoided, resulting in a faster rendering of the
visualization.

3. Cartographic Generalization Techniques

Cartographic generalization is the process of abstractingthe
representation of geographic information to match the re-
quirements of scale of a map. As a result of this process,
different maps carrying different levels of detail are gen-
erated for different scales. There is no standard or unified
methodology when it comes to cartographic generalization,
the process depends on the exact requirements of the maps
and their purposes as well as the final users and their knowl-
edge. McMaster and Shea analyzed the factors, conditions
and requirements involved in digital cartographic general-
ization. They divide the generalization process into three
fundamental questions: why it may be necessary to general-
ize a map [MS88], conditions that define when to do it, and
how to do it – by using operators that perform the different
techniques of generalization [SM89].

As the authors suggest, cartographic generalization helps
counteract the undesirable consequences of scale reduction.
This work is mainly focused on reducing the complexity
without incurring neither spatial accuracy nor aesthetic qual-
ity losses. As for the conditions, congestion and impercepti-
bility are the more dominant forces in this work. Congestion
refers to the fact that upon scale reduction too many geo-
graphic features need to be represented in a limited physi-
cal space on the map. This is the case of geographic points
colliding in the same physical pixel, seen in Section2.3. Im-
perceptibility occurs when some features of the map are not
optically legible for some reason, for instance when visual-
izing a large region, a branch which is only a few meters
long will fall below the minimal portrayal size of the map
at that scale. Another condition related with imperceptibility
is coalescence. In this case the features can be represented
in the map but they are too close or in some kind of juxta-
position with other features, making their area of the map
too clogged. This would be the case of the cities when the
map is being visualized using a small scale. In order to over-
come these problems, simplification and merging operators
are used as described in the following sections.

3.1. Selection Process

Prior to the application of the generalization operators, the
data over which they will operate must be selected. During
this selection it is desirable to eliminate as much irrelevant
data as possible.

The most basic requirement for the data is to be opti-
cally visible in the final visualization. Thus, any impercep-
tible feature found in the data will be marked as irrelevant
and it will not be selected. To check whenever a feature will
be seen in the visualization, its size in meters is compared
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to the number of meters that each pixel of the visualization
area accounts for. In order to do this, it is required to know
the resolution of the data – normally in meters – and the
resolution of the visualization area – in pixels. Using these
numbers, themeters per pixelrelation (referred to asmpx
from now on) for the given visualization and scale resolu-
tions is calculated. Any branch from the power grid having a
length smaller than thempxvalue is discarded and therefore
not selected to be processed by the generalization operators.
In the case of branches formed by more than one line, its
bounding box dimensions are checked instead of adding the
individual lengths of the lines. The bounding box must be
either vertically or horizontally equal or larger than thempx.

3.2. Line Simplification

Line simplification produces a reduction in the number of
nodes composing a branch without modifying their coordi-
nate positions. This reduction in the number of nodes will
provide an overall increase in the performance since less
processing is required. It must be noted that in the simpli-
fication context, the term line refers to theLineStringGIS
datatype which consists of a set of interconnected line seg-
ments [OC99]. This term is analogous to the branches of
the power grids which are formed by interconnected power
lines.

In this work, the Ramer-Douglas-Peucker algorithm was
used to perform the simplification. This algorithm operates
by discarding the nodes of the branch that are not significant
based on a certain threshold – thempxmeasurement in this
case, since anything smaller is visually imperceptible. Start-
ing with the straight line formed by the beginning and end
nodes, the algorithm selects the node with the largest ortog-
onal distance to that imaginary line. As long as that distance
is larger than the threshold, it recursively calls itself for the
lines formed by the beginning and the selected nodes and by
the selected and the end nodes. Once there are no nodes left
or no more nodes with a distance to the corresponding line
larger than the threshold, the algorithm returns the simplified
branch formed by the original start and end nodes and all the
selected nodes [DP73].

3.3. Merging

Aggregation – understood as the general process including
also merging and amalgamation – consists on joining map
objects on the basis of their proximity and the objective is
generally a reduction of the spatial resolution [Orm96]. This
is needed not only for the symbols to remain legible but also
to avoid excessive accumulation of symbols in small areas
which is the motivation for its use in this work. In the case of
electrical distribution grids which are composed of branches,
the working units are the two-dimensional lines that form
those branches and the process is known as merging. The
operations carried over the data in this work are two:

1. Merge branches that share their beginning and end
nodes. Since the resulting merged branches can share
their beginning and end nodes with other branches too,
this is an iterative process. As a result, all the branches
which can be connected become a single branch, saving
nodes which would need to be processed several times
otherwise. As a side effect, the merged branches become

eligible for line simplification since they are composed of
more nodes. During this process, the logical organization
of the lines change but their geographic coordinates
remain the same.

