
Interacção 2010

 Time Automaton
A visual mechanism for temporal querying

Luís Certo
certo@fe.up.pt

Teresa G. Dias
tgalvao@fe.up.pt

José Borges
jlborges@fe.up.pt

Department of Industrial Engineering and Management

School of Engineering of the University of Porto, Rua Dr. Roberto Frias, s/n 4200-465, Porto

Abstract
Visual querying mechanisms are normally comfortable and accessible mechanisms. However, they generally do not
provide the means for formulating a large set of different types of temporal interrogations. In this paper we propose
the Time Automaton, a highly flexible visual language, capable of formulating many types of temporal queries. Time
Automaton’s logic is innovative and unlike available visual mechanisms it is not based on the direct conversion of
visual queries into a predefined set of commands of a textual querying language, like for example, SQL.
Keywords
temporal query, visual mechanism, visual model, regular expression

1. INTRODUCTION
Using visual querying mechanisms is normally more
comfortable than using traditional text-based querying
languages. Most important, this type of mechanisms is
useful when users do not possess programming skills.
However, querying temporal data is a complex process, and,
to the best of our knowledge, available visual querying
mechanisms [Jin09] [Shneiderman92] [Edsall97] do not
provide the means for formulating a significant set of
different types of temporal interrogations.
Available visual mechanisms convert visual configurations
directly into commands of traditional text-based languages
[Snodgrass84] [Snodgrass95]. Since the operators of textual
querying languages were not designed to be visually
manipulated their adaptation to the logic of visual
mechanisms is not natural and it generates functional
limitations.
In this paper we propose the Time Automaton, a highly
flexible visual mechanism that is capable of formulating a
vast set of different temporal queries. Time Automaton’s
logic is quite different from the logic of available visual
mechanisms, and unlike them, Time Automaton does not
use any available text-based querying language to execute
its queries. Time Automaton principles are simple and the
algorithm that executes the Time Automaton queries is
simple to implement. A specific data structure is required to
work with the mechanism. Such structure is uncomplicated
and an easily implementable algorithm can automate its
creation.

2. DATA STRUCTURE
Time Automaton requires temporal data to be encoded as a
string. We call this data structure the temporal string. Two
types of words compose the temporal string, anchors and
facts. Anchors define the beginning of temporal moments
and facts encode temporal data records, that is, the data
itself. The temporal string uses a prefix notation where each
anchor affects the anchors and facts that are subsequently

positioned.
For the artificial dataset represented in Table 1 the
corresponding temporal string, with a month granularity and
considering the year season for each month, can be defined
as follows:
year,2009 month,Jan,Winter facts,a,b
month,Feb,Winter facts month,Mar,Spring
facts,c,d,e,f month,Apr,Spring facts
month,May,Spring facts month,Jun,Summer
facts month,Aug,Summer facts,g,h
month,Sep,Summer facts month,Oct,Autumn,
facts month,Nov,Autumn facts,k,l,m,n
month,Dec,Autumn facts
year,2010 month,Jan,Winter facts,p,q
month,Feb,Winter facts month,Mar,Spring
facts,s

DATE	
 DATA_RECORDS	

Jan, 2009 a,b
Mar, 2009 c,d,e,f
Aug, 2009 g,h
Nov, 2009 k,l,m,n
Jan, 2010 p,q
Mar, 2010 s
Table 1: Artificial dataset containing temporal information	

3. MECHANISM DESCRIPTION
A Time Automaton query is represented as an oriented
graphs with the following properties: 1 - One of the nodes is
the root, which has no incident edges. 2 - Every other node
is defined by an expression, which corresponds to a word in
the temporal string. 3. Edges can have a value to define the
maximum number of traversals.
Each node’s expression is in fact a regular expression
[Aho80]. A regular expression is written in a formal
language that is interpreted by a regular expression engine,
which analyzes a text and finds which parts match the
provided specification. For example, a regular expression