2. Merge branches which are too close to be individually
distinguished. This is also an iterative process which op-
erates on two branches at a time and merges them into a
single branch formed by the equidistant points to those of
the original branches. As a result, the geographic coordi-
nates of the nodes change and thus, merges must be care-
fully overseen to avoid distorting the aesthetics and accu-
racy of the map. This process needs a neighborhood pa-
rameter that determines up to how far away from a branch
to look for its neighbors. The bigger this parameter is, the
more branches will be merged and more aesthetically no-
ticeable the process will result.

The first kind of merge reduces the overall number of
nodes by saving the redundant ones while the second one
eliminates entire branches since two whole branches are
merged into one. It should be noted that while line simplifi-
cation operates within branches, both merge operations work
at a higher level.

4. Implementation

In order to perform the generalization process and to store its
results, an approach based on a multi-scale database archi-
tecture was used. Multiple representations of the spatial data
are stored using different resolutions – i.e. scales – and a set
of rules are applied to support the generalization decisions,
selecting the appropriate representations, governing updates
and maintaining database integrity [Jon91]. A database has
been created for each dataset using PostgreSQL an its spatial
extension PostGIS. In each database, a base table is created
to keep the electrical distribution grid topology in its original
scale. The generalization operators have been implemented
as PL/pgSQL stored procedures.

The generalization is an offline process fired by a pro-
cedure taking thempx for the desired scale resolution and
according to the visualization area resolution. The neighbor-
hood parameter for the merging process is also required. The
value of this parameter is used as a coefficient of thempxto
calculate how far around the branch to look for its neighbors.
Thus, the value of the neighborhood parameter corresponds
to the maximum number of pixels between branches con-
sidered as neighbors in the visualization – the bigger this
parameter is, the more aesthetically noticeable the process
becomes. The result is a table containing the data general-
ized for the scale. The generalization procedure invokes the
selection, line simplification and merging procedures imple-
menting the operators described in Section3. These pro-
cedures make intensive use of the spatial indexing system
available in PostGIS [Gut84], especially the merging opera-
tor which uses it to find the branches intersecting with every
branch and its neighbors. In electrical power grids, the same
physical line can be considered as two different branches
composed of the same nodes but with different directions.
Thus, the first time that intersecting lines are found, a check
is made to find whenever some of them are equivalent. If
they are, only one of them will be kept and all the equivalent
ones will be removed.

J. Rodríguez, E. Pereira and M. Canosa / Digital Cartographic Generalization in Spatial Databases 19

V Ibero-American Symposium in Computers Graphics – SIACG 2011



Table 5 shows the time required to perform the gener-
alization process over each dataset for both 2 and 3 times
the mpxas the neighborhood parameter. Thempxwas cal-
culated using a 1:1 scale and a visualization resolution of
1,440x820 pixels. PostgreSQL 8.4 and PostGIS 1.5.1 were
used for the implementation, running on Windows XP SP3
in a Intel Core2 Q6600 2.4 GHz CPU machine with 2 GBs
of memory. The bigger the neighborhood factor is, the more
time the merging process will take since more branches will
be included. This overhead accounted for a 4.5 % average
time increase in the tests. These results make it obvious that
the process can only be performed offline and therefore the
results must be stored so they can be retrieved by the CAD
application without incurring in delays.

Table 5: Time consumed by the generalization process.

Dataset Branches
Neighborhood

2x mpx 3x mpx

Galicia 91,959 427s 430s

Central Spain 147,651 142s 158s

Moldova 45,769 294s 305s

Nicaragua 95,770 100s 101s

Panama 85,319 52s 55s

In order to execute the multi-scale generalization, the
number of scales to be generated and the resolutions of
both the visualization and the minimum desired scale are re-
quired. Using these parameters, the correspondingmpx for
the different scales can be easily calculated and thus all the
generalizations can be made in batch. Each generalized scale
is stored in a dedicated table which is kept at sync with the
base table using trigger functions. This way, each time the
original data is updated, the tables containing the multi-scale
generalizations are also updated accordingly. When the grid
data is requested to the database, a two-dimensional box is
used to select the data. The dimensions of this box determine
the resolution of the desired scale which is used to choose the
table holding the proper generalized scale.

The components of the implementation are the following:

• Stored procedures library: contains the procedures
implementing the generalization process, the different
techniques it uses and the batch multi-scale generation
producing the tables with the different generalized scales.

• Multi-scale tables: contain the results of applying the
generalization process to the base table to obtain the
different desired scales.

• Trigger functions: in charge of keeping the multi-scale ta-
bles synchronized with the base table so that any change
in the power grid data is reflected in all the generalized
scales.

Both the generalization process and the multi-scale gen-
eration procedures require some parameters which are:

• Generalization process: requires thempx and the merge
neighborhood factor. Based on the experimentation, typ-
ical values of the neighborhood factor are 2 and 3 times

thempxwhich correspond to 2 and 3 pixels of proximity
respectively. Obviously, the bigger this parameter is, the
more branches are merged and the more noticeable the
process becomes in the visualization.

• Multi-scale generation: requires the resolutions of both
the smallest desired scale and the visualization, the num-
ber of intermediate generalized scales to be generated and
the generalization neighborhood factor. The different gen-
eralizationmpxvalues are automatically calculated by di-
viding each scale resolution by the visualization resolu-
tion. These values are then passed along the neighborhood
factor as the parameters of the corresponding batch gen-
eralization process invocations.

5. Results

The process described was executed to generalize the dif-
ferent datasets in the most intensive scenario: generalizing
the topologies using the same scale resolution of the orig-
inal data – i.e. a 1:1 scale – but restraining the visualiza-
tion resolution to 1,440x820 pixels. This results in the whole
datasets – some of them covering entire countries – being
displayed in the visualization area which corresponds to one
of the smaller scales that may be required. As the user zooms
into the visualization, a smaller area of the power grid is dis-
played requiring a larger scale. In that case, while the detail
of the area is higher, both the data volume and the general-
ization required are smaller.

Table 6 shows the results of generalizing the different
datasets for a neighborhood factor of 3.1st Mergescolumn
refers to the number of branches created from merging those
that share their ending and beginning nodes while the2nd
Mergesrefer to the number of new branches averaging a pair
of old ones. The iterations required to complete each kind of
merge are also shown. The generalized network contains the
10.76 % of the original data on average and thus, almost a
90 % of the data is skipped and will not be processed.

The same process with a neighborhood parameter of 2
times thempx is shown in Table7. Comparing to the previ-
ous results it can be seen that using a factor of 2 instead of 3,
yields an average of 27.66 % less2nd Merges. The number
of 1st Mergesdoes not change since they are not affected by
the neighborhood parameter. The generalized version con-
tains in this case the 12 % of the original data, slightly more
than the 10.76 % yielded by the use of a neighborhood factor
of 3. The decision about which factor value to use depends
mostly on the aesthetical accuracy requirements since the
bigger the factor is, the more noticeable the process becomes
in the visualization. Furthermore, using a bigger neighbor-
hood factor increases the time required by the generalization
process since more merges are performed. As seen in Table
5, this overhead accounted for a 4.5 % average time increase
when using 3 instead of 2 times thempxas the neighborhood
parameter.

The multi-scale database approach increases the stor-
age requirements since the results of the generalization are
stored in dedicated tables. In these tests, one scale was gener-
ated and thus, one new table was created to store each gen-
eralized dataset. The required disk space was increased an
average of 25.54 % and 26.52 % for the different datasets
when using a neighborhood factor of 2 and 3 respectively.
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Table 6: Number of branches as a result of the generalization processwith a neighborhood factor of 3.

Dataset Original Generalized 1st Merges 2nd Merges

Galicia 91,959 13,767 8,960 / 5 iters 2,120 / 5 iters

Central Spain 147,651 8,660 4,387 / 4 iters 3,035 / 7 iters

Moldova 43,769 9,012 6,049 / 4 iters 1,090 / 5 iters

Nicaragua 95,770 6,482 5,550 / 6 iters 900 / 4 iters

Panama 85,319 4,777 3,632 / 5 iters 831 / 6 iters

Table 7: Number of branches as a result of the generalization processwith a neighborhood factor of 2.