305

Aveiro, 13, 14 e 15 de Outubro de 2010

 engine can analyze a text in attempt to find a word with a
specific syntax, and starting the search at a specified index.
In order to abstract the process of writing the regular
expressions that define nodes, some predicates were created:
1. Fact() corresponds to ‘facts((?:,\w+)+)?'. It defines the
syntax of a fact and specifies that it must be captured
[Friedl06]. That is, facts are stored in a capture buffer,
where they can be accessed separately from other matched
words. 2. Undef() is the same as '\w+'. It is used to match
any word, indifferently. In the temporal querying context
this predicate is useful for creating queries that do not
specify characteristics of temporal moments. For example,
in the query “all facts occurred in every month of Summer”
the months’ names are not specified. 3. Neg(charact)
corresponds to '(?!\bcharact\b)\b\w+)'. In the temporal
querying context this predicate is useful for creating queries
that exclude certain temporal moments like “all facts
occurred in every month except March”.
The algorithm that executes Time Automaton queries
corresponds to a simple graph traversal algorithm. Every
time a node is visited its regular expression is supplied to a
regular expression engine that finds the next matching word
in the temporal string. All matched words that are stored in
the capture buffer correspond to the facts that answer the
temporal query. As an example, for the temporal string in
Section 2 and the question “which facts occurred in March
2009?”, the corresponding Time Automaton query can be
formulated as represented in Figure 1.

	

Figure 1 - Example of a Time Automaton query

Time Automaton allows nodes to have multiple outgoing
edges. In such case, only one edge is traversed, and the
selection criteria is to traverse the edge linking to the node
that corresponds to nearest word. In terms of performance,
searching for every word for each possible next node is not a
good approach. A better approach is to construct a regular
expression joining all regular expressions of all possible
next nodes, i.e., if two regular expressions r1 and r2 are
joined they form a regular expression ‘r1 | r2’, where ‘|’ is
the boolean operator OR. Then, the regular expression
engine searches the next word that matches any of the
elementary regular expressions. After finding this word the
algorithm knows which node should be visited next. As an
example of a multiple outgoing edge situation, for the
temporal string in Section 2 and for the question "which
facts occurred in 2009 in all months except March", the
corresponding Time Automaton query is represented as
depicted in Figure 2.

	

Figure 2 - Example of a Time Automaton query including

nodes with multiple outgoing edges
Since Time Automaton visual layout is based on graphs it is
simple to create a graphical interface that implements the
mechanism. Moreover, the predicates created to encapsulate
regular expressions can be easily mapped into interface

controls, enabling regular expressions to be graphically
built. As an example, Figure 3 shows a screenshot of an
interface we’ve created to work with the Time Automaton.

	

Figure 3 - Interface that implements the Time Automaton

4. CONCLUSIONS
In this paper we present the Time Automaton, a highly
flexible visual mechanism that is capable of formulating
many types of temporal queries. As a matter of fact, Time
Automaton enables the formulation of a type of queries,
which are ordinal queries (e.g “all facts occurred in every
second Saturday of every month”), which in SQL [Codd83]
are not directly formulable.
A Time Automaton query is represented as an oriented
graph in which nodes are defined with regular expressions.
In order to abstract the process of writing such expressions
some predicates were devised. This abstraction layer and the
fact Time Automaton’s layout is based on graphs makes the
mechanism simple to implement in a graphical interface.
Time Automaton’s logic is innovative and, unlike available
visual mechanisms, Time Automaton does use available
text-based querying language to execute its queries. The
algorithm that executes the queries is a graph traversal that
follows some simple rules, thus, it is straightforward to
implement. Since Time Automaton queries are graphs it is
simple to store and reutilize them.

5. REFERENCES
[Aho80] A. Aho. Pattern matching in strings. Formal Language

Theory: Perspectives and Open Problems, pp. 325-347,
1980.

[Codd83] E. F. Codd. A relational model of data for large
shared data banks. Comun. ACM, 26(1), pp. 64-69, 1983.

[Friedl06] J. Friedl. Mastering regular expressions. O’Reilly
Media, Inc., 2006.

[Jin09] J. Jin and P. Szekely. Querymarvel: A visual query
language for temporal patterns using comic strips. Visual
Languages and Human-Centric Computing, pp. 207-214,
2009.

[Edsall97] R. Edsall, D. Peuquet, A graphical user interface for
the integration of time into GIS, Proceedings of the 1997
American Congress of Surveying and Mapping Annual
Convention and Exhibition, Seattle, WA, 1997, pp. 182-
189.

[Shneiderman92] C. Ahlberg, C. Williamson, and B.
Shneiderman. Dynamic queries for information
exploration: An implementation and evaluation.
Conference on Human Factors in Computing Systems,
Proceedings of the SIGCHI conference on Human factors
in computing systems, pp. 619 - 626 , 1992.

 [Snodgrass84] R. Snodgrass. The temporal query language
tquel. In PODS ’84: Proceedings of the 3rd ACM
SIGACT-SIGMOD symposium on Principles of database
systems, pp. 204–213, New York, NY, USA, 1984. ACM.

[Snodgrass95] R. T. Snodgrass, editor. The TSQL2 Temporal
Query Language. Kluwer, 1995.

306