Dataset Original Generalized 1st Merges 2nd Merges

Galicia 91,959 15,253 8,960 / 5 iters 634 / 4 iters

Central Spain 147,651 10,616 4,387 / 4 iters 1,079 / 7 iters

Moldova 43,769 9,806 6,049 / 4 iters 296 / 4 iters

Nicaragua 95,770 7,198 5,550 / 6 iters 184 / 3 iters

Panama 85,319 5,398 3,632 / 5 iters 210 / 5 iters

Table8 exhibits the times required to render the visual-
ization of the non-generalized and generalized datasets us-
ing the environment described in Section4 and a NVIDIA
GeForce 8500 GT GPU. The generalized visualizations us-
ing a neighborhood parameter of 2 and 3 need respectively
an average of only a 17.96 % and a 14.76 % of the time re-
quired to visualize the non-generalized datasets. The perfor-
mance has been increased approximately sixfold as a result
of the great reduction of the data accomplished by the gen-
eralization. Furthermore, the visualization can be rendered
in real-time – i.e. it can be rendered more than 15 times per
second. For instance, using a neighborhood parameter of 3
times thempx, the slowest rendering took 62.50 millisec-
onds – which accounts for 16 frames per second – while the
quickest required 31.25 milliseconds – 32 frames per sec-
ond.

Table 8: Time required to render the different generaliza-
tions (in milliseconds).

Dataset
Non Neighborhood

generalized 2x mpx 3x mpx

Galicia 343.75 70.32 62.50

Central Spain 521.25 54.69 46.88

Moldova 187.50 54.69 46.88

Nicaragua 296.88 46.88 31.25

Panama 281.26 39.07 31.25

A comparison of the generalized and non-generalized vi-
sualizations of a metropolitan area from the Galicia dataset
is shown in Figure4. This area covers two cities with a com-
bined population of about half a million inhabitants over
approximately 376 km2. Figure4(a) shows a detail of the
non-generalized visualization where the cities areas appear
cluttered. These areas are cleaner in Figure4(b), generalized
using a neighborhood parameter of 2 times thempx.

(a) Non-generalized visualization.

(b) Generalized visualization.

Figure 4: Comparison of generalized and non-generalized
visualizations of a metropolitan area.

6. Conclusions

This work presents the results of applying several digital
cartographic generalization techniques to improve the per-
formance of the visualization done by an Electrical Power
Grids CAD application. Specifically, electrical distribution
grids have been generalized using spatial databases to re-
duce the high volume of geographical and topological data
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of these networks. The tests run over the presented datasets
exhibit an average reduction of almost the 90 % of the data.
This reduction greatly improves the visualization times of
the application since there is less information that needs to
be processed and rendered by the graphics card. Using the
generalized datasets yielded a 84 % average decrease in ren-
dering times – being always less than a tenth of a second
and thus, enabling real-time rendering and interaction in the
CAD application.

A multi-scale architecture has been implemented us-
ing PostgreSQL and its spatial extension PostGIS. Using
PL/pgSQL stored procedures, the data is generalized and
stored in different tables corresponding to the desired gener-
alized scales. The process uses selection, simplification and
merging graphic generalization techniques to solve the con-
gestion, imperceptibility and coalescence conditions found
in the data. Since all the heavy processing involved in the
generalization is done offline and the overhead from choos-
ing the right table for the desired scale upon retrieval is neg-
ligible, the data is greatly simplified without any computa-
tional costs – only storage needs are increased proportionally
to the number of generalized scales. Hence, the performance
of the visualization is boosted since the volume of data to be
processed and rendered is much smaller. Results show that
the performance increase was approximately sixfold while
the extra disk space required to store a single generalized ta-
ble accounted for an average increase of a 26 % for all the
datasets.

The generalization process has an aesthetical impact on
the visualization as a result of the data reduction. The behav-
ior of the generalization is controlled by parameters that can
be adjusted to find the proper tradeoff between visual accu-
racy and data reduction. The specific settings must be chosen
depending on the exact requirements of the visualization:
higher values of the parameters for better optical legibility
and faster rendering times or smaller values for maximum
visual accuracy.

The architecture and procedures presented in this work
should be eligible to be seamlessly implemented in most
modern spatial databases or even using ad-hoc libraries,
making the described generalization techniques perfect can-
didates to improve a great range of applications involving
high volumes of spatial data beyond electrical distribution
grid visualization.
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